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ABSTRACT Corneal endothelial diseases are leading
indications for corneal transplantations. With significant
advancement in medical science and surgical techniques,
corneal transplant surgeries are now increasingly effective
at restoring vision in patients with corneal diseases. In the
last 15 years, the introduction of endothelial keratoplasty
(EK) procedures, where diseased corneal endothelium
(CE) are selectively replaced, has significantly transformed
the field of corneal transplantation. Compared to
traditional penetrating keratoplasty, EK procedures,
namely Descemet’s stripping automated endothelial
keratoplasty (DSAEK) and Descemet membrane
endothelial keratoplasty (DMEK), offer faster visual
recovery, lower immunological rejection rates, and
improved graft survival. Although these modern
techniques can achieve high success, there are
fundamental impediments to conventional
transplantations. A lack of suitable donor corneas
worldwide restricts the number of transplants that can be
performed. Other barriers include the need for specialized
expertise, high cost, and risks of graft rejection or failure.
Research is underway to develop alternative
treatments for corneal endothelial diseases, which are
less dependent on the availability of allogeneic tissues
– regenerative medicine and cell-based therapies. In
this review, an overview of past and present
transplantation procedures used to treat corneal
endothelial diseases are described. Potential novel
therapies that may be translated into clinical practice
will also be presented.

INTRODUCTION
A healthy corneal endothelium (CE) is essential in
supporting an ideal level of corneal hydration
(approximately 78% aqueous). This maintains an
ideal spacing of stromal collagen lamellae, which is
important in keeping the cornea transparent.1 2 In the
early neonatal period, the human corneal endothelial
cell density (ECD) is estimated to be around 6000
cells/mm2.3 4 Subsequently, ECD falls to 3000–3500
cells/mm2 by early childhood as a result of normal
growth in corneal size and concurrent cellular
attrition.4 5 Thereafter, there is a continuing loss in
ECD of approximately 0.6% each year, so that the
average ECD at 85 years of age is approximately 2300
cells/mm2.4 6 7 This physiological decline in ECD
throughout life does not normally affect the normal
structure and function of the cornea.

An accelerated corneal endothelial cells (CECs)
attrition above the natural decline in ECD can be
caused by specific pathological conditions including
Fuchs endothelial corneal dystrophy (FECD) or var-
ious insults to the CE (eg, intraocular surgeries, ante-
rior segment laser treatments, intraocular

inflammation, infections, direct physical trauma).4 8 9

A loss in ECD below a pathological level (typically
<500–600 cells/mm2) can compromise the capacity
of the CE to maintain corneal hydration.8 10 11 When
this occurs, the cornea loses its transparency from
corneal oedema resulting in visual impairment.

However, human CECs are unable to sponta-
neously divide and regenerate under physiological
in vivo conditions.12 13 In the early gestational period,
human CECs are believed to be locked in the quies-
cent G1 phase of the cell cycle.14 15 This has been
ascribed to various influences including cellular con-
tact inhibition,16 17 the presence of inhibitors of mito-
sis (eg, transforming growth factor-β2),16–19 or an
absence of active stimuli from growth factors.17 18

Thus, the restoration of physiological function of the
CE in diseased states can only depend on one of the
three ways: (a) a replacement with an external source
of healthy CECs, (b) the repair of impaired CECs or
(c) the redistribution of remaining functional CECs to
replace damaged or lost CECs.9 The current approach
for treating corneal endothelial failure predominantly
relies on the replenishment by an exogenous source of
healthy CECs through various techniques of corneal
transplantations.9 However, being dependent on
a supply of transplantable grade donor corneas, the
limited availability of such suitable donor tissues
restricts the number of transplants that can be per-
formed worldwide.20 Corneal transplantations can
also be complicated by risks of allogeneic graft rejec-
tion and failure.21–23 Consequently, there is a drive in
search for alternative therapies.9 These include cell-
based approaches as a scalable source of human CECs
or regenerative medicine, where damaged cells are
repaired or existing functional CECs are made to
redistribute to replace damaged or lost cells.9 24

These form the basis of potential future therapies for
corneal endothelial replacement. In this review, we
aim to illustrate the evolution of corneal endothelial
replacement from past practices of full thickness pene-
trating keratoplasties, to present advanced endothelial
keratoplasty (EK) techniques, to potential future
novel therapies for corneal endothelial diseases that
may be translated into clinical practice.

CORNEAL ENDOTHELIAL REPLACEMENT: THE
EARLY YEARS OF KERATOPLASTY
Since Eduard Zirms’ introduction of penetrating
keratoplasty (PK) surgery in 1905, it has been the
predominant technique to restore visual loss from
various diseases of the cornea.25 In PK, all corneal
layers of the recipient are replaced by a donor cor-
neal graft, which is sutured to the recipient.9 It is an
effective procedure in reversing corneal blindness.26

Thus, despite the redundant replacement of healthy
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anterior corneal tissues in PK with its known intra-operative and
postoperative complications, this surgical procedure was deemed
as the standard of care for treating corneal endothelial diseases
throughout the 20th century.26 27

In the mid-1950s, Charles Tillet performed the first posterior
lamellar keratoplasty (PLK) for corneal oedema, where he
sutured a posterior corneal button to a diseased host.28 This
marked the introduction of posterior lamellar or EK techniques,
where diseased CE is selectively replaced, avoiding full-
thickness PK procedures.9 In the original case report, the PLK
procedure successfully reversed the patient’s corneal oedema
and the cornea remained clear after 1 year.28 However, the
patient’s vision was not restored due to postoperative high
intraocular pressures caused by trapped air behind the iris.28

Shortly after, Jose Barraquer described a similar technique using
a microkeratome-created laser in situ keratomileusis (LASIK)
flap.29 This was followed by the trephination of the recipient’s
posterior lamellae comprising stromal tissue, Descemet’s mem-
brane (DM) and diseased CE. A donor endothelial graft was
then fixed with sutures. The LASIK flap was subsequently repo-
sitioned and resutured. Nevertheless, although some success
was achieved in replacing the diseased CE, these early PLK
techniques were not widely adopted. This was partly due to
the lack of appropriate surgical instruments needed to create
a thin donor endothelial graft, which made these techniques
difficult to perform. Complications and poor outcomes were
also encountered as a result of a limited knowledge of endothe-
lial cell physiology. Moreover, the need for suturing resulted in
corneal astigmatism similar to PK. As a result, there were no
significant developments of Tillet’s and Barraquer’s described
PLK techniques for most of the second half of the 20th
century.30

It was only until the late 1990s, when Gerrit Melles proposed an
intrastromal approach for PLK that advancement in EK techniques
rapidly followed.9 31 32 In Melles’ PLK technique, a pocket was
created via a corneoscleral incision to hold a donor endothelial
graft without sutures. The graft was then transplanted through
a limbal wound andwas attached to the recipient’s posterior corneal
surface bymeans of an injected air bubble.Mark Terry subsequently
adopted and modified Melles’ PLK procedure, which was renamed
as deep lamellar endothelial keratoplasty (DLEK).33 34Nevertheless,
these PLK and DLEK techniques introduced were not universally
adopted due to the high surgical demands of dissecting the host
diseased cornea.30 The difficulties of obtaining a smooth recipient–
donor interface by hand-dissection resulted in a compromise in best-
achieved visual acuities and visual quality.35–37

ENDOTHELIAL KERATOPLASTY: CURRENT APPROACHES
Descemet’s stripping endothelial keratoplasty (DSEK) and
Descemet’s stripping automated endothelial keratoplasty
(DSAEK)
In 2004, Melles further simplified his posterior lamellar approach
by only selectively removing DM and CE from recipient’s corneas,
without the need to dissect stroma.38 This is known as ‘desceme-
torhexis’. A pre-cut endothelial graft is subsequently inserted into
the recipient’s eye via a small corneal or scleral surgical wound and
attached to the host cornea with an air or gas bubble.9 Using an
internal approach and for preserving the host, posterior stroma
creates a smooth surface on which the endothelial graft can be
attached. This technique is known as Descemet’s stripping
endothelial keratoplasty (DSEK). Later, Gorovoy described the
use of an automated microkeratome in the dissection of the
donor graft to improve the graft–host interface. He called this

procedure Descemet’s stripping automated endothelial kerato-
plasty (DSAEK).39 Both DSEK and DSAEK techniques have since
been widely adopted and performed worldwide.40

Since the introduction of these advanced EK techniques, a shift in
the surgical management of corneal endothelial failure, away from
full thickness PK, has been observed.41 Indeed, these EK techniques
where diseased CE is selectively replaced have significantly trans-
formed the field of corneal transplantation in treating corneal
endothelial diseases over the past decade. Compared to PK,
DSAEK procedures offer several clear advantages.22 42 Being mini-
mally invasive, DSAEK avoids ‘open-sky’ situations following full
thickness trephination of PKs and the associated sight-threatening
risks of intraoperative suprachoroidal haemorrhage.9 43 In contrast
to surgically induced weaknesses at the graft–host junctions seen in
PK corneas, the biomechanical strengths of corneas that had under-
gone DSAEK are oftenmaintained.44 This reduces the risk of devas-
tating open globe injuries in the event of physical trauma.9 In
addition to avoiding full-thickness transplantation, corneal sutures
are often not required in DSAEK. There are thus lower risks of
suture-related complications in DSAEKs including infectious kerati-
tis and postoperative corneal astigmatism, the latter attributed to
more rapid visual rehabilitation.9 45–47 Unlike PK, as the corneal
profile is relatively well preserved in DSAEK, when concurrent
cataract surgery is required, more accurate intraocular lens (IOL)
power calculations can be achieved.9 48 Overall, the risks of allo-
geneic graft rejection rates are also observed to be lower in DSAEK
grafts compared to PK.22 23

Consequently, with its clear advantages, the DSAEK technique
has become increasingly popular among corneal surgeons. In
many institutions worldwide, DSAEK has now been adopted as
the predominant procedure for reversing corneal blindness
caused by endothelial dysfunction.40 49 50 Since the introduction
of DSEK/DSAEK surgeries, there have been noticeable develop-
ments in their techniques with the aims of improving postopera-
tive outcomes.9 One example of such advancements lies in graft
insertion techniques. The first DSEK grafts were inserted into the
eye using a 60/40 ‘taco-folding’ technique with the help of surgi-
cal forceps.30 Following insertion, grafts were then unfolded in
the anterior chamber. However, significant ECD losses of up to
40% have been reported with this forceps folding technique.51

Since then, various innovative techniques to insert endothelial
grafts have been proposed.52 These insertion methods have been
shown to be less damaging to the CE.52–54 Such techniques
include the use of IOL cartridges, sheets glide, or customised
graft insertion devices to assist the surgeon in the intraocular
transfer of DSAEK grafts.52–57 Some examples of customised
graft insertion devices are the Endosaver (Ocular Systems,
North Carolina USA),56 the Busin glide (Asico, Illinois, USA),53

the Neusidl Corneal Inserter (Fischer Surgical Missouri, USA),57

and the EndoGlide (Network Medical Products, North
Yorkshire, UK).9 54 By maintaining the donor graft in an
‘endothelium-down’ orientation during insertion, these custo-
mised insertion devices aim to avoid unnecessary graft manipula-
tion and damage to its CE when the graft is unfolded within the
eye.53 54 56 Unlike the ‘taco-folding’ technique, these devices also
protect the DSAEK graft from endothelium-to-endothelium
touch, and hence reducing the unnecessary loss of CECs.54

There are many variations in performing DSAEK. Figure 1
shows the authors’ preferred DSAEK technique using the
EndoGlide.
Research has also been focussed on evaluating the effects

of reducing the thickness of the transplanted DSAEK grafts.
Compared to thicker grafts, studies have reported improved
visual outcomes when ultra-thin DSAEK grafts (<100 μm)
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are transplanted.58 59 Several approaches have been intro-
duced to reliably cut ultra-thin DSAEK grafts.9 One example
is the ‘double-pass technique’ using a microkeratome, which
involves a first 300 μm debulking cut followed by a second
refinement cut.60 61 Other approaches to obtain ultra-thin
DSAEK grafts include preconditioning donor tissues with
airflow dehydration prior to the microkeratome cut62 or
graft dissection with the aid of a femtosecond laser.63

In spite of the considerable advancements in surgical techni-
ques where good predictable results can be achieved, DSAEK
does have its limitations.9 Undesirable hypermetropic outcomes
can be caused by the presence of a stromal layer in transplanted
DSAEK grafts. Visual quality may also be affected at the graft–
host interface.64 65 The discrepancies in curvatures between reci-
pient’s posterior corneal surface and DSAEK donor lenticule may
lead to folds as shown in figure 2.

Figure 1 Authors’ preferred surgical technique of Descemet’s stripping automated endothelial keratoplasty (DSAEK) with the EndoGlide (Network
Medical Products, Yorkshire, UK). (A) 4.5 mm scleral-tunnelled surgical wound; (B) descemetorhexis; (C) inferior peripheral iridectomy; (D) pre-cut
DSAEK lenticule inserted into the anterior chamber via a pull-through technique; (E) injection of air for graft attachment; (F) opening of venting incisions
to release fluid from the graft–host interface; (G) trephination of pre-cut graft; (H) fluid separation of DSAEK lenticule from anterior stromal cap;
(I) DSAEK lenticule transferred to the EndoGlide; (J) ocular viscoelastic device coating to protect donor endothelial cells; (K) DSAEK lenticule is pulled into
the EndoGlide using a customised micro-forceps; and (L) clip secured creating a ‘closed system’ during DSAEK graft insertion.
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Descemet’s membrane endothelial keratoplasty (DMEK)
More recently, a significant development in EK surgery is the trans-
plantation of donor DM with its endothelium without stroma. In
2006,Michael Tappin reported the use of purpose-made cannulas to
transfer 7.5mmdonor endothelial discs with DMwhichweremade
to attach to recipient bare corneal stroma using an injected air
bubble.66 Corneal oedema was reversed in all three cases reported
using this procedure known as true endothelial cell (Tencell) trans-
plantation. Around the same time, Melles introduced DMEK,
a procedurewhich later becamewidely adopted by corneal surgeons
worldwide.21 40 67 68 Like Tencell, a DMEK graft consisting of
donor DM and endothelium is transplanted.9 Similar to DSAEK,
air or gas tamponade was used to keep the DMEK graft adhered to
the posterior corneal surface of the recipient (figure 2). By only
replacing unhealthy corneal tissues, DMEK is an anatomically and
functionally more accurate replacement of the diseased CE.9 68

Compared to DSAEK, DMEK has been reported to offer faster
visual recovery and improved outcomes.69–74 Reports have also
indicated lower rates of graft rejection following DMEK,23 75 and
as such, with reduced need for steroids, a lower risk of glaucoma.76

Although endothelial cell loss following DMEK surgery has
been reported to be higher than DSAEK in the initial follow-up
period,71 77 78 studies comparing DMEK to DSAEK with longer
follow-up suggest that ECD loss is similar or better in DMEK.79

Nevertheless, in spite of these advantages of performing DMEK,
corneal surgeons have been reluctant to take on DMEK as the
primary surgical technique for themanagement of corneal endothe-
lial failure.40 41 This trend is ascribed to the challenges encountered
in DMEK surgery.9 Unlike DSAEK, a different set of skills with
steeper learning curve are needed by the surgeon at each step of
DMEK procedures. In DMEK, there are risks of tissue damage and
wastage in donor graft harvesting, challenges in graft unfolding
within the eye following graft insertion, and higher rates of compli-
cations such as graft detachments and iatrogenic failure.9 68

Donor graft harvesting
As the DM is approximately 10 μm thin and highly friable,80 the
success of DMEK graft donor preparation depends on consistent
techniques that allow grafts to be harvested without damage and
tissue wastage.9 Figure 3 illustrates DMEK graft harvesting by
means of a ‘submerged cornea using backgrounds away’ (SCUBA)
technique.81 Through graft harvesting under fluid, it allows easier
tissue handling as surface tension on the free DM is negated.9 The
initial step involves scoring and detaching the donor DM from the
peripheral CE. This is followed by peeling of the DM prior to
central trephination. During graft preparation, the visibility of the
thin transparent DMEK graft can be enhanced using vital dyes such

as Visionblue (D.O.R.C., Zuidland, The Netherlands). Other dyes,
which give longer-lasting stains, such asMembrane Blue Dual (D.O.
R.C., Zuidland, The Netherlands) can be applied prior to graft
insertion to assist the surgeon in graft visualisation and orientation
within the eye.82 Nevertheless, the exposure of the DMEK grafts to
these vital dyes should be restricted as studies have reported time-
dependent toxic effects of these dyes to the CE.83

To prevent iatrogenic graft failure caused by an inadvertent
‘up-side-down’ graft, intraoperative orientation of the DMEK
graft is essential.84 However, graft orientation can often be diffi-
cult following the intracameral transfer of the graft. In addition to
the use of vital dyes, surgeons have also used other strategies such
as asymmetrical markers created on harvested grafts to aid graft
orientation.9 Some examples include the use of S-stamps85 or
peripheral scalene triangular incisions.86

Other approaches have also been introduced to minimise the
failure of graft preparation often caused by inadvertent tissue
damage. For example, some investigators have employed
the use of air or fluid to detach and harvest the donor DM from
the posterior stroma87 88 (figure 4A). There is also a growing
trend in the use of DMEK grafts pre-stripped in the eye bank89–91

(figure 4B). By eliminating the need of the surgeon to prepare the
donor graft, the use of pre-stripped DMEK grafts can reduce the
learning curve of DMEK surgery; it allows the surgeon to con-
centrate on patient preparation and DMEK graft insertion,
unscrolling and attachment. Furthermore, using pre-stripped
DMEK grafts can potentially reduce surgical time, tissue wastage,
cost and logistic requirements of DMEK graft harvesting per-
formed by the surgeon.91–93 Although some investigators have
suggested trends of reduced cell viability with pre-stripped
DMEK grafts especially when stored in preservation media for
a longer duration,94 most larger series investigating outcomes of
pre-stripped DMEK have reported comparable results in conven-
tional surgeon-prepared DMEK.90 95–97

Donor graft insertion and unfolding
Upon separation from the posterior stroma, a free-floating DM
has a natural tendency to adopt a scrolled-configuration with its
endothelium on its outer surface.98 This consistent ‘endothelium-
out’ directional scrolling of DMEK graft tissues has been attrib-
uted to the elastin distribution within the DM—anterior dense
band of elastin in the DM gives rise to a greater elasticity in its
anterior compared to its posterior surface.98 It makes intracam-
eral graft unfolding one of the most technically demanding stages
in DMEK surgery. In particular, scrolls formed are often tighter in
younger donors, and thus unfolding is thought to be even more
challenging in these circumstances.99–101

Figure 2 Optical quality degradation following Descemet’s stripping automated endothelial keratoplasty (DSAEK). (A) Patient who received a DSAEK
graft showing folds visible in the interface (arrows) between graft and recipient stroma resulting in visual symptoms; (B) the same patient who had
a DSAEK graft exchanged with a Descemet’s membrane endothelial keratoplasty (DMEK) graft showing the resolution of folds and corresponding
improvement in optical quality.
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Figure 3 Authors’ preferred surgical techniques of Descemet’s membrane endothelial keratoplasty (DMEK). (A–K) Donor preparation using submerged
cornea using backgrounds away (SCUBA) technique and ‘endothelium-out’ surgical technique of DMEK. (A) Visionblue (D.O.R.C., Zuidland, The
Netherlands) to enhance Descemet’s membrane (DM) visualisation; (B) corneal tissue scored in the periphery; (C) DM is peeled from periphery; (D) DMEK
graft is trephined; (E) arrow showing surgically cut orientation mark (asymmetrical triangle); (F) Membrane Blue Dual (D.O.R.C., Zuidland, The
Netherlands) applied to DMEK graft; (H) loading of graft into glass-injector; (I) intracameral injection of DMEK graft via a corneal surgical wound; (J) graft
is unfolded using controlled taps over host cornea; (K) injection of air/gas for graft attachment; (L–Q) Surgical technique of ‘endothelium-in’ DMEK using
a DMEK EndoGlide (Network Medical Products, Yorkshire, UK). (L) creating an ‘endothelium-in’ graft trifold; (M) donor loading into the DMEK EndoGlide
using a pull-through technique; (N) clip secured creating a ‘closed system’ during DMEK graft insertion; (O) graft inserted into the anterior chamber by
a pull-through technique; (P) air is injected whilst holding the donor to maintain orientation; (Q) intracameral full air/gas fill for graft attachment.
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Similar to DSAEK, a range of devices have been introduced to
assist the surgeon in DMEK graft insertion. These devices shield the
graft from endothelial damage when passing through the surgical
wound. Examples of such devices include glass injections102 103 and
the use of IOL cartridges.104 105 In the vast majority of techniques
used in published studies, the DMEK graft is loaded such that its
endothelium is on the outside (‘endothelium-out’) (figure 3A–K). In
these ‘endothelium-out’ techniques, there is inevitable contact
between graft endothelium and the innerwall of the insertion device
whichmay potentially lead to ECD loss. There is also some evidence
that plastic graft injectors correlated with higher postoperative graft
detachment rates, compared to glass injectors.106 107 This observa-
tion has been explained by more variable ECD loss with plastic
materials and intraoperative changes in the nature of DMEK grafts
during insertion and unfolding, thought to be caused by electrostatic
forces generated from plastic materials.106 However, not all studies
have found this.108 Furthermore, in all ‘endothelium-out’ techni-
ques, a scroll of DMEK graft is inserted into the eye in its entirety,
leaving the surgeon to unscroll the free-floating graft in the anterior
chamber. This can often be challenging, unpredictable, and time
consuming.109 Compared to DSAEK, different surgical skills with
steeper learning curve are required by the surgeon.110 The surgeon

must learn various techniques to unfold a DMEK graft within the
anterior chamber68 111 112 (figures 3A–K). Such techniques include
methodological approaches to unfold double-scrolled grafts
through a series of controlled taps on the corneal surface, the use
of intracameral water currents to shift and orientate the graft, or air
bubbles to assist the surgeon in opening tight scrolls.111 112 As these
techniques of orientating and unscrolling a free-floating DMEK
graft are reliant on normal anterior segment anatomies, structural
abnormalities (eg, iris defects, aphakia, previous vitrectomies) can
significantly increase the surgical complexity of the surgery. In cases
such as tight graft scrolls or a very deep anterior chamber, the graft
unfolding can also be technically challenging113 (figure 4C–F).
Recent publications have introduced ‘endothelium-in’ graft inser-

tion techniques for DMEK surgery.114–117 After harvesting, the
DMEK graft is folded often in a tri-fold, with its endothelium on
its inner surface. This prevents the graft fromnaturally scrollingwith
its endothelium on the outer surface (figure 3L–Q). Such ‘endothe-
lium-in’ techniques are thought to have the advantage of reducing
donor CEC loss from inadvertent contact of graft endothelium on
the luminal walls of insertion devices. Furthermore, in ‘endothe-
lium-in’ techniques, the DMEK graft is inserted into the anterior
chamber in the correct orientation with the endothelium facing

Figure 4 Strategies to improve success of Descemet’s membrane endothelial keratoplasty (DMEK). (A) Air used to separate and detach Descemet’s
membrane from stroma for donor harvest; (B) eye bank pre-stripped DMEK graft; note the orientation S-stamp and mark on scleral rim indicating the
unstripped area of the graft (arrow); (C–F) example of a tight scroll and use of air bubbles to assist the surgeon in opening up the graft (D, E) before full
air tamponade (F).
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downwards. Following insertion in an ‘endothelium-in’ configura-
tion, the DMEK graft starts to unfold to adopt its natural ‘endothe-
lium-out’ scroll, essentially ‘assisting’ the surgeon in graft unfolding.
As such, the reliance on normal anterior segment structures (eg,
intact iris diaphragm), important in ‘endothelium-out’ techniques,
is circumvented in ‘endothelium-in’ techniques. These features of
‘endothelium-in’ techniques thusminimise the surgical challenges of
graft orientation and unfolding of a free-floating scrolled graft
within the eye. This makes DMEK surgery more controlled and
predictable, especially in complex eyes with abnormal anatomies.
‘Endothelium-in’ techniques can be inserted into the eyes by (a)
direct injection into the anterior chamber or (b) pulled into the eye
using various ‘pull-through devices’ or IOL cartridges. Various ‘pull-
through devices’ have been designed to mimic DSAEK procedures,
which are familiar to many corneal surgeons.114 An example of
a ‘pull-through endothelium-in’ device is the DMEK EndoGlide
(Network Medical Products, North Yorkshire, UK)9 (figure 3L–Q).

Since the introduction of DMEK surgery, variants of this surgical
technique have been described. These include hemi-DMEK or
quarter-DMEK118 119 and pre-Descemet’s endothelial keratoplasty
(PDEK).120 Hemi-DMEK or quarter-DMEK surgeries differ from
standard DMEK only by the sizes and shapes of grafts transplanted
into recipients.118 119 Compared to standard DMEK where one
donor is used for one recipient, these techniques allow one donor
to be used for two (hemi-DMEK) or four (quarter-DMEK) recipi-
ents, increasing the availability of donor endothelial tissues to more
patients. Although the visual outcomes of hemi-DMEK and quarter-
DMEK have been reported to be comparable to standard DMEK in
published small case series, there appears to be a larger drop in
ECDs in the initial postoperative period in these newer
techniques.118 119 Larger studies with longer duration of follow-
up comparing the survival outcomes of hemi-DMEK or quarter-
DMEK to standard DMEK are required.

In 2014, the PDEK techniquewas introduced as amodification of
DMEK.120 By including a pre-Descemet’s layer, a PDEK graft is
prevented from forming a natural scroll, unlikeDMEKgrafts. Thus,
authors proposed that PDEK offers better control and reduces the
need for intraocular manipulation to unfold a scrolled graft.120

A PDEK graft is harvested by intrastromal air injection to obtain
a Type 1 big bubble which cleaves a plane between the pre-
Descemet’s layer and the rest of the corneal stroma. However, the
ability to perform PDEK surgery is dependent on the reliability of
achieving a Type 1 big bubble.9Moreover, the size of the graft is also
limited to approximately 7–8 mm, the maximum diameter of a big
bubble. It is worth noting that some consider the pre-Descemet’s
layer as an artificial formation of a stromal layer caused by pneu-
modissection, rather than a distinct anatomical structure.121

FUTURE OF ENDOTHELIAL REPLACEMENT
Conventional EK surgeries, the current standard of care for treat-
ing endothelial dysfunction, are increasingly successful in restoring
vision.26 27 122–125 (table 1).Nonetheless, the number of transplant
surgeries that can be performed is restricted by the availability of
suitable donor tissues. In a 2016 report, it was estimated that only
1.5% of the worldwide demands for corneal transplantations were
being fulfilled.20 Furthermore, about a third of donor corneal
tissues harvested were reported to be not suitable for transplant
surgeries due to low ECD or abnormal donor infectious screen.20

Corneal transplantations are also associated with the requirements
of specialised surgical expertise, high costs and the long-term risks
of allogeneic graft rejection and failure.

With these limitations of corneal transplantations, research is
thus focused on developing alternative approaches to replace Ta
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CECs in corneal endothelial diseases.24 These approaches include
cell-based therapies and regenerative medicine.9 Cell-based thera-
pies use the in vitro cultivation and propagation of CECs as an
alternative scalable exogenous source of cells. In regenerative
medicine, damaged cells are repaired or existing functional
CECs are redistributed to replace damaged or lost cells.9

Cell-based approaches to endothelial replacement
Concepts of cell-based therapies
Cell-based therapies encompass the in vitro cultivation of primary
native human CECs population from cadaveric donor
corneas.126–128 With the propagation of functional CECs, the scal-
ability of human CECs through cell cultures from a single donor
cornea can yield sufficient CECs for the treatment of multiple
patients; this is unlike conventional corneal transplantations where

one donor is, in most situations, limited to the treatment of just one
or, at best, a small number of recipients.24

In cell-based therapies, cultured CECs can subsequently be trans-
ferred to recipients’ diseased corneas via either (1) cell-injection
or (2) as a tissue-engineered construct.9 24 In cell-injection
approach, cultured CECs are delivered by direct intracameral injec-
tion of the cells into the recipient. The recipient is then required to
posture in a face-down position for 2–3 hours. This enables the
CECs to settle and attach to the cornea of the recipient.24 129–136

(figure 5A–C) Some investigators have also described the role of
ferromagnetic adherence using iron-endocytosed CECs,130 super-
paramagnetic microspheres,137 or magnetic nanoparticles,138 to aid
in the distribution and attachment of CECs. Alternatively, cultured
CECs may also be used to produce tissue-engineered endothelial
constructs.134 139 (figure 5d) Engineered corneal endothelial grafts

Figure 5 Novel therapies for the treatment of corneal endothelial diseases. (A–C) Cell injection therapy performed in a rabbit model of bullous
keratopathy; silicone-tipped cannula is used to remove native corneal endothelial cells guided by trypan blue (A, B) followed by injection of cultured
human corneal endothelial cells (C); (D) tissue-engineered endothelial keratoplasty performed in a rabbit model; (E–L) technique of the Descemet’s
membrane transplant (DMT); (E) removal of donor corneal endothelial cells by Descemet’s membrane (DM) scrapping with a silicone tip cannula (SP-
125053, ASICO, USA); (F) trephination of DMT graft; note posterior surface of graft is stained blue with Visionblue (D.O.R.C, Zuidland, The Netherlands),
showing its aceullarity; (G) orientation mark created (asymmetrical scalene triangle); (H) acellular DM disc is the loaded into a glass injector; (J) surgical
marking on host cornea (4–5 mm) to indicate the central diseased area of DM stripping; (K) intracameral injection of DMT graft via a corneal surgical
wound; (L) intracameral full air/gas fill for graft attachment.
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are fashioned by high-density seeding of expanded CECs onto thin
biological or synthetic scaffolds, and stabilised before transplanta-
tion into the eye. Reported examples of scaffolds studied included
DM,140–150 amniotic membranes,151 collagen matrix,152 human
corneal stromal discs,134 139 153 154 gelatin hydrogel discs155 156

and chitosan-based membranes.157 These tissue-engineered
approaches allow the cells to be transplanted into the eye, similar
to current EK techniques.24 134 139

Translation of cell-based therapies into clinical practice
The translation of cell therapies using human-cultivated CECs
into clinical trials requires specialised laboratory facilities and
trained personnel with the appropriate expertise, specifically
the ability to propagate CECs within an accredited Good
Manufacturing Practices (GMP) environment.126–128 139 158

Regulatory safety standards must also be met to use such cultured
CECs in human clinical trials.139 In our recent work, we showed
the ability to consistently propagate human CECs within a GMP
environment.139 When we delivered these CECs into a rabbit
model of bullous keratopathy through both intracameral cell-
injection or tissue-engineered approaches, in vivo functionality
was demonstrated by a reversal of corneal oedema.134 139 In
2018, a pioneering clinical trial reporting the results of cell-
injection therapy for corneal endothelial failure was
published.135 Investigators demonstrated that the injection of
cultivated CECs in growth medium augmented with rho-
associated protein kinase (ROCK) inhibitor, effectively treated
corneal oedema and restored vision; outcomes were stable up to
24 months postoperatively.135 Further institutional review
board-approved clinical trials investigating the clinical outcomes
of tissue-engineered corneal endothelial transplantations are also
underway (clinicaltrials.gov/ct2/show/NCT04319848).9 139

The availability of different modalities to deliver CECs is
important. Each mode of delivery of CECs may be applicable to
varying scenarios, depending on the pathophysiologies of the
disease. We have previously demonstrated that an intact DM is
essential for cell-injection therapies to work.134 Thus, cell-
injection may not be suitable in all situations of corneal endothe-
lial diseases. For instance, in the initial mild stages of diseases such
as PBK or graft failure, where DMs are relatively spared, removal
of CECs through DM scraping and replacing CECs via cell-
injection may be the modality of choice.134 On the contrary, in
advanced diseases with scarring of the DM, DM-stripping to
remove abnormal DM is required. These patients may require
other modalities of cell deliveries such as tissue-engineered grafts
because cell-injection is known to be less effective without
a DM.134 Likewise, in FECD, guttae and extracellular matrix
excrescences on the DM can significantly affect vision.159 Our
group has also shown that the height and density of guttae may
affect the formation of a CECmonolayer160 and that large guttae
can be toxic to injected endothelial cells.161 Thus, DM may need
to be stripped in FECD with significant guttae and cell-injection
may not be suitable. Future imaging techniques in development
may allow us to evaluate the characteristics of these guttae to
predict the success of cell-injection therapies.162

Alternative sources of corneal endothelial cells for cell-based
therapies
Along with the expansion of primary CECs in culture, other
studies have investigated alternative sources of CECs. Such alter-
native sources include the differentiation of adult cells into CECs
phenotype. An example of such sources includes adult skin-
derived precursor cells, which are thought to be embryonic

neural-crest-related precursors, exhibiting similar characteristics
to neural-crest stem cells.163 As CECs are embryologically
derived from the neural-crest,164 165 investigators have success-
fully produced CEC-like cells differentiated from adult skin-
derived precursor cells.166 The therapeutic effects of these cells
were further demonstrated in different animal models of bullous
keratopathy.166 Another example is the differentiation of neural-
crest cells and subsequently, CECs from induced pluripotent stem
cells (iPSCs) derived from adult dermal fibroblasts.167 More
recently, scientists have also used synthesised DM-like substrates
to stimulate the differentiation of human mesenchymal stem cells
into CEC-like cells through mechanotransductive effects.168

However, such alternative sources of CECs are at present largely
experimental and culture protocols still require optimisation.
One key advantage of producing CECs from extraocular pre-

cursor cells to treat a patient with corneal endothelial failure is
the ability to use non-ocular cells from the same patient with
ocular disease. Such autologous sources of CECs would be valu-
able in minimising the risks of allogeneic rejection encountered in
conventional keratoplasty surgeries. In the advent of genetic
editing, such as the use of CRISPR endonucleases, treatment of
corneal endothelial diseases using CECs derived from allogeneic
sources may be feasible even in patients who have genetic predis-
positions to corneal disorders.169 An example is individuals with
FECD who have the CTG trinucleotide repeat expansion muta-
tion within the TCF4 gene.169–171

Regenerative medicine approach to endothelial replacement
Role of Rho-associated kinases (ROCK) inhibitors in corneal diseases
Rho-associated kinases (ROCK) belong to the AGC (cAMP-
dependent protein kinase/protein kinase G/protein kinase C) family
of serine-threonine protein kinases.172–174 Due to the therapeutic
potential ofmodifying cellular functions, ROCK-signalling pathway
has become a popular field of research in recent years.
Activated ROCK leads to the phosphorylation of downstream

targets. Principally, these targets regulate smooth muscle contrac-
tion through calcium ion sensitisation. They are important in
controlling signal transduction pathways central to essential cellu-
lar function including stress fibres contraction, cell adhesion, cel-
lular motility, cell proliferation, and apoptosis.175 ROCK also play
a crucial role in modulating inflammatory cellular infiltration and
migration.176 Furthermore, ROCK signalling has been reported to
be involved in gene expression that leads to cell cycle regulation
and differentiation.175 However, the role of ROCK in physiologi-
cal pathways is cell specific and can vary depending on the cell line.
The effects of inhibition of ROCKmay also vary fromone tissue to
another. There is still little understanding of such differences.
In ophthalmology, ROCK inhibitors have been shown to have

an effect in intraocular pressures lowering, important in the
management of glaucoma.177 178 ROCK inhibitors have been
shown to regulate conventional aqueous humour outflow facility
through cell modifications, including cytoskeletal rearrange-
ment, reduced cellular contraction and cell–cell contact in the
trabecular meshwork and Schlemm canal.179–185 More recently,
ROCK inhibitors have been investigated for their applications in
regenerative therapies for corneal endothelial diseases.186–191

Unlike their effects on aqueous humour outflow, the inhibition
of ROCK signalling in CECs has been shown to promote cell
adhesion, inhibit apoptosis and enhance cellular proliferation in
cultivated primate and human CECs.188 190 Clinical reports have
also described the recovery of corneal endothelial function fol-
lowing transcorneal freezing of patients with corneal endothelial
dysfunction and the administration of ROCK inhibitor eye
drops.187 191 As mentioned above, in addition to the use of
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ROCK inhibitors in regenerative therapies, they also serve as
important components of effective cultivation methods to pro-
pagate CECs for use in cell-based therapies.192

Surgical techniques in regenerative medicine
Two surgical techniques introduced recently that use regenerative
medicine in the treatment of corneal endothelial diseases are
Descemetorrhexis without endothelial keratoplasty (DWEK)/
Descemet’s stripping only (DSO) and Descemet’s membrane
transplantation (DMT).9 Studies have indicated that corneal
transplants performed for diseases in which healthy CECs are
preserved in the peripheral cornea (eg, FECD) can achieve better
graft survival compared to transplants performed for diseases
causing widespread CEC loss (eg, pseudophakic bullous
keratopathy).26 These observations have led to the concept of
host CECs centripetal migration, which forms the underlying
basis of DWEK/DSO and DMT.9

In ‘DWEK’ (or more recently accepted terminology of
‘DSO’),193 diseased CE and DM in the central cornea of patients
are removed to allow the central migration and redistribution of
healthy peripheral CECs to restore endothelial function.194 This
avoids the need for endothelial replacement through transplanta-
tion. However, clinical case series evaluating DSO for FECDs have
reported variable results.195–199 DSO appears to bemore reliable if
only the central 4.00 mm of diseased DM is stripped197 198 or
when patients received topical rho-associated protein kinase
(ROCK) inhibitors.198 199 Larger randomised comparative studies
with longer-term follow-up are required to establish the effective-
ness of DSO as an intervention.

The importance of an intact DM to facilitate the central migra-
tion of CECs has since been described.200 Unlike DSO where the
central corneal is left without a DM, following central stripping of
diseased CE and DM, a decellularised DM is transplanted into the
stripped area to enable CEC migration in DMT.9 Using this techni-
que, the functionality of the CE to restore corneal clarity has been
reported.200 201 This can allow for a larger descemetorhexis to be
performed, that is, removal of a larger area of guttae.

To prepare a DMT graft, a donor cornea with ECD unsuitable
for conventional transplantation (eg, <2000 cells/mm2) under-
goes a double freeze-thaw cycle.9 Subsequently, amanual removal
of CECs from the donor cornea is performed using a silicone-
tipped cannula (catalogue number: SP-125053, ASICO, USA). An
acellular DMT graft is then obtained via a donor harvesting
technique used in DMEK (eg, SCUBA technique). As a larger
population of peripheral host CECs following central descemtor-
hexis promote a more stable postmigration CEC population and
faster recovery of cellular function,202 the size of the harvested
DMT graft is kept small (4.0–5.0 mm).9 As the size of the DMT
graft is small, one can also harvest multiple grafts from a single
donor cornea or even harvest DMT grafts from donor corneal
rims whose central cornea has been harvested for conventional
transplant surgeries. Such used donor corneal rims are currently
discarded. Thus, one donor cornea can be used to treat more than
one patient with endothelial disease. The procedure of DMT
graft insertion is similar to standard DMEK surgery. Figure 5E–
L shows the procedure of DMT performed in FECD patient.

As the DMT graft is acellular, risks of immunological rejection
and need for long-term immunosuppressive agents encountered
in conventional transplantation are avoided. Additionally, donor
tissues that are not suitable for conventional keratoplasties due to
insufficient ECDs can be repurposed and used.9 Nevertheless, the
success of regenerative medicine for corneal endothelial

dysfunction does rely on appropriate patient selection. The first
successful DMT was performed on a 56-year-old patient with
FECD.201 As the migratory potential of CECs declines with
advancing age,203 DMT performed on older patients may require
additional measures to support CEC migration. These measures
include the use of topical ROCK inhibitors (eg, Y-27 632, netar-
sudil, ripasudil) in DMT.9 The evidence in DMT, however, are
based on animal data and case reports200 201 and studies with
larger sample size and longer duration of follow-up are required.
It is worth noting that in regenerative medicine techniques, cells

migrating from the peripherymay be patients’ diseased cells, such as
FECD. Thus, disease phenotypes like guttae may still develop in the
future. However, such regenerative approaches would have poten-
tially delayed the age at which a corneal transplantation is required.

CONCLUSION
Over the past two decades, a paradigm shift from full-thickness
penetrating keratoplasties to partial-thickness advanced endothelial
keratoplasties has significantly improved the outcomes of corneal
transplantations performed on patients with corneal endothelial
diseases. Despite being effective in reversing corneal blindness,
being donor dependent may mean that conventional corneal trans-
plantation techniques will likely be replaced by novel alternatives,
including scalable cell-based therapies and regenerative medicine.
Further translational research and clinical trials are required to
improve the specific therapeutic techniques and determine the long-
term safety and efficacies of each novel therapy. Understanding the
applicability of each of these treatment modalities according to the
various underlying pathophysiologies may mean a more persona-
lised approach to the future management of endothelial disease.
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