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Parallel quantum annealing
Elijah Pelofske 1*, Georg Hahn2* & Hristo N. Djidjev1,3

Quantum annealers of D-Wave Systems, Inc., offer an efficient way to compute high quality solutions 
of NP-hard problems. This is done by mapping a problem onto the physical qubits of the quantum 
chip, from which a solution is obtained after quantum annealing. However, since the connectivity of 
the physical qubits on the chip is limited, a minor embedding of the problem structure onto the chip 
is required. In this process, and especially for smaller problems, many qubits will stay unused. We 
propose a novel method, called parallel quantum annealing, to make better use of available qubits, 
wherein either the same or several independent problems are solved in the same annealing cycle of a 
quantum annealer, assuming enough physical qubits are available to embed more than one problem. 
Although the individual solution quality may be slightly decreased when solving several problems 
in parallel (as opposed to solving each problem separately), we demonstrate that our method may 
give dramatic speed-ups in terms of the Time-To-Solution (TTS) metric for solving instances of the 
Maximum Clique problem when compared to solving each problem sequentially on the quantum 
annealer. Additionally, we show that solving a single Maximum Clique problem using parallel quantum 
annealing reduces the TTS significantly.

Quantum annealers manufactured by D-Wave Systems, Inc. are designed to compute approximate high-quality 
solutions of NP-hard problems using a process called quantum annealing. In particular, the annealers of D-Wave 
Systems are specialized quantum machines to minimize discrete functions that can be expressed in the form

where the linear weights hi ∈ R and the quadratic couplers Jij ∈ R , i, j ∈ {1, . . . , n} , are specified by the user and 
define the problem under investigation. The variables xi are unknown and take two values only: if xi ∈ {0, 1} the 
function in Eq. (1) is called a quadratic binary optimization problem (QUBO), and if xi ∈ {−1,+1} it is called an 
Ising problem. Both formulations are computationally equivalent.

The time evolution of any quantum system is characterized by an operator called the Hamiltonian. For the 
D-Wave quantum chip, it is given by

This operator is interpreted as follows. The first term encodes an equal superposition of all states (making 
each bit string equally likely). The second term of Eq. (2) encodes the problem to be solved, given in Eq. (1), 
which is fully determined through its linear and quadratic couplers hi and Jij , respectively. During annealing, the 
quantum system slowly transitions from an equal superposition of all states to one whose ground state encodes 
the implemented problem to be solved. This is realized with the help of a so-called anneal path, given by the 
functions A(s) and B(s). At the start of the anneal, A(s) is large and B(s) is small, and during annealing A(s) 
decreases to zero while B(s) increases to some maximal value. During the annealing process, it is expected that 
the system stays in a ground state, thus allowing to read off a low-energy (optimal or near-optimal) solution of 
the implemented problem upon termination.

To minimize Eq. (1) on the D-Wave quantum annealer, the following steps are typically required: 

(1) After expressing the problem to be solved as a minimization problem of the type of Eq. (1), one can rep-
resent Eq. (1) as a problem graph P itself having n vertices, one for each variable xi , i ∈ {1, . . . , n} . Each 
vertex i has a vertex weight hi . Each non-zero term Jijxixj becomes an edge between vertices i and j with 
edge weight Jij.
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(2) The problem graph P is mapped onto the graph of qubit connectivity of the quantum annealer. Since the 
D-Wave annealers offer a fixed number of physical qubits whose connectivity usually does not match the 
one of the problem graph P, a minor embedding of P onto the qubit hardware graph is typically needed. In 
the embedding, it is usually the case that some logical qubits are represented by a set of physical qubits on 
the D-Wave hardware graph, called a chain. Chained qubits require the specification of a coupler weight as 
well, called the chain strength or chain weight, to incentivize them to take the same value during annealing. 
The number of chained qubits per logical qubit is called the chain length. Embedding the problem graph 
P onto the hardware graph results in a subgraph of the hardware graph, denoted as P′.

(3) D-Wave starts the annealing process by initializing all the qubits used in the embedding of P′ in an equal 
superposition, from which the system slowly transitions to the user-specified QUBO or Ising problem 
while aiming to keep all qubits in the ground state. Thus a solution can be read off once the system is fully 
transitioned to the problem Hamiltonian.

(4) Though they represent one logical qubit, chained hardware qubits are not guaranteed to take the same 
value after annealing (we call those broken chains). To arrive at a consistent solution, we need to unembed 
chains, meaning that each broken chain has to be assigned one value after annealing. There is no unique 
way to achieve this, though D-Wave offers several default methods for unembedding.

Since computing a minor embedding is computationally intensive, the annealer is oftentimes used with a 
fixed precomputed embedding of a complete graph Ks of size s, which is the maximum size that can fit onto the 
qubit hardware. This has the advantage that any problem graph P of s vertices can be easily embedded into the 
annealer as it is a subgraph of Ks . However, using a fixed complete graph embedding also has disadvantages. First, 
using a fixed complete embeddding might lead to a poorer solution quality than using tailored  embeddings1. 
This is due to increased problem complexity, as well as longer chain lengths that distort the original problem. 
Second, if the problem to be solved on D-Wave does not require all (or the majority) of the hardware qubits, the 
D-Wave hardware is used suboptimally since qubits remain unused during annealing that could be employed to 
solve other problems. This second case is aggravated by the fact that the largest complete embedding which fits 
onto the hardware does not use all of the available qubits.

In this contribution, we show that multiple instances of either the same or different problems can be embed-
ded and subsequently solved in parallel on a single quantum annealing chip, while suffering from only a small 
decrease in individual solution quality (measured by the probability of finding a ground state solution). Spe-
cifically, we propose a method called parallel quantum annealing for solving multiple problems simultaneously 
on a quantum annealer, which works as follows. Given a limit on the number of variables allowed per QUBO 
problem to be solved simultaneously, say s ∈ N , we compute a maximum number of embeddings, say k ∈ N , 
of complete graphs of order s that can be placed on the quantum chip (see Fig. 1). This will allow any k QUBO 
problems with no more than s variables each to be easily embedded into the QPU (quantum processing unit), 
since any problem graph of s vertices can be embedded into a complete graph of order s. We can then solve the 
resulting composite QUBO in a single call on the quantum annealer and decompose the returned solution into 
solutions of the individual QUBOs. This is justified since, when adding together independent QUBOs (that is 
when adding together functions of the form of Eq. (1) that do not share any unknown variables), the solution of 
the composite QUBO will be the union of all individual ground states, and the bitstring yielding the minimum 
will be the concatenation of all individual bitstring solutions.

(a) (b)

Figure 1.  Clique of size 20 embedded 12 times into the hardware of DW 2000Q, which uses Chimera graph 
topology (a), and 68 times into DW Advantage, which has a Pegasus hardware graph (b). The coloring is 
arbitrary and used to highlight the separation of the different embeddings, with unused qubits and couplers in 
grey. Note that the actual embeddings do not make use of all of the physical couplers between the qubits used in 
the embedding; in theses figures we are showing the subgraphs induced by the qubits used in each embedding.
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We apply our proposed parallel quantum annealing methodology to the Maximum Clique problem, an impor-
tant NP-hard problem with applications in network analysis, bioinformatics, and computational  chemistry2–4. 
For a graph G = (V ,E) with vertex set V and edge set E, a clique in G is any subgraph C of G that is complete, 
i.e., there is an edge between each pair of vertices of C. The Maximum Clique problem asks us to find a clique 
of maximum size. A formulation of the Maximum Clique problem in the form of Eq. (1) is available in the 
 literature4,5. In this article, we will consider both the D-Wave 2000Q at Los Alamos National Laboratory (referred 
to as DW 2000Q), and the newer D-Wave Advantage_System 1.1 (referred to as DW Advantage) which we 
accessed through D-Wave Leap.

Multiple problems of the same type may need to be solved in various scenarios. For instance, decomposition 
 methods6 for solving optimization problems such as Maximum Clique allow one to divide an input problem 
that is too large to fit on the QPU into many smaller problems from which a solution of the original problem can 
be constructed. Methods in computer  vision7,  genomics8, and protein structure  analysis9 have been shown to 
lead to solving multiple Maximum Clique problems. Also, a hard instance of the same problem (e.g., Maximum 
Clique) may need to be solved multiple times on the quantum annealer in order to find an optimal or high-
quality solution, and all such executions are independent and can be run in parallel with our proposed method.

The article is structured as follows. We start with a brief literature review in the “Literature review” section. 
Experimental results are reported in the “Experiments” section, followed by a discussion in the “Discussion” 
section. In the “Methods” section we highlight the rationale behind solving problems in parallel on the D-Wave 
hardware architecture, in particular the choice of the embedding. We also provide a generalization of the TTS 
(Time-To-Solution) formula we employ to measure the TTS metric for parallel and sequential problem solving.

Literature review. Ising spin glass models have been extensively studied in the literature, for instance 
with respect to the stability of the system, its phase transitions, and its magnetization  distribution10. To find the 
ground state of such spin glass models, as well as for other problem Hamiltonians, quantum annealing has been 
shown to find ground states with higher probability than classical (thermal) simulated  annealing11.

The fact that a quantum system will stay near its ground state if its Hamiltonian varies slowly enough led 
to adiabatic quantum  algorithms12, for which it was hypothesized early that they might be able to outperform 
classical algorithms on instances of NP-complete problems. In particular, quantum annealing can be shown to 
converge to the ground state energy at a faster rate than its classical  counterpart13. A comprehensive review on 
combinatorial optimization problems (such as the ones studied in the present article), spin glasses, and quantum 
annealing via adiabatic evolution is available in the  literature14.

There are very few published results yet concerning parallelism and quantum annealing, and none of them 
discusses the type of parallelism we propose. Some papers consider pairing quantum computing systems with 
modern HPC  infrastructure15. The focus there lays on the design of macroarchitecture, microarchitecture, and 
programming models needed to integrate near-term quantum computers with HPC systems, and the near-term 
feasibility of such systems. They do not consider, however, parallelism at the level of a quantum device.

In a different  context16, the authors study the problem of simulating dynamical systems on a quantum 
annealer. Such systems are intrinsically sequential in the time component, which makes them difficult to simulate 
on a quantum computer. They propose to use the parallel in time idea from classical computing to reformulate 
a problem so that it can be solved as the task of finding a ground state of an Ising model. Such an Ising model is 
then solved on a quantum annealer. However, unlike our work, there is only one Ising problem solved at a time.

Another approach considers a framework built upon Field Programmable Gate Array chips (FPGA) in con-
nection with probabilistic bits to simulate Gibbs  samplers17. The authors use their algorithm on blocks of con-
ditionally independent nodes of the input graph, which are updated in parallel using a quantum annealer. The 
authors remark that technically, all blocks have to be completed before some synchronization step is carried out; 
however, if not all blocks are completed, the network is still able to find exact ground states. However, the parallel 
architecture proposed by the  authors17 is not quantum.

To the best of our knowledge, we are the first to propose solving multiple independent problems in parallel 
on a single quantum device. In a previous  contribution18, the parallel quantum annealing methodology has been 
used in a specific manner as a way to solve 255 small QUBOs (with a maximum of 4 variables each) simultane-
ously on the D-Wave 2000Q at Los Alamos National Laboratory with a relatively small number of anneals. In 
contrast to the previous  work18, the present article expands on the parallel quantum annealing idea by inves-
tigating larger problem sizes, considering the NP-hard Maximum Clique problem, and applying it to the new 
DW Advantage generation that uses a Pegasus qubit connection  topology19.

Experiments
In this section, we assess the proposed parallel quantum annealing technique by solving several Maximum Clique 
problems in the same D-Wave call. First, after two brief notes on the parameter setting (“Parameter tuning” sec-
tion) and the Time-To-Solution metric (“Time-To-Solution for an ensemble of problems” section), we investigate 
in the “Accuracy of parallel quantum annealing” section the behavior of both the ground state probability and 
the TTS measure as a function of the problem size for various graph densities, and for both DW 2000Q and 
DW Advantage. Next, in the “Comparison of sequential to parallel quantum annealing” section, we compare 
parallel quantum annealing and sequential quantum annealing, again with respect to both ground state prob-
ability and the TTS measure. A comparison of parallel quantum annealing with the classical FMC  solver20 on the 
Maximum Clique problem is given in the “Comparison with a fast classical solver” section. We conclude with an 
assessment of how our method can help to solve a single hard problem by implementing it multiple times on the 
hardware in the “Improving a single hard problem’s TTS using parallel quantum annealing” section.
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Parameter tuning. The D-Wave annealers offer a variety of tuning parameters that can be chosen by the 
user before each anneal. Those encompass the annealing time, the chain strength, anneal offsets, etc. We perform 
a grid search on the DW 2000Q in order to find reasonable values for both the chain strength and the annealing 
time, with the goal to minimize the QPU time while maximizing the probability of finding the ground state of 
each of the embedded problems.

In all experiments, we set the annealing time to 50 microseconds, and compute the chain strength using 
the uniform torque compensation method included in the D-Wave Ocean  SDK21 with a UTC prefactor of 0.2. 
Lastly, We set the programming thermalization time to 0 microseconds, and the readout thermalization time to 
0 microseconds. We use the same parameters for the experiments with DW Advantage as we do for the ones 
with DW 2000Q. However, the performance of DW Advantage might be potentially improved by additional 
parameter optimization.

Time-To-Solution for an ensemble of problems. Since quantum annealers are stochastic (and heuris-
tic) solvers, they are not guaranteed to find the ground state (the global minimum) of a problem of the type of 
Eq. (1) in each anneal. Therefore, to have a meaningful metric of accuracy, Time-To-Solution is used to quantify 
the expected time it takes to reach an optimum solution with a 99 percent  confidence22–25. It is defined, in the 
sequential case, as

where p is the probability of finding the ground state within a single anneal, TQPU is the total D-Wave QPU time 
(specifically the qpu-access-time), and U is the total CPU process time used to compute the unembedded solu-
tions in seconds. Note that in Eq. (3), we do not include the embedding time because we compute full clique 
embeddings, and then save and re-use those embeddings.

In the context of the present work, a generalization of the standard TTS measure is required since we solve 
K problems of size N simultaneously on the same D-Wave chip, using a total QPU processing time of TQPU and 
A anneals.

For each problem i ∈ {1, . . . ,K} we solve simultaneously, we record the proportion of correct solutions pi 
among the A anneals. We weigh those using the formula

where every pi must be non-zero. We generalize Eq. (3) as

where U is the total CPU unembedding time used to unembed the solutions of each of the K problems. We 
refer to TTSens as the ensemble Time-To-Solution, since it captures the time to reach an optimal solution for each 
problem in a group of problems that are solved simultaneously.

Accuracy of parallel quantum annealing. This section studies the accuracy of parallel quantum anneal-
ing per se. Using the parameters of the “Parameter tuning” section, we investigate the probability with which a 
ground state is found as a function of the problem size. Figure 2 shows results for both DW 2000Q (a) and for 
DW Advantage (b). We observe that, as expected, DW 2000Q finds the ground state probability (GSP) more reli-
ably for smaller problems, though the probability varies quite considerably with the graph density. Denser prob-
lem graphs are typically easier than sparser ones. For cliques of roughly size 40 onward, DW 2000Q is unable to 
find the ground state. For DW Advantage we observe a similar picture. The GSP is higher for smaller problems 
than for larger ones, with an even bigger spread by graph density. As before, denser problem graphs are easier to 
solve reliably than sparser ones. As expected, DW Advantage is able to solve larger inputs, in particular it finds 
the ground state with appreciable probability of up to 40% even for inputs of size 40.

Something we noted in these results is that the parallel quantum annealing method never found all ground 
state solutions in a single anneal. Instead, different sets of ground state solutions were found with each anneal - 
and over a sequence of anneals we eventually find the solutions to all of the problems. Interestingly, the rate at 
which the ground state solutions were found was not the same across all problems - indeed it was heavily biased. 
This bias is likely due to differences in the embeddings.

Similarly to Figure 2, Figure 3 shows the ensemble TTS measure for parallel quantum annealing as a func-
tion of the problem size, and for various graph densities. For DW 2000Q (a), we observe that this TTS measure 
increases as the problem size increases, which is as expected. The reason for the “jump” at around problem size 
40 is unknown, but the behavior of D-Wave could be related to an internal hardware issue (during the time 
frame in which some of this data was taken on DW 2000Q, around problem sizes 38-46, there was an initially 
undetected temperature increase from the typical 0.015 Kelvin of the hardware, likely leading to a poorer solution 
quality). In accordance with Fig. 2, dense problem inputs seem to be easier for D-Wave, and thus incur a lower 
TTS value. For DW Advantage (b), we observe a similar picture. Interestingly, for almost all problem sizes that 
can be solved on DW 2000Q (roughly up to size 40), the DW 2000Q is actually the better solver with respect to 
the TTS metric. For sizes above 40, DW Advantage is the better solver with respect to TTS.
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Comparison of sequential to parallel quantum annealing. To compare the benefits and trade-offs 
of solving several problems in parallel on the D-Wave quantum annealers, we first investigate the difference 
between the GSP found by both sequential and parallel quantum annealing. Here, sequential quantum annealing 
refers to solving the problems separately one after the other on the D-Wave architecture. The GSP in the parallel 
case is simply defined per problem as the probability of finding its individual ground state. Figure 4 shows results 
for DW 2000Q (a) and for DW Advantage (b). We observe that, on average across the graph densities consid-
ered, solving problems simultaneously causes D-Wave to find a ground state slightly less frequently than when 
solving them sequentially. For DW Advantage, this phenomenon is even more pronounced.

The reduced GSP we observe for parallel quantum annealing can be explained as follows. First, the problem 
complexity (i.e., the number of variables and quadratic terms) increases when solving multiple problems as 
opposed to one, potentially causing difficulties for the D-Wave annealer. Second, multiple embeddings on the 
chip mean that there is a closer physical proximity between the qubits used per embedding, potentially caus-
ing increased leakage and interaction between the involved qubits. However, unlike TTS, the GSP metric does 
not account for the fact that we are finding solutions to multiple problems.

Next, Fig. 5 compares the sequential and parallel quantum annealing efficiencies with respect to the TTS 
metric. The TTS speedup is computed as the quotient of the sequential and parallel TTS values. For DW 2000Q 
(a), we observe that the proposed parallel quantum annealing approach yields substantial speedups (an aver-
age of 152-fold over all problem sizes considered) compared to solving the same problems sequentially on the 
D-Wave chip. A stratification by graph density is not observable in this case. As expected, the speedup is more 
pronounced for smaller problem sizes, as in this case more problems can be solved in parallel. For DW Advantage, 
a considerable speedup (on average around 20-fold) is observed over all problem sizes considered.

(a) (b)

Figure 2.  Ground state probability (GSP) achieved by parallel quantum annealing for DW 2000Q (a) and for 
DW Advantage (b) as a function of the problem size N. Graph densities range from 0.10 to 0.95 (color coding 
shown in the legend). Black solid line plots the mean parallel quantum annealing GSP as a function of problem 
size.

(a) (b)

Figure 3.  Ensemble TTS for parallel quantum annealing as a function of the problem size for DW 2000Q (a) 
and DW Advantage (b). Graph densities range from 0.10 to 0.95 (color coding shown in the legend). Black solid 
line plots the mean parallel quantum annealing ensemble TTS as a function of problem size.
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Note that the CPU unembedding time increases when unembedding larger datasets; meaning that for larger 
backends (and more variables used per anneal) the total unembedding time will increase. Therefore, the differ-
ences in TTS between the two backends seen in Fig. 5 are not only caused by the differences in GSP seen in Fig. 4.

Comparison with a fast classical solver. We compare the performance of the proposed parallel quan-
tum annealing approach with a classical solver for the Maximum Clique problem. We employ the fast maximum 
clique (FMC)  solver20. FMC is run in exact mode throughout this experiment.

Figure 6 shows the speedup of parallel quantum annealing over FMC. For the probabilistic parallel QA, we 
measure ensemble TTS (see the “Time-To-Solution for an ensemble of problems” section), whereas for the clas-
sical FMC solver, we measure CPU times (this is justified since TTS reduces to CPU time in the classical case). 
The speedup is computed as the quotient of the parallel TTS metric and the CPU process time used by FMC. For 
DW 2000Q (a), we observe that for both small problems (of any density) and for high densities up to problem 
size 40, using parallel quantum annealing yields better TTS values than using FMC. In turn, FMC is superior to 
DW 2000Q for low density graphs. For problems exceeding size 40, DW 2000Q is not the preferred choice (as 
seen in previous experiments), making FMC the faster choice for all densities. Interestingly, for DW Advantage 
(b), we observe that D-Wave is not superior to FMC apart from very high densities. In turn, the DW Advantage 
architecture does not suffer from a reduced accuracy for large problem sizes (compared to the DW 2000Q).

Improving a single hard problem’s TTS using parallel quantum annealing. Finally, we consider 
how parallel quantum annealing can be used to increase the GSP, and therefore TTS, of a single hard QUBO 
problem. Such problems need to be run sequentially many times on the quantum annealer to get even a single 

(a) (b)

Figure 4.  Difference between the ground state probabilities (GSP) of sequential and parallel quantum annealing 
as a function of the problem size for DW 2000Q (a) and DW Advantage (b). Values above zero indicate that 
sequential quantum annealing finds higher ground state probabilities than parallel quantum annealing. Averages 
indicated with a solid black line. Graph densities range from 0.10 to 0.95 (color coding shown in legend).

(a) (b)

Figure 5.  TTS speedup of using parallel quantum annealing compared to sequential quantum annealing as 
a function of the problem size for D-Wave 2000Q (a) and D-Wave Advantage 1.1 (b). The TTS speedup is 
computed as the quotient of the sequential and parallel TTS metrics. Mean values are shown by the solid black 
line. Graph densities range from 0.10 to 0.95 (color coding shown in the legend).
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optimal solution. Our idea is to run multiple replicas (identical copies of the QUBO) simultaneously using paral-
lel quantum annealing.

We compare sequential quantum annealing and parallel quantum annealing on DW Advantage for a fixed set 
of 16 random graphs with N = 40 nodes and p = 0.5 . Each problem is first solved sequentially, and afterwards 
solved in parallel by embedding it 16 times onto the hardware. Results are shown in Fig. 7, where we see that 
parallel quantum annealing can reduce TTS due to improved GSP. Over all problems considered, the average 
TTS speedup (the quotient of sequential QA TTS and parallel QA TTS) is 7, and the average GSP increase (the 
quotient of parallel QA GSP and sequential QA GSP) is 10. Note that problem 0 had worse TTS in the parallel 
quantum annealing case. This is due to an increased cost in the CPU unembedding time in the parallel case.

To compute the TTS measure of the parallel implementation, we use Eq. (3), and not Eq. (4). This is due to 
the fact that there are not K distinct problem being solved in parallel; instead, we are solving the same problem 
K times during the same annealing cycle. Therefore, p is simply the proportion of anneals that found the optimal 
solution. Note, however, that we can have cases where the ground state solution is found multiple times in the 
same anneal (we do not distinguish between finding the ground state once or more than once in the embedded 
problems).

Discussion
This article investigates a proposed method called parallel quantum annealing, which allows one to solve many 
independent problems on a quantum annealer during the same annealing cycle. The idea is justified by the fact 
that independent QUBOs, that is those not sharing any variable, can be added together to yield a combined 
QUBO that preserves the bitstring solution of each, and has a new ground state probability that is the sum of 
the individual ground state probabilities.

(a) (b)

Figure 6.  Speedup of using parallel quantum annealing compared with the classical FMC solver as a function 
of the problem size for DW 2000Q (a) and DW Advantage (b). Log scale on the y-axis. Graph densities range 
from 0.10 to 0.95 (color coding shown in the legend).

(a) (b)

Figure 7.  TTS (a) and GSP (b) for the 15 test problems we consider, both for parallel quantum annealing (blue) 
and sequential quantum annealing (green). Log scale on the y-axis.
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We evaluate the proposed approach with respect to both accuracy and the TTS metric on both DW 2000Q 
and DW Advantage. We compare to sequential quantum annealing (i.e., solving the same problems sequentially 
on D-Wave), and the classical FMC solver. We demonstrate that while the solution accuracy is slightly decreased 
for simultaneously solved problems, parallel quantum annealing can yield a considerable speedup of up to two 
orders of magnitude. Interestingly, using the newer DW Advantage does not yield more pronounced speedups 
in TTS than the previous generation DW 2000Q.

Notably, parallel quantum annealing is different from classical parallelism in that parallel quantum anneal-
ing solves multiple problems on a single quantum chip, whereas classical parallel computing solves independ-
ent problems at the same time, but using different physical circuits. Therefore, for a sufficiently large quantum 
annealer (and assuming the solution quality does not suffer), a very large number of problems could be solved 
in a very short amount of time (determined by the annealing time and the number of anneals).

The number of qubits in new quantum annealers have been steadily increasing, but there has been a concern 
that higher error rates may prevent such machines from solving very large problems. Parallel quantum annealing 
may be an alternative to making future larger machines usable.

This work leaves scope for future research avenues: 

1. This work only considers solving Maximum Clique problems simultaneously on D-Wave. Investigating other 
important NP-hard problems remains for future work. In particular, the QUBOs being solved in parallel do 
not have to stem from the same problems, and they do not need to be of equal size.

2. Optimizing the annealing parameters (such as annealing time, chain strengths, etc.) for DW Advantage 
might significantly improve its performance.

3. It remains to investigate why parallel quantum annealing unfairly finds the ground states of some problems 
at higher rates than others; and how this effect can be mitigated. A related question is how fairly parallel 
quantum annealing samples the degenerate ground states of the embedded problems.

Methods
This section discusses some of the elements of the proposed parallel quantum annealing technique, in particu-
lar the QUBO formulation of the Maximum Clique problem (“Maximum clique QUBO” section), combining 
multiple small QUBOs into a single one (“Combining QUBOs of independent problems” section), the choice 
of the embedding (“Choice of the embedding” section), and the specifics of the D-Wave execution (“D-wave 
procedure” section).

Maximum Clique QUBO. The Maximum Clique QUBO we use is given  by5,26

where the constants can be chosen as A = 1 , B = 2  (see26).

Combining QUBOs of independent problems. Consider two QUBOs H1(x1, . . . , xn) and 
H2(xn+1, . . . , xm) with respective minimum solutions x∗1 , . . . , x∗n and x∗n+1, . . . , x

∗
m . Since both QUBOs do not 

share any variable, the ground state of H1 +H2 , which is now a function in x1, . . . , xn, xn+1, . . . , xm , is pre-
cisely the sum of the ground states of H1 and H2 , and the minimum bitstring yielding the ground state will be 
x∗1 , . . . , x

∗
n , x

∗
n+1, . . . , x

∗
m . This idea lays at the heart of parallel quantum annealing.

Given we have an embedding that allows us to place H1 and H2 simultaneously on the quantum chip, we can 
therefore embed and solve H1 and H2 in one D-Wave call. Naturally, H1 and H2 do not need to be QUBOs of 
the same type of optimization problem, and neither do they need to be of equal size. Generalization to a larger 
number of QUBOs is straightforward.

The D-Wave hardware has a hardware precision  limit27–29 for the provided problem coefficients. Therefore, 
when constructing these independent QUBOs, another point to consider is how the minimum and maximum 
range of these independent QUBOs compare to each other. If one of these QUBOs’ coefficients dominate all 
of the other QUBOs, then most of the QUBO coefficients will effectively be lost in noise. Therefore, it might 
be necessary to normalize the minimum and maximum QUBO coefficients across all of the QUBOs that are 
being solved at the same time. In the experiments shown in the “Experiments” section, all of the problems are 
Maximum Clique QUBOs, which always have the same minimum and maximum coefficient range - therefore 
no coefficient normalization is used.

Choice of the embedding. We aim to create multiple disjoint minor-embeddings of a complete graph of 
size N onto the DW 2000Q and the DW Advantage hardware. This allows us to embed arbitrary QUBOs of size 
N onto the hardware connectivity graph, meaning that we can solve multiple problems of arbitrary structure (up 
to size N) in parallel in a single backend call.

We compute separate embeddings for clique sizes N in the range of N ∈ {8, . . . , 46} for DW 2000Q, and 
N ∈ {10, . . . , 60} for DW Advantage. As shown in Fig. 1, ideally the embeddings should be chosen such that both 
the number of cliques (complete graphs) embedded on the quantum hardware, as well as the physical distance 
between the embeddings is maximized. The latter is conjectured to decrease spurious interactions between qubits 
of different QUBOs on the chip, thus helping to increase the solution quality.

The disjoint embeddings for both DW 2000Q and DW Advantage are computed using the method minorm-
iner30,31. In particular, we supply the graph to be embedded to minorminer as simply the union of the disjoint 

(5)HMC = −A
∑

v∈V

xv + B
∑

(u,v)∈E

xuxv ,



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4499  | https://doi.org/10.1038/s41598-022-08394-8

www.nature.com/scientificreports/

cliques we wish to embed. This is done for all clique sizes N for which an embedding can be found by minorminer. 
Figure 8 shows both the number of embeddings we are able to place on the D-Wave quantum chip, as well as the 
chain lengths occurring in those embeddings for both DW 2000Q and DW Advantage.

Supplying minorminer with a graph consisting of the disjoint cliques we wish to embed is sub-optimal. In 
particular, when computing the embeddings, we would ideally be optimizing for the separation between the 
embeddings on the hardware. This remains for future work, thus close physical proximity of our embeddings 
may cause leakage between qubits.

As described in the “Introduction” section, after annealing, we need to unembed all chains. For this, we tried 
both the majority vote method and the random weighted method. All results shown in this paper use the random 
weighted unembedding method.

D-Wave procedure. For each of the number of disjoint embeddings we fixed in the “Choice of the embed-
ding” section, we generate an Erdős–Rényi random graph G(n,  p) of size n = N , varying edge probability p 
from 0.10 to 0.95 in increments of 0.05 such that each random graph is connected, does not have any degree 0 
nodes, and is not a full clique itself. Then, we compute the exact Maximum Clique solution using  FMC20 and 
 Networkx32–35 (the Networkx solver is used to find any degenerate Maximum Clique solutions). This step is nec-
essary in order to find the CPU time used by FMC, as well as determine the exact solution(s) for the purpose of 
computing ground state probability (GSP), which is used to compute the quantum annealer Time-To-Solution 
(TTS) metric.

Next, we arbitrarily assign each of the random graphs to one of the disjoint embeddings. Then, the Maximum 
Clique QUBO is computed for each of these random graphs, and each QUBO is then embedded onto its assigned 
embedding. For example, Fig. 1(a) shows that on DW 2000Q for N = 20 , we generate 12 random graphs of size 
20 and then embed those 12 Maximum Clique QUBOs onto each of their respective (independent) embeddings. 
Then, this is repeated for each density.

Once the problems are embedded, we call the D-Wave backend using the parameter setting of the “Parameter 
tuning” section. In order to get reliable results for the TTS computation, we call the backend 100 times for each 
problem, and each backend call requests 1, 000 anneals. This results in 100, 000 samples in total per random 
graph. From these results, we first unembed the samples using the random weighted method, and then we com-
pute how many of the 100, 000 samples correctly found the Maximum Clique solution. Using this information, 
we then compute the ensemble TTS metric using Eq. (4).

Next, we apply the sequential quantum annealing method; meaning that we solve each of those QUBOs using 
separate backend calls. Importantly, each QUBO still uses the same physical hardware embedding as it did in the 
parallel case, so that differences in the embeddings will not change solution quality. In the example of Fig. 1(a), 
we would perform the 100 backend calls for each one of the 12 distinct problems, without the other 11 embed-
ded into the chip. This procedure is then repeated for all graph densities as well. Once again, we unembed using 
the random weighted method, and we also compute GSP for each of the problems. This procedure allows us to 
directly compare the solution quality for each of these problems when solving them separately and in parallel. 
Using this data, we can compute the TTS using Eq. (3) for each of the random graphs. Thus, the total TTS for a 
group of graphs that were solved sequentially is the sum of each of their individual TTS values (in contrast to 
using parallel quantum annealing where we compute the ensemble TTS using Eq. (4)).

It is important to note that, especially for larger clique sizes (e.g., cliques of size 40 and larger for DW 2000Q, 
and clique sizes 50 onward for DW Advantage), not all problems can be solved to optimality by the quantum 
annealer. In this case, we encounter missing information in the computation of the TTS metric. We mitigate 

(a) (b)

Figure 8.  (a) Number of embeddings as a function of the embedding size (clique size) N for DW 2000Q (blue) 
and DW Advantage (red). (b) Scatter plot of the chain lengths occurring in the embeddings as a function 
of the embedding size N, with the average depicted as a line. For DW 2000Q, we consider cliques of sizes 
N ∈ {8, . . . , 46} , while N ∈ {10, . . . , 60} for DW Advantage.
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this problem by attempting to solve another randomly generated problem instead until the TTS metric can be 
computed. However, in settings where particular graphs need to be solved (as opposed to the setting with random 
graphs we consider), it is likely that D-Wave fails for large problems solved using a fixed  embedding1. These 
failures can be attributed to longer chain lengths leading to broken chains, and therefore worse solution quality. 
Our results in the “Improving a single hard problem’s TTS using parallel quantum annealing” section show a 
possible solution to this problem; that is using many different embeddings to solve the same problem in parallel 
might allow D-Wave to more consistently find optimal solutions for large problem sizes.

Data availability
The code and the data (e.g., the embeddings) are available at https:// github. com/ lanl/ Paral lel- Quant um- Annea 
ling.
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