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The emergence and spread of infections can contribute to the decline and

extinction of populations, particularly in conjunction with anthropogenic

environmental change. The importance of heterogeneity in processes of trans-

mission, resistance and tolerance is increasingly well understood in theory, but

empirical studies that consider both the demographic and behavioural impli-

cations of infection are scarce. Non-random mixing of host individuals can

impact the demographic thresholds that determine the amplification or attenu-

ation of disease prevalence. Risk assessment and management of disease in

threatened wildlife populations must therefore consider not just host density,

but also the social structure of host populations. Here we integrate the most

recent developments in epidemiological research from a demographic and

social network perspective, and synthesize the latest developments in social

network modelling for wildlife disease, to explore their applications to disease

management in populations in decline and at risk of extinction. We use simu-

lated examples to support our key points and reveal how disease-management

strategies can and should exploit both behavioural and demographic infor-

mation to prevent or control the spread of disease. Our synthesis highlights

the importance of considering the combined impacts of demographic and

behavioural processes in epidemics to successful disease management in a

conservation context.

This article is part of the theme issue ‘Linking behaviour to dynamics

of populations and communities: application of novel approaches in

behavioural ecology to conservation’.
1. Introduction
Infectious disease can play an important role in the decline and extinction of

wildlife populations [1,2]. For example, the emergence of Chytridiomycosis

has been implicated in the rapid decline and extinction of many amphibian

species [3,4]. Similarly, the emergence of devil facial tumour disease (DFTD),

which was first described in only 1996, has led to a rapid decline in Tasmanian

devil Sarcophilus harrisii populations, resulting in the species being categorized

as Endangered on the IUCN Red List in 2008 [5,6].

The impact of infectious diseases on small or declining populations can

arise from spillover and emergence of novel pathogens in a species (or population),

or a sudden change in the epidemiology of an existing pathogen, caused by

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2018.0211&domain=pdf&date_stamp=2019-07-29
http://dx.doi.org/10.1098/rstb/374/1781
http://dx.doi.org/10.1098/rstb/374/1781
http://dx.doi.org/10.1098/rstb/374/1781
http://dx.doi.org/10.1098/rstb/374/1781
mailto:matthewsilk@outlook.com
mailto:r.mcdonald@exeter.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.4540853
https://dx.doi.org/10.6084/m9.figshare.c.4540853
http://orcid.org/
http://orcid.org/0000-0002-8318-5383
http://orcid.org/0000-0003-1503-4871
http://orcid.org/0000-0003-3763-6136
http://orcid.org/0000-0002-6922-3195
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180211

2
environmental change or demographic shifts [1,7]. Regardless

of the pathogen involved, the links between host behaviour,

host demography, and the transmission of infection, will deter-

mine the impact of disease at different stages of population

decline [8]. For example, pathogen transmission is often con-

sidered to be either density-dependent or frequency-

dependent—i.e. pathogen transmission rate is either a function

of host density or not [9]—and this is fundamental to whether

they can drive host populations to extinction [8,10,11].

Frequency-dependent transmission heightens the risk of

disease-induced extinction because contact frequency between

infectious and susceptible hosts does not change, and therefore

transmission opportunities are not reduced, as the host

population declines.

Network approaches allow the inclusion of host population

structure into transmission models [12–15]. Recently, data

from bio-logging devices have enabled the collection of

increasingly comprehensive contact data in wildlife popu-

lations [16], which can be used effectively to parametrize

these models [17–19]. Network models can have practical

applications in understanding how a novel pathogen may

spread through a population, or how changes in popula-

tion structure brought about by population decline or

environmental change may alter the transmission of existing

pathogens [20]. However, exploiting these approaches to

determine the most effective ways to manage disease from a

conservation perspective remains challenging.

One potential problem with using a simple network

modelling approach is that it may underestimate the influence

of demographic changes on the spread of infection, and therefore

the consequences of diseases at different stages of population

decline. For example, if host contact networks were to become

more clustered and modular as population density decreased

then disease might be contained within a subset of these

modules and therefore be more likely to die out at lower popu-

lation densities (see [21]). However, it is possible for increased

mortality caused by disease to result in increased birth rates

through compensatory density-dependent recruitment (e.g.

[22]), giving rise to an influx of new susceptible individuals

into a population that can increase disease incidence and/or

prevalence. Similarly, it might be possible for host social and

spatial behaviour to be disrupted by disease or management

interventions, resulting in changes to contact network structure

that could increase disease prevalence directly by increasing

transmission rates or indirectly by reducing the health of individ-

uals [23,24]. Therefore, when developing longer-term network

models of infection, combining knowledge on demography

and social behaviour will be important in forecasting and

managing wildlife disease in the face of population decline.

Here we synthesize some of the most recent developments

in the application of social network approaches to studying

wildlife disease dynamics, focusing on directly transmitted

infections. We highlight the value of combining such approaches

with demographic modelling to describe the temporal dynamics

of infection in small or declining populations, and to inform

the design of effective disease management interventions in

threatened wildlife populations.
2. Network modelling of infection
The most effective approach to forecasting how pathogens

might spread through and impact wildlife populations is
to use simulation models of infection across empirically-

derived networks [12,14]. When real-time data are available

on the infection status of individuals it will also be possible

to make inferences about the relationships between social

network dynamics and the spread of infection using

statistical network models [25,26]. These statistical models

can be used to further refine the simulation-based epi-

demiological network models introduced above (e.g. [17]).

In general, network models exploit the conventional

susceptible–infected (SI) susceptible–infected–recovered

(SIR), susceptible–infected–susceptible (SIS) and suscep-

tible–exposed–infectious–recovered (SEIR) compartmental

models. Instead of being used to form equations that can

then be solved analytically or numerically, network models

tend to use estimates of the probabilities of transitioning

between compartments (states) to generate a series of stochas-

tic simulations that provide information on the expected

size of epidemics, variation in this outcome, and the sensi-

tivity of it to changes in host or pathogen traits [12,14]. The

models introduced above differ in the disease states they

include and are broadly representative of the epidemiology

of different pathogens. In an SI model individuals remain

infected once contracting an infection. The SIR model adds

a recovered (or removed) state in which individuals cannot

be re-infected, representative of lifelong immunity once

infected (or death). The SIS model is an alternative in

which individuals can be re-infected on multiple occasions.

The SEIR model is the most common example of a model

with multiple stages of infection, in this case one stage

(exposed) in which an individual is infected but not yet

capable of transmitting infection to other individuals and

another where it is infectious.

We provide a simple example of the use of an SIR model to

understand the risks posed by disease transmission in a small

and fragmented population (figure 1; electronic supplemen-

tary material, 1.1). The power of network analysis is apparent

even in this basic example. Fragmented or modular networks

can limit the spread of some infections [21]. As a result, the

fragmented nature of the social network of population A

(figure 1) results in the infection becoming trapped within cer-

tain regions of the network, with only the most infectious

pathogens being able to spread more widely and cause com-

plete or near extinction of the population. By contrast, in

population B (figure 1) the more connected network structure

means that all but the least transmissible pathogens cause

substantial population declines. Therefore, in this particular

case the network model predicts that social fragmentation

may prevent disease-induced extinction of our hypothetical

endangered species.
3. The importance of network dynamics in
disease spread and control

Many network models of infection have considered pathogen

transmission on a static contact network. Such an approach

can provide an accurate model of real-world disease spread in

some contexts, such as with fast spreading epidemics (e.g. see

[27]), and has the advantages of being easier to parametrize

from empirical data and less computationally intensive than

models that account for network dynamics. However, animal

social networks are dynamic. They will certainly change season-

ally [17,18] and with population decline, and are likely to change
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Figure 1. A comparison of the impact of infectious disease in two simulated small populations with different contact network structures (electronic supplementary
material, 1.1 and 2). The networks of (a) population A and (b) population B have a similar edge density ( proportion of dyads that are connected) but those in
population A are considerably more modular. This results in considerable differences in the consequences of an epidemic in these populations, with (c) the surviving
population after 300 model time-steps differing substantially between the two populations for pathogens with intermediate transmissibility. Points show results
from 50 repeat simulations at each transmission probability and the lines connect the mean size of the surviving population for each population.
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in response to the acquisition of infection [28–30] and

information [31]. In addition, individuals may adjust their

existing social relationships in response to the death or

removal of others from the population, resulting in further

changes to local network structure [32,33]. Therefore, in

the context of modelling disease spread, it often pays to

model network dynamics explicitly alongside the spread of

infection [34,35].

Theoretical models that incorporate network dynamics

alongside transmission have provided insights into how

changes in behaviour (especially in response to infection) can

alter disease dynamics [36,37]. Infection avoidance behaviour

(the response of other individuals towards an infected individ-

ual) and sickness behaviour (change in behaviour of an

infected individual) can both have contrasting effects on dis-

ease dynamics. Infection avoidance behaviour, for example,

is generally reported to increase epidemic thresholds, delay

outbreaks and reduce disease prevalence [38–40]. One mech-

anism by which this has been found to occur is that infection

avoidance behaviour can increase the modularity (or strength
of subdivision) in networks with community structure,

which can help ‘trap’ infection within a particular region of a

network [41]. This might be particularly applicable to wild

animals that live in social groups. However, under certain

conditions, infection avoidance behaviour can aggravate

epidemics. For example, if reductions in the strength of associ-

ations with infected individuals are mitigated by increasing the

strength of associations with susceptible individuals, then epi-

demics can persist and spread further through a population

[42]. Sickness behaviour has been less well studied but it is of

evolutionary interest because it could be influenced by both

the host (to reduce potentially infectious contacts; e.g. [29])

and the pathogen (to increase transmission opportunities;

e.g. [43]). For example, changes in activity levels to reduce con-

tact rates is a sickness behaviour that has often been considered

to be adaptive for the host [44]. However, in some landscapes

reduced activity can increase transmission under some

environmental conditions (e.g. in water-limited landscapes;

[45]). For some pathogens and parasites, understanding the

combined impact of these behavioural dynamics alongside
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Figure 2. Multilayer representations of animal socio-spatial networks that may be applied to study disease transmission: (a) a network-of-networks that combines
within patch social networks with between patch movement networks, (b) an interconnected network that combines intraspecific (within layer) and interspecific
(between layer) interactions to describe potential transmission routes in a multi-host system, (c) an interconnected network that can integrate direct and indirect
transmission in a multi-host system, and (d ) a multiplex network that can combine transmission dynamics of different pathogens within the same model. These
networks simply represent social interactions that may represent transmission opportunities, but this approach could be extended to transmission networks if the
data were available.
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disease dynamics generated by demographic processes

will be important to quantifying infectious disease threat for

populations of conservation concern.

Understanding how changes in behaviour and social net-

works over time influence the spread of infection will also be

critical to informing disease management interventions

[13,34]. For example, in the case of vaccination, theoretical

models suggest that control using vaccines can be more effec-

tive when host networks rewire adaptively in response to

infection so that edges with infected individuals tend to be

replaced with edges with uninfected individuals at a given

rate [46]. By contrast, vaccination is likely to be less effective

in networks that rewire at random as the network position of

individuals will not be consistent. Similarly, incorporating an

understanding of how networks might respond dynamically

to interventions involving the selective removal of hosts can

alter expectations of how likely these approaches are to suc-

ceed. This would typically require an expectation of, or

relevant empirical data recording, behaviour change during

and after an intervention. For example, culling-induced

changes to social structure can exacerbate the spread of dis-

ease rather than limiting it as intended [23].
4. Integrating networks across multiple scales
Many threatened populations will occupy fragmented land-

scapes and occur in discontinuous sub-populations.
Therefore, understanding the potential impact of infectious dis-

ease in these contexts may rely on integrating ideas from

metapopulation dynamics, habitat connectivity and movement

ecology into social network approaches. For example, low

population connectivity can result in reduced epidemic coup-

ling that promotes the global persistence of infection [47,48].

If this is the case, then altering vaccination strategies to consist

of periodically pulsed mass vaccination can synchronize

epidemics between subpopulations and facilitate disease eradi-

cation [47,48]. Subdivided populations and the movement of

individuals within and between them can also be considered

as a network [49]. Expanding network analyses to additionally

consider the spatial arrangement and movements of infected

and susceptible hosts is likely to be informative. Similar work

on livestock movement networks has been effective in explain-

ing disease dynamics in populations of domesticated animals

(e.g. [50,51]).

Perhaps an even more powerful approach will be to inte-

grate networks of different types of interactions across spatial

scales. The advent of multilayer network analysis has resulted

in a toolkit that can analyse complex systems containing

multiple network types [52], with potential applications in ecol-

ogy and animal behaviour [53–55]. Multilayer networks can

take on a range of forms and we summarize three that are

likely to be applied most usefully in epidemiological

modelling here (figure 2): (i) a network of networks would

make it possible to combine (sub-)population social networks

with networks of dispersal movements or habitat connectivity



Box 1. A susceptible – infected – recovered (SIR) model to forecast impacts of environmental change (electronic supplementary material, 1.2 and 3).

Model outline. An initial population consisting of 10 groups of 10 individuals with a modular social network structure

was seeded with three initially infected individuals. In a given time-step: (i) infected individuals transmit stochastically

according to their contact structure and a fixed transmission probability, (ii) mortality is simulated stochastically with

separate probabilities controlling the baseline (susceptible) mortality and additional (disease-induced mortality), and

(iii) recruitment is simulated stochastically using a fixed birth rate and the probability of being recruited into a group is

inversely proportional to group size (encoding density-dependent recruitment). Once recruited, individuals’ social connec-

tions were fixed, meaning that network dynamics were caused only by demographic processes, and meant that disease

transmission was more density-dependent than frequency-dependent.

Endemic phase. The model was allowed to run for 800 time-steps with the original conditions to ensure that disease was

endemic within the population.

Change phase. After 800 time-steps we set up four sets of prospective future conditions: (i) a control condition (no change to

any parameters), (ii) increased pathogen virulence (a threefold increase in additional (disease-induced) mortality),

(iii) increased connectivity (threefold increase in the probability of between-group connections in the social network that

reduced network modularity), and (iv) increased pathogen virulence and increased connectivity. The two ‘treatments’

were designed to reflect potentially realistic future changes to the system; increased disease-induced mortality caused by

increased pathogen virulence or reduced host tolerance, and increased connectivity caused by social perturbation in response

to disturbance. After the change in parameters the simulation was run for 400 additional time-steps (50 repeat runs) and the

results are shown in figure 3 and table 1. Changing both the social network and disease-induced mortality generates the

greatest short-term population decline in this scenario. However, in the longer term increasing social connectivity without

changing disease-induced mortality leads to more prolonged population decline as high prevalence is maintained.

Table 1. Outcomes of different changes to host – pathogen dynamics in our example model.

treatment

mean host population
size after 200 time-
steps (+++++s.e.)

mean prevalence
after 200 time-
steps (+++++s.e.)

mean host population
size after 400 time-
steps (+++++s.e.)

mean prevalence
after 400 time-
steps (+++++s.e.)

control 69+ 2.3 0.19+ 0.02 62+ 2.7 0.19+ 0.02

virulence change 63+ 1.9 0.05+ 0.01 61+ 2.6 0.01+ 0.003

behaviour change 64+ 2.1 0.31+ 0.02 50+ 2.1 0.25+ 0.03

virulence and behaviour change 59+ 1.8 0.08+ 0.01 58+ 2.7 0.03+ 0.01
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that link these populations (figure 2a); (ii) interconnected

networks would make it possible to consider how the trans-

mission of pathogens between multiple hosts could exacerbate

the disease threat posed to endangered populations

(figure 2b), or an interconnected network framework can also

be used to incorporate indirect transmission via the environment

(figure 2c; [56]); and (iii) multiplex networks in which intra-layer

connections represent transmission networks of different para-

sites could be used to consider the transmission of multiple

pathogens simultaneously and determine whether co-infection

may amplify the spread of a pathogen of interest (figure 2d). It

is clear, therefore, that the multilayer network approach has con-

siderable value for the study of wildlife disease and could be

directly applicable in a conservation context through better inte-

grating the role of alternative hosts and impact of interactions

between multiple pathogens and/or parasites.
5. Integrating demographic and network
modelling to study long-term disease
dynamics

Network models have rarely been applied over the sort of time-

scales that require demographic components and are likely to
be applicable in a conservation context. One notable exception

is a model of DFTD in Tasmanian devils that used simulated

networks parametrized using empirical data and combined

this with empirically-derived demographic parameters [19].

Incorporating realistic network structure predicted slightly

elevated risks of disease-induced extinction, and accelerated

rates of host population decline.

More generally, incorporating demographic processes

within network models is likely to provide important insights

for wildlife disease management. Given that network models

are typically simulation-based, incorporating a demographic

component is relatively straightforward. In the Tasmanian

devil example above [19] the central network model is a

single static contact network, and when individuals are

recruited (at age 2) they are assigned a fixed network position

until they die. Mortality rates are coded separately for

different disease states enabling the model to incorporate

disease-induced mortality (clearly this last step is not necess-

ary for all infections). The behavioural and demographic

processes governing population structure are likely to be

complex. A combined network-demographic-model such as

this makes it possible to quantify how the social structure

and life-history traits of threatened species might interact to

determine the risk of disease-induced extinction from

pathogens that differ in transmissibility and/or lethality.
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Figure 3. The effect of changes to pathogen-induced host mortality and changes to host social structure on (a) disease prevalence and (b) host population size in
the SIR network model of an endemic infection presented in the electronic supplementary material, 1.2 (see box 1). The four scenarios presented are: no change
(grey), increased pathogen-induced mortality (blue), increased social connectivity (fawn) and combined changes to mortality and host social structure (red). Lines
represent the mean value at each time-step for each combination of the parameters and points show values from each of the first 25 simulation runs at time-steps
100, 200, 300 and 400. Points for the four scenarios are jittered on the x-axis for clarity. Increasing social connectivity has the greatest impact on host population size
in this example because it maintains high pathogen prevalence.
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Flexibility in life-history strategies has the potential to be

able to buffer populations against disease. If recruitment is

density-dependent then increased disease-induced mortality

could result in increased recruitment, and as a result promote

coexistence of host and pathogen populations [57]. For

example, in European badgers Meles meles recruitment is den-

sity-dependent at a social group level. In populations naturally

infected with Mycobacterium bovis, the causative agent of

bovine tuberculosis, elevated mortality in infected social

groups is compensated for by increased recruitment [22]. In

cases where this buffering effect may play a role, incorporation

of temporal variability in demographic processes into network

models of infection can add vital nuance to the predicted

effects of infection on population dynamics.

Density-dependence in disease transmission is another

important demographic consideration. Depending on the

life-history strategy of the pathogen involved, density-

dependent (rather than frequency-dependent) transmission

can prevent host extinctions being caused by disease alone.

As a population declines, transmission rates also decline

and may reach a point where the pathogen is unlikely to be

maintained within the population unless it has alternative

host species, is able to persist in the environment, persists

in a covert/latent state or is able to re-infect hosts (i.e. indi-

viduals can recover from infection without becoming

immune) [8]. Combined demographic and network models

provide an opportunity to simulate how demographic pro-

cesses influence social interactions and can therefore be

used to vary between frequency-dependent and density-

dependent transmission. For example, a contact network

simulated with fixed rules for interaction probabilities that

depended on home range overlap or distances between

spatial centroids of home ranges (with home ranges not chan-

ging as the population declines), and therefore were lower in

less dense populations, would result in a density-dependent

transmission network. However, if a contact network were
simulated in which individuals always maintained a fixed

(or approximately fixed) number of contacts, then the behav-

iour of individuals would change as the population declined,

transmission would be frequency-dependent and disease-

induced extinction would be more likely [58]. The flexibility

of the network approach means it can provide a predictive

tool that extends across the spectrum from pure density-

dependent to pure frequency-dependent transmission.

Therefore, combining network and demographic modelling

can accommodate uncertainty in how social structure and

associated transmission opportunities changes at different

stages of population decline.

We provide an example of a combined network-demo-

graphic model of infection (box 1; electronic supplementary

material, 1.2). It incorporates a network-based SIR model

alongside density-dependent recruitment to the population,

in which individuals are more likely to recruit into smaller

social groups. Having allowed the disease to become ende-

mic in the population, we demonstrate the implications

of sudden, potentially anthropogenic, changes in host social

structure (increased probability of between-group contacts)

and pathogen virulence or host tolerance (increased

disease-induced mortality) separately and in combination

(figure 3). These scenarios illustrate how social structure

and the demographic response of the host population can

be critical in determining the outcome of changes in pathogen

dynamics. The model predicts that in this context a shift in

both host behaviour and disease-induced mortality causes

the most substantial population decline in the short-term,

but that simply increased host social connectivity has more

impact in the longer term by maintaining high pathogen

prevalence. Sudden changes in disease dynamics are

now more likely as a consequence of anthropogenic environ-

mental change [59], and therefore modelling the potential

consequences for endangered populations will become

increasingly relevant.
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Figure 4. The effect of different vaccination programmes on (a) disease prevalence and (b) host population size in the SIR network model presented in the electronic
supplementary material, 1.3 (see box 2). The four scenarios presented are: no vaccination (grey), random vaccination (blue), vaccination targeted at individuals with high
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and 80. Points for the four scenarios are jittered on the x-axis for clarity. In this scenario, vaccinating 20% of the population is effective in reducing prevalence and
maintaining a larger host population size and targeting vaccination at individuals with high betweenness is the most effective intervention.
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6. Using a combined network and demographic
approach to design management
interventions

In many cases, intervention may be required to prevent the

spread of infection in an endangered wildlife population.

Management interventions can be categorized as approaches

targeted at the host, the pathogen or the environment [60].

Using a combined network and demographic approach

may aid the selection of appropriate management, as well

as improving its effectiveness, especially when investigating

selective interventions targeted at particular individuals.

In many small populations, culling of hosts is often not

appropriate for control of disease, especially if it is non-selec-

tive, as it may be necessary to remove too many individuals

and therefore contribute to the population becoming unvi-

able [61]. For example, it has been suggested that culling is

likely to be ineffective in controlling DFTD in Tasmanian

devils owing to frequency-dependent transmission, fast life-

histories (that limit density-dependent recruitment) and a

pathogen with a long infectious period. These features

mean that the level of culling required for disease control

would probably be too damaging to the viability of the

remaining population [61–63]. However, in some circum-

stances, using a network approach to guide selective culling

towards those individuals most likely to contribute to the

spread or persistence of infection, or in an attempt to subdi-

vide the network at critical ‘cut-points’ [64], may allow the

impact of the disease to be reduced while avoiding detrimen-

tal impacts on host population viability. This will probably be

most feasible if strong density-dependence in recruitment

buffers the population against the removal of individuals

and if pathogen transmission is density-dependent, meaning

that accounting for the demography and social networks of

the host population is key.
Networks may provide critical insights into how best to

target vaccination programmes in wildlife populations if

individuals behave consistently over time. For example, in

highly modular static networks, targeting vaccination at

‘bridge’ individuals (those that connect two or more social

clusters) can greatly reduce the level of vaccination required

to eradicate a disease or prevent it from spreading [65].

Similarly, in less clearly divided networks, targeting control

measures at well-connected individuals is likely to have a

disproportionate effect [66]. We demonstrate the potential

effectiveness of network-targeted vaccination using a version

of our dynamic network-demographic simulation model

(figure 4 and box 2; electronic supplementary material, 1.3).

We demonstrate an example scenario in which vaccination

is used to protect a small population with a modular contact

network from a novel highly infectious and virulent patho-

gen. Targeting vaccination at individuals important in

connecting between groups in this scenario causes the great-

est reductions in peak prevalence and does a better job at

limiting population decline than random vaccination or vac-

cination targeted simply at the most connected individuals

(figure 4 and table 2).

It is unlikely to always be feasible to target vaccinations

based on known network positions. Quantifying empirical

social networks is time-consuming and expensive [34], and

may not be feasible for some highly endangered populations

if trapping and/or tracking individuals is unduly risky to

their health [67]. Therefore, identifying phenotypic traits

that correlate with the social network positions of individuals

represents an important alternative approach. One candidate

is sex-biased variation in the epidemiology of pathogens.

In European badgers, for instance, contact networks are

structured at a broader spatial scale for males than females

[68] and males are more likely to acquire infection and pro-

gress to advanced disease [69]. In host–pathogen systems

with this sex-biased epidemiology, targeting vaccination at



Box 2. A susceptible – infected – recovered (SIR) model to forecast impacts of network-targeted vaccination (electronic supplementary material, 1.3 and 4).

Model outline. The initial population and model structure were the same as that described in box 1. The only differences

from that model were an increased transmission probability (7.5-fold increase) and additional (disease-induced) mortality

(14-fold increase). This resulted in a much more rapid pathogen spread and considerable population decline if left unchecked.

Epidemic phase. Three individuals were initially infected, and infection was allowed to spread for five time-steps prior to

detection (designed to replicate the likely lag between disease emergence and detection).

Vaccination phase. At the sixth time-step individuals were vaccinated according to four different programmes: (i) no vacci-

nation (control), (ii) 20% of individuals vaccinated at random, (iii) 20% of individuals with the highest degree vaccinated, and

(iv) 20% of individuals with the highest betweenness centrality vaccinated. Vaccine efficacy was assumed to be 100%, and

vaccination was assumed to prevent infection if an individual selected was susceptible.

Post-vaccination phase. Subsequent to vaccination the model was run for an additional 79 time-steps (85 time-steps in

total). The vaccination and post-vaccination phases were repeated 50 times. The results, which reveal that targeted vacci-

nations are slightly more effective than random vaccination with a less variable outcome, are presented in figure 4 and

table 2.

Table 2. Outcomes of different vaccination programmes in our example model.

treatment

mean host population
size after 40 time-
steps (+++++s.e.)

mean prevalence
after 40 time-
steps (+++++s.e.)

mean host population
size after 80 time-
steps (+++++s.e.)

mean prevalence
after 80 time-
steps (+++++s.e.)

control 81+ 1.8 0.103+ 0.016 67+ 3.2 0.063+ 0.012

random 86+ 1.7 0.050+ 0.008 79+ 2.5 0.015+ 0.004

degree-targeted 86+ 1.4 0.039+ 0.007 80+ 2.0 0.015+ 0.005

betweenness-targeted 91+ 1.2 0.027+ 0.006 86+ 2.1 0.011+ 0.003
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the sex that contributes most towards infection spread is

likely to be more effective. Similarly, the feasibility of target-

ing selective management interventions based on network

position will depend on how dynamic social network struc-

ture is, and the impact of this on the relative importance of

well-connected or ‘bridge’ individuals. If network structure

changes substantially with population size, or if indivi-

duals are not consistent in their network position, then

targeted management interventions become more difficult

to implement successfully.

Network approaches can also be used to guide management

interventions aimed at modifying the environment. Supple-

mental feeding of wildlife, for instance, can alter transmission

dynamics by altering social network structure and/or pro-

viding well-connected hubs of indirect environmental

transmission [70]. Therefore, changing patterns of supplemen-

tary feeding can influence social network structure which may

in turn increase (or decrease) transmission. For example,

higher feeder density has been shown to result in elevated

transmission of Mycoplasma gallisepticum in house finches

Haemorhous mexicanus [71]. This potential impact of supplemen-

tary feeding might be an important consideration when applied

to populations of conservation concern. Similarly, the isolation

of infected sub-populations via targeting of the environment

might be achieved more effectively using information on

movement and habitat networks within a population.
7. Conclusion and further work
Disease can cause or contribute to the decline and extinction of

threatened species, and the threat posed may be exacerbated

by anthropogenically-driven environmental change resulting

in the emergence of novel pathogens or changes in the epide-

miology of existing diseases. Developing an understanding of

how population dynamics, population connectivity and social

behaviour interact to determine the vulnerability of small and

declining populations to new and existing pathogens will be

crucial to recognizing and developing effective means of mana-

ging such threats. New developments in epidemiological

modelling that combine social networks and demographic par-

ameters offer a predictive framework that may be instrumental

in achieving this goal.
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