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Abstract

Kaoliang is a refreshing fragranced type of Chinese spirits with slight apple fragrance that

comes from ethyl acetate (EA). Special aromas are produced by esterification microorgan-

isms, which affect the taste and quality of the wine. In this study, new yeast strains were iso-

lated from yellow water, a by-product during fermentation process. Meanwhile, the optimal

culture condition was determined for its growth and EA production. Three new strains,

Kazachstaniaexigua, Candida humilis and Saccharomyces cerevisiae were identified from

yellow water. Among these strains, S. cerevisiae S5 was the new and dominant strain.

Results from response surface methodology showed that S. cerevisiae S5 produced

161.88 ppm of EA, in the medium with 4.91% yeast extract, 9.82% peptone, and 20.91%

glucose after 96 hours of cultivation at 27.53˚C. GC analysis showed that aroma com-

pounds, such as EA, isoamyl acetate and 2-phenylethanol increased from the sample of

optimal condition when compared to the one from initial fermentation condition.

Introduction

Kaoliang is made from wheat-based koji, sorghum as substrate for solid-state fermentation

and distillation to produce fragranced Chinese spirits [1, 2]. During fermentation, kaoliang

generates various flavors such as fruits, flowers and grass aroma after blending and aging [3].

Subsequently, microorganisms conduct liquefaction, saccharification, and fermentation,

resulting in the production of yellowish brown liquid, referred as yellow water, which is rich in

aroma compounds and microbial flora [4]. Ethyl acetate (EA) is the major aroma compound

found in kaoliang. Sensory evaluation of EA showed similarity with apple aroma that produced

by microbial fermentation and metabolism [1]. Yeasts and Aspergillus spp. are the main micro-

organisms involved in brewing process [5]. Aspergillus produced amylase to degrade starch

into smaller molecule such as carbohydrate and dextrin, yeast conducts alcohol fermentation
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to produce esters [6]. Ester-producing yeasts are referred as esterification microorganisms,

such as Saccharomyces rouxii, Hansenula anomala and Pichia anomala [7, 8].

Cultivation optimization is a key element to optimize the production of bioactive compo-

nents. The effects of initial pH, carbon source, nitrogen source, inoculation density and tem-

perature have been investigated to optimized aroma and biomass production in wine making

[9–12]. Compared to one-factor-at-a time approach, response surface methodology (RSM) is a

statistical approach based on the fit of polynomial regression model, which can be applied to

validate not only the value of independent variables but also the interaction among them [13,

14]. RSM has been applied for both evaluation of microorganism growth and metabolites pro-

duction such as polysaccharides, proteins and organic compounds [15–17].

The purpose of this study is to isolate and identify new yeast strains with esterification

capacity from sorghum yellow water. The optimal fermentation condition for the news strains

to produce aroma compounds especially EA using RSM was evaluated.

Materials and methods

Isolation and purification of microorganisms

Yellow water samples used in this study was provided by the private winery in Zhongxing mar-

ket (Kinmen). Sample was maintained at 4˚C until use. Yeast extract peptone glucose (YEPG)

agar is a selective medium used for isolation of eukaryotic microorganism [18] which is com-

posed of 1% yeast extract, 2% peptone, 2% glucose and 2.5% agar, supplemented with 100 mg/

L chloramphenicol and 50 mg/L chlortetracycline to inhibit the growth of prokaryotic micro-

organisms [19]. Serial dilution of yellow water samples were cultured on YEPG agar plate, at

28˚C for 36 hours. Selection of strains was performed based on morphological observation.

Selected strains were sub-cultured on YEPG agar by streak plate method to obtain single col-

ony. Each strain was sub-cultured to new YEPG agar every two weeks for culture maintenance.

Long-term storage of strain was done by adding 20% glycerol into the liquid culture and stored

at -80˚C.

Strain identification

S. cerevisiae 21447 purchased from Bioresource Collection and Research Center (BCRC,

Hsinchu city, Taiwan) was used as standard strain for physiological and biochemical charac-

teristics. Isolated yeasts were identified by comparing DNA sequences using API 20 C AUX

yeast identification kit (BioMérieux, Inc., Marcy-l’Étoile, France). The strain characteristics

were done by comparing with database as described previously [20]. Strain DNA extraction

was conducted as described by Doyle [21]. The 5.8S rDNA amplification was performed using

Internal Transcribed Spacer (ITS), ITS1 (5’ TCC GTA GGT GAA CCT GCG G 3’) and

ITS4 (5’ TCC TCC GCT TAT TGA TAT GC 3’) [22]. PCR was then performed using

Phusion high-fidelity PCR master mix (New England BioLabs, Inc., Massachusetts, USA).

DNA sequencing was subsequently performed and the sequences comparisons were then ana-

lyzed with Basic Local Alignment Search Tool (BLAST) software (National Center for Biotech-

nology Information, Maryland, USA).

Yeast fermentation

Yeast culture was produced by inoculating single colonyto 100 ml YEPG medium at 28˚C, 150

rpm for 24 hours. The YEPG medium was sterilized medium at 121˚C for 20 minutes to avoid

possible microbial contamination. This culture was further centrifuged at 3,824 g for 8 min-

utes. The supernatant was removed and yeast was adjusted to 5% (w/w) with new YEPG
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medium. Fermentation culture was made by inoculating 1% (v/v) yeast into YEPG medium

which supplemented with 14% glucose. This culture was fermented at 28˚C, 150 rpm for 96

hours.

Response surface methodology for optimal fermentation

Determination of EA concentration of fermentation culture was conducted using three factors

and three levels of Box-Behnken Design. Three factors used in RSM optimization were tem-

perature (X1), nitrogen source (X2), glucose (X3). The ranges were 25–35˚C, 6–24% and 10–

30%, respectively. Optimal fermentation condition was determined based on EA production.

Statistical analysis was conducted using Minitab (Minitab Inc., State College, PA, USA).

Ethyl acetate (EA) extraction and analysis

Fifty ml of fermentation culture was centrifuged at 3,824 g at 4˚C for 8 minutes. Twenty ml of

the supernatant with 20 ppm of pentylalcohol as internal standard were mixed with 20 ml of

dichloromethane for 30 seconds. The mixture was then centrifuged at 4˚C for another 8 min-

utes. Dichloromethane layer was taken for sampling. The procedures were conducted in tripli-

cates. The collected extract was added with sodium sulfate and filtered through filter paper.

Filtrate was vacuum concentrated and stored at -20˚C. Determination of EA was performed

by GC/MS (GC7890/MS5975, Agilent Technologies, Santa Clara, CA, USA). The column used

in this study is HP-5MS (Agilent Technologies, Santa Clara, CA, USA).

Statistical analysis

All experiments were conducted with three independent evaluations, with three replications of

each. The values were expressed as mean ± standard deviation. The RSM method followed the

Box–Behnken design 3-level-3-factor with 5 center point replications. Microsoft Excel was

used for the data analysis (Microsoft, Redmond, Washington, USA). Statistical Analysis Sys-

tem (SAS Institute Inc., Cary, North Carolina, USA) was used for T test and Duncan’s new

multiple range test. Minitab Statistical Software (Minitab Inc., University City, Pennsylvania,

USA) was used for RSM evaluation and analysis. Statistical significant differences were all

p< 0.05.

Results

Isolation and identification of yeasts

According to the morphological characteristics, biochemical reactions and DNA sequencing,

three yeast strains were isolated from the yellow water, and they were identified as Candida
humilis, Saccharomyces cerevisiae and Kazachstania exigua. S. cerevisiae accounted for 70.59%

of the total isolates, which was the dominant strain (Fig 1).

Strain selection with ethyl acetate production ability

The fermented broths of three isolated strains, C. humilis 03, S. cerevisiae 05 and K. exigua 07

were analyzed for EA contentand the results were summarized in Fig 2. The EA content from

C. humilis 03, S. cerevisiae 05 and K. exigua 07 samples were 45.14, 89.08 and 52.51 ppm,

respectively. All strains exhibited the esterification ability, and S. cerevisiae 05 was the highest

of them.

S. cerevisiae 05 was chosen for the subsequent study for the following reasons: (1) Safety: S.

cerevisiae is a safe and stable food microorganism belonging to general recognized as safe

(GRAS) strains as Food and Drug Administration (FDA) announced, which has long been
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used for baking and brewing [23]; (2) dominant species: S. cerevisiae accounted for 70.59% in

yellow water microorganism population, indicating that the fermentation environment was

suitable for S. cerevisiae, which may even had the ability to inhibit the growth of pathogens.

Physiological and biochemical characteristics of S. cerevisiae
Result of carbon source assimilation showed S. cerevisiae 05 and S. cerevisiae 21447 had no sig-

nificant difference in carbon source preference (Table 1), and both of them were identified as

S. cerevisiae in 99.9% probability (S1 Fig).

Experiments such as microscope inspection, carbon and nitrogen assimilation, carbohy-

drate fermentation, high glucose tolerance and cycloheximide resistance were carried out and

the results were summarized in Table 2. The only difference was the appearance of the strains

as shown in Fig 3. It is evident that the size of S5 strain was smaller than that of the BCRC

21447 strain. The diameters of S5 and BCRC 21447 strains were approximately for 6.3 and

10.0 μm. This phenomenon explained the rapid growth of the S5 strain, where the generation

time of the S5 and BCRC 21447 strains were 73.2 and 93.7 minutes, respectively.

Response model fitting and adequacy checking

The medium composition and the fermented parameters certainly affect the EA yield of yeasts

[24]. Different yeasts prefer specific cultivation system. In this study, three factors namely fer-

mented temperature (X1), nitrogen sources (X2), and glucose (X3) on EA production were

investigated using BBD-RSM design (Table 3). The nitrogen sources were yeast extract and

peptone, and the ratio of them was kept at 1:2. The results of BBD were summarized in Table 4

Fig 1. The proportion of three yeast strains isolated from yellow water.

https://doi.org/10.1371/journal.pone.0211356.g001
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and analyzed by multiple regression analysis. Following second-order polynomial equation

was obtained.

YEA ¼ 153:84 � 32:49x1 � 2:53x2 þ 0:17x3 � 33:77x1
2 � 31:20x2

2 � 24:14x3
2 þ 0:15x1x2

� 8:40x1x3 þ 2:12x2x3 ðEq 1Þ

The analysis of variance for the model is shown in Table 5, and the fitness of it was exam-

ined using the determination coefficient (R2 = 0.964), which suggests that the sample variation

of 96.4% for EA production was associated with the variable factors. In addition, the lack of fit

for the model was insignificant (p> 0.05), verifying the accuracy fit of the second-order model

(Eq 1) to the true response of EA production. Moreover, the F value of 49.19 and p
value < 0.05 for the regression, supporting the second-order model, adequately approximated

the response surface. As a result, canonical analysis demonstrated that the predicted maximum

of EA production was 161.88 ppm at fermented temperature 27.5˚C, 14.73% nitrogen sources,

and 20.91% glucose. The results clearly indicated that all these variables influenced EA yield.

Effects of factors on EA production

According to the mathematical model, three-dimensional surface and contour plots were gen-

erated to reveal the interaction among the three independent variables studied and to depict

Fig 2. The EA concentrations of fermented broths from three yeast strains.

https://doi.org/10.1371/journal.pone.0211356.g002
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the combined effects of these variables on EA production. As the influence of two variables on

response surface was plotted, the other variable was kept at its zero level. As shown in Fig 4,

EA production gradually increased with the increase of fermented temperature, nitrogen

sources and glucose. However, it was found that the yield of EA will decrease while these three

factors continuously increased (Fig 4). These results demonstrated that our response surface

generated from a quadratic model was defined as maximum surface.

Verification of optimization

To validate the predicted S. cerevisiae S5 EA production, verification fermentation with the

predicted optimal value of variables was carried out.As shown in Table 6, a high correlation

between predicted (161.88 ppm) and experimental yield of EA was observed. The EA produc-

tion was 163.22 ppm after the 96-hours fermentation, which was approximately 1.83 times

higher than the one from basic medium (Table 6).

Content of aroma compounds in fermented broth

We compared the aroma compounds between the fermented broths from basic and optimum

medium (Table 7). Results showed that the content of major aroma compounds, such as EA,

acetoin, isoamyl alcohol, isoamyl acetate, 2-methylbutyl acetate, 2-phenylethanol, 2-phenethyl

acetate and tryptophol, increased after optimization, and the increase ratio were between 1.28–

2.01.

Table 1. The result of carbon source assimilation in yeast identification system API 20 C AUX tests.

Tests Active ingredients S5 BCRC#21447

0 none - -

GLU D-glucose + +

GLY glycerol - -

2KG calcium 2-keto-gluconate - -

ARA L-arabinose - -

XYL D-xylose - -

ADO adonitol - -

XLT xylitol - -

GAL D-galactose + +

INO inositol - -

SOR D-sorbitol - -

MDG methyl-αD-glucopyranoside + +

NAG N-acetyl-glucosamine - -

CEL D-cellobiose - -

LAC D-lactose - -

MAL D-maltose + +

SAC D-saccharose + +

TRE D-trehalose + +

MLZ D-melezitose + +

RAF D-raffinose + +

H/PH+ produced mycelium - -

(-) means negative reaction, and (+) means positive reaction.

https://doi.org/10.1371/journal.pone.0211356.t001
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Table 2. The result of “Yeasts: Characteristics and identification tests”.

Appearance of yeasts Paper result S5 BCRC#21447

Mycelium - - -

Ascospore + + +

Ballistospore - - -

Carbon source assimilation tests Paper result S5 BCRC#21447

D-galactose + + +

D-glucosamine - - -

D-xylose - - -

L-arabinose - - -

D-saccharose + + +

D-maltose + + +

D-cellobiose - - -

Salicin - - -

D-lactose - - -

starch - - -

glycerol - - -

D-mannitol + + +

Lactic acid - - -

succinic acid - - -

citric acid - - -

methanol - - -

ethanol + + +

L-fructose + + +

D-raffinose + + +

Nitrogen source assimilation tests Paper result S5 BCRC#21447

Sodium nitrate - - -

L-lysine - - -

Ammonium sulfate + + +

Sugar fermentation tests Paper result S5 BCRC#21447

D-glucose + + +

D-galactose + + +

D-maltose + + +

D-saccharose + + +

D-lactose - - -

D-cellobiose - - -

starch - - -

L-fructose + + +

D-raffinose + + +

Glucose solution osmolaritytests Paper result S5 BCRC#21447

40% glucose solution + + +

50% glucose solution + + +

60% glucose solution - - -

cycloheximide test Paper result S5 BCRC#21447

100 ppm - - -

1000 ppm - - -

https://doi.org/10.1371/journal.pone.0211356.t002
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Discussion

S. cerevisiae also known as brewing yeast and baking yeast is profoundly used in food industry

[25]. Since the whole genome sequence of S. cerevisiae has been elucidated, it has been used as

model for disease prevention and molecule biology [26]; more than that, S. cerevisiae can pro-

duce many organic compounds such as ethanol, lactic acid, glycerol and EA [27]. C. humilis
was often used for fermenting traditional Italian rye sour dough with Lactobacillus spp. [28],

both C. humilis and L. spp. exhibits acid-fastness and salt-tolerance properties. C. humilis can

inhibit growth of other bacteria and eventually became the dominant species during fermenta-

tion [29]. C. humilis can also produce aroma compounds such as ethanol, acetaldehyde and

EA [30]. K. spp. are common in pineapple, star fruits etc. [31], which can be used for making

Turkish kefir [32]. K. spp. can also be used as feed additive which will reduce the poultry infec-

tion of Salmonella [33]. Etienne-Mesmin et al. [34] found a new probiotic yeast strain, S. cere-
visiae CNCM I-3856, which can inhibit the growth of Escherichia coli O157:H7 in digestive

system. Fadel et al. [35] isolated a new thermotolerant strain S. cerevisiae F-514 from Egyptian

Fig 3. The appearance of S5 (A) and BCRC21447 (B) under microscopy.

https://doi.org/10.1371/journal.pone.0211356.g003

Table 3. Levels of factors chosen for the Box-Behnken design.

Factors Symbols Coded levels

-1 0 +1

Temperature (oC) X1 25 30 35

Nitrogen sources (%)� X2 6 15 24

Glucose (%) X3 10 20 30

� The nitrogen source was composed by peptone and yeast extract. (Peptone: Yeast extract = 2:1)

https://doi.org/10.1371/journal.pone.0211356.t003
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distillery factory, which could improve ethanol yield by fermenting sugarcane molasses. Para-

pouli et al. [36] successful induced several new enzymes from new yeast strain S. cerevisiae
Z622 which could contribute to a better understanding of how S. cerevisiae cells adapt to wine

fermentation.

Esterification involves many enzyme reactions such as alcohol acetyltransferase (AAT) [37]

and is also regulated by many genes such as alcohol acetyltransferase gene (ATF1) [38]. EA is

the major aroma compound in kaoliang [39], and it’s also a crucial esterification component

of yeasts [40]. Yeasts with higher EA production efficiency means that the higher amount of

ester aroma compounds were produced during the winemaking process.

Fermentation time is an important parameter in fermentation engineering since the micro-

organisms affect the composition of the fermentation broth. In this study, we performed an

eight-day-fermentation and monitored EA production every 24 hours. The results showed

that EA production reached the highest on the fourth day and then declined (S2(A) Fig). Glu-

cose also played an important role on EA synthesis. In alcoholic fermentation, glucose could

be converted to pyruvate by glycolysis pathway, and produce ethanol in an anaerobic environ-

ment [41]. In this process, glucose not only provides the energy for growth, but also produces

the ethanol for EA synthesis. There were three metabolic pathways to synthesize EA: esterifica-

tion [40], hemiacetal reaction [42] and alcoholysis reaction [43], and these metabolic pathways

require ethanol to participate the action. However, excess glucose had an inhibitory effect in

the yield of EA that might be attributable to unfavorable osmotic pressure (S2(B) Fig). The

sluggish growth of microorganisms was often observed at high osmotic pressures, while initial

sugar concentration exceeded a certain level [41].

Organic nitrogen source was widely used in the cultivation of yeasts, suggesting that essen-

tial amino acid could be synthesized from organic nitrogen sources instead of inorganic ones

[44]. The biochemical characteristics results of this study also supported that an organic

Table 4. Box-Behnken design matrix and experimental results of EA production and the theoretical EA produc-

tion of equation.

Run Order Factors EA(ppm) Theoretical EA

X1 X2 X3

1 35 15 30 63.00 55.10

2 25 6 20 127.15 123.79

3 30 15 20 150.03 153.53

4 35 15 10 72.64 71.52

5 25 24 20 124.34 118.44

6 30 24 30 93.60 98.07

7 30 15 20 152.15 153.53

8 30 15 20 161.47 153.53

9 25 15 10 112.06 119.60

10 35 24 20 50.89 53.89

11 30 6 30 96.94 98.88

12 30 15 20 153.72 153.53

13 30 15 20 151.83 153.53

14 30 6 10 107.66 102.77

15 30 24 10 95.82 93.49

16 25 15 30 136.01 136.71

17 35 6 20 53.11 58.64

X1 = Temperature; X2 = Nitrogen source; X3 = Glucose

https://doi.org/10.1371/journal.pone.0211356.t004
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nitrogen source (yeast extract and peptone) was more favorable for biomass production in S.

cerevisiae S5 than an inorganic nitrogen source (ammonium sulfate). Yeast extract and pep-

tone are rich in vitamins, essential amino acids and trace elements such as magnesium cation.

Magnesium cation acts as a mainly co-factor of several enzymes of fermentation metabolism

and protecting yeast cells from stressful conditions [45]. The yield of EA increased with the ele-

vation of nitrogen source, but excess nitrogen source may also suppress EA production (S2(C)

Fig). It was supposed that high concentrations of cations would decrease the amount of live

cells during the fermentation process, which results the decrease in alcoholic content and fer-

mentative efficiency [46]. In addition, certain by-products existing at high concentrations of

yeast extract and peptone would lead to abatement in EA yield, such as L-pyroglutamate [47].

Fermented temperature was associated with the yield of EA (S2(D) Fig). Previous study sug-

gested that, in fermentation process, temperature would influence the yeasts’ gene regulation

[48], target product yield [49] and enzyme activity [50]. Each yeast strain had distinct cultiva-

tion temperature. It was generally believed that the EA-synthesis enzymes had higher activity

at 30˚C [51], which was in agreement with our results.

Many studies discussed about winemaking concerning S. cerevisiae and the concentration

of EA. Mateos et al. [52] used nine S. cerevisiae strains in winemaking and found that the con-

centration of EA in wine was 44.1–56.9 ppm. Roza et al. [53] explored the biomass, sugars and

ethanol influence the aroma during the cider industrial fermentation, and found that the con-

centration of EA was about 44 ppm.The previous study indicated that the concentration of EA

in wines is generally lower than 150 ppm. When EA went above 200 ppm will be considered

negative for the wine aroma [54]. Therefore, S. cerevisiae S5 was regarded as a winemaking

strain with acceptable EA production.

The EA assists S. cerevisiae to disseminate to the environment by attracting insects [55].

These aroma compounds also play important roles in wine. In winemaking, for example, car-

bonic maceration process could induce cell wall hydrolysis, which generated esters, such as

isoamyl acetate [56], which is one of the esters remarkably contributes to the aroma profile of

Table 5. Analysis of variance (ANOVA) for response surface quadratic model.

Source Coefficient Degree of freedom Sum of squares F value P value

Constant 153.84

X1 -32.49 1 0.000

X2 -2.53 1 0.339

X3 0.17 1 0.946

X12 -33.77 1 0.000

X22 -31.20 1 0.000

X32 -24.14 1 0.000

X1X2 0.15 1 0.967

X1X3 -8.40 1 0.047

X2X3 2.12 1 0.561

Regression 9 21,449.5 49.19 0.000

Linear 3 8,495.9 58.45 0.000

Square 3 12,653.3 87.05 0.000

Interaction 3 300.2 2.07 0.193

Residual 7 339.2

Lack-of-Fit 3 259.5 4.34 0.095

Pure Error 4 79.7

Total 16 21,788.6

https://doi.org/10.1371/journal.pone.0211356.t005
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white wines [57]. Therefore, medium optimization provides a reinforced approach to produce

aroma compounds.

Fig 4. Three-dimensional surface and contour plots of three factors on EA production. The effect of temperature (X1) and nitrogen sources

(X2) (A), temperature (X1) and glucose (X3) (B), and nitrogen sources (X2) and glucose (X3) (C) on EA production.

https://doi.org/10.1371/journal.pone.0211356.g004

Table 6. Comparison of basic and optimum medium on EA production.

Factors Basic medium Optimum medium

Temperature (oC) 28.0 27.5

Nitrogen source (%) 3.00 14.73

Glucose (%) 14.00 20.91

EA yield (ppm)a 89.08 ± 9.09 163.22 ± 19.15

EA = ethyl acetate.
aThe results are presented as the means of five replicated.

https://doi.org/10.1371/journal.pone.0211356.t006
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Conclusion

The current study screened a new yeast strain, S. cerevisiae S5, with winemaking-potentiality

from Kinmen kaoliang yellow water. Furthermore, the optimum value of independent vari-

ables (fermented temperature, nitrogen sources and glucose) for EA production was evaluated

and predicted by BBD-RSM. As a result, fermentation conditions of 27.5˚C, 14.73%, and

20.91% were suggested for EA production. EA production was 163.22 ppm at RSM-optimized

medium, which was 100.83% of the software-predicted value. It is noteworthy that the content

of many aroma compounds were increased in the optimum medium compared with those

obtained from basic medium.

In conclusion, this study reported a new yeast strain with enhanced aroma production abil-

ity, which provides a new insight into the aroma compounds production or winemaking

industrial application of S. cerevisiae.

Supporting information

S1 Fig. The results of yeast identification system API 20 C AUX test. Both S. cerevisiae 05

and S. cerevisiae 21447 were identified as S. cerevisiae in 99.9% probability.

(TIF)

S2 Fig. The correlation of fermentation time and EA concentration. The highest EA con-

centration at 100.75 ppm in fermented broth was obtained on the 4th day (A).The correlation

of carbon source concentration and EA concentration. The treatment of glucose 20% yielded

the highest EA concentration 120.20 ppm in fermented broth (B). The correlation of nitrogen

source concentration and EA concentration. The treatment nitrogen 12% yielded the highest

EA concentration 125.96 ppm in fermented broth (C). The correlation of fermented tempera-

ture and EA concentration. The temperature 30˚C yielded the highest EA concentration

90.80 ppm in fermented broth (D).

(TIF)
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42. Löser C, Urit T, Stukert A, Bley T. Formation of ethyl acetate from whey by Kluyveromyces marxianus

on a pilot scale. JBiotechnol. 2013; 163(1):17–23. https://doi.org/10.1016/j.jbiotec.2012.10.009 PMID:

23089728
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