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Abstract: “Prebiotic soup” often features in discussions of origins of life research, both as a theo-
retical concept when discussing abiological pathways to modern biochemical building blocks and,
more recently, as a feedstock in prebiotic chemistry experiments focused on discovering emergent,
systems-level processes such as polymerization, encapsulation, and evolution. However, until now,
little systematic analysis has gone into the design of well-justified prebiotic mixtures, which are
needed to facilitate experimental replicability and comparison among researchers. This paper ex-
plores principles that should be considered in choosing chemical mixtures for prebiotic chemistry
experiments by reviewing the natural environmental conditions that might have created such mix-
tures and then suggests reasonable guidelines for designing recipes. We discuss both “assembled”
mixtures, which are made by mixing reagent grade chemicals, and “synthesized” mixtures, which
are generated directly from diversity-generating primary prebiotic syntheses. We discuss different
practical concerns including how to navigate the tremendous uncertainty in the chemistry of the
early Earth and how to balance the desire for using prebiotically realistic mixtures with experimental
tractability and replicability. Examples of two assembled mixtures, one based on materials likely
delivered by carbonaceous meteorites and one based on spark discharge synthesis, are presented to
illustrate these challenges. We explore alternative procedures for making synthesized mixtures using
recursive chemical reaction systems whose outputs attempt to mimic atmospheric and geochemical
synthesis. Other experimental conditions such as pH and ionic strength are also considered. We
argue that developing a handful of standardized prebiotic recipes may facilitate coordination among
researchers and enable the identification of the most promising mechanisms by which complex
prebiotic mixtures were “tamed” during the origin of life to give rise to key living processes such
as self-propagation, information processing, and adaptive evolution. We end by advocating for the
development of a public prebiotic chemistry database containing experimental methods (including
soup recipes), results, and analytical pipelines for analyzing complex prebiotic mixtures.

Keywords: prebiotic chemistry; prebiotic synthesis; prebiotic soup; prebiotic mixture; origin of life

1. Introduction

Since the pioneering research by Miller and Urey in the 1950s [1,2], it has gradually
become accepted that abiotic synthesis in the atmosphere, hydrosphere, and lithosphere,
combined with exogenous inputs from space, likely provided prebiotic Earth with a diverse
inventory of organic compounds [3–5]. These considerations imply that bodies of water
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on the prebiotic Earth were imbued with a chemically diverse organic content, a so-called
“prebiotic soup” [6]. The chemical composition of this potentially multiply sourced mixture
is uncertain beyond the inference that it was chemically diverse and likely included many
of the important chemicals involved in cellular metabolism and genetics, albeit at perhaps
very low steady-state concentrations.

While it is well documented that many chemicals involved in biochemistry can be
synthesized abiotically [7], the biggest outstanding problem in understanding the origins
of life is how the components of prebiotic soup came to be organized in systems capable of
emergent processes such as growth, self-propagation, information processing, and adaptive
evolution [8–11]. Given that prebiotic soups may have been composed of millions of
distinct compounds, each at a low concentration [12,13], another mystery is how processes
winnowed this molecular diversity down to the few compounds it used by biology today,
which are a tiny subset of the many compounds that would have arisen from abiotic
processes. Consequently, it is important to understand how complex mixtures of dilute
organic molecules generated by environmental processes could have been “tamed” to give
rise to the less diverse but more organized chemistry of metabolism [14–17].

Understanding the taming of chemical complexity and the emergence of key life
processes likely requires “bottom-up” experiments [18], which entail studying how model
prebiotic mixtures converge towards life in terms of the spectrum of chemicals formed,
their relative abundances, or their overall dynamical behavior. The starting point for such
experiments should be mixtures of chemicals (“soups”) that could plausibly have been
present on early Earth. Using such experimental inputs, many questions can be addressed.
For example, one could ask how prebiotic mixtures are modified upon interacting with
minerals or upon exposure to environmental fluctuations such as wet–dry cycling. Ex-
periments might be conducted in materially closed systems or may simulate the flow of
soup through a primordial microenvironment, for example, by periodically replenishing
reagents [19–21] or using a continuous flow reactor [22,23]. Whether one is searching for
the emergence of particular chemicals (e.g., nucleotides, amphiphiles, polymers) [1,24–26],
for autocatalysis, or for other life-like dynamical properties [20,27], experimental results
are likely be sensitive to the chemicals used in the input solutions.

How can appropriate soups be designed in the face of the tremendous uncertainty
regarding the prevailing chemistry in any given locale on early Earth? How can the
desire for using prebiotically realistic soups best balance experimental tractability and
replicability? These important practical questions have not yet been adequately discussed.
The aim of this paper is to explore the principles and practicalities of designing prebiotic
soups for bottom-up origins of life research. Two complementary approaches for making
prebiotic soups are considered: assembling them and synthesizing them. “Assembled
soups” are made by combining laboratory-grade chemicals, while synthesized soups are
generated via recursive, diversity-generating chemical reactions starting from a small
number of low molecular mass input chemicals.

After proposing some general principles guiding the design of experimental prebiotic
soups, we discuss the challenges that arise from the uncertainty regarding early Earth
conditions and the considerable temporal and spatial variation of geochemical conditions
that likely existed. We suggest that since the successful bottom-up origins of life research
program is only feasible if abiogenesis is a reasonably robust phenomenon, meaning that it
does not require very specific, cosmically rare conditions, the desire to generate a perfect
simulacrum of prebiotic chemistry should not prevent attempts to generate reasonable
approximations that bracket some of the uncertainty. To illustrate these principles, we
provide a handful of prebiotic soup recipes and then argue for community coordination,
perhaps including the generation of a shared repository of soups and recipes so as to add
rigor and repeatability to the study of complex prebiotic chemistry.
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2. General Principles and Challenges for Designing Experimental Prebiotic Soups

Origins of life research programs can generally be characterized based on whether
they aim to address the historical question of the emergence of biochemistry on Earth
or the ahistorical question of how life as a general phenomenon arises [28]. This is a
spectrum rather than a discrete distinction. It may never be clear if we have solved the
historical problem of how life actually arose on Earth, so historical research is to some
degree concerned with identifying conditions under which life could evolve. Conversely, a
research program can only be said to solve the ahistorical problem if it uses mixtures and
conditions that might realistically occur in at least one natural environment, somewhere
in the Universe. Engineering life in an artificial lab setting would not explain how life
could emerge spontaneously. Furthermore, whether research is at the more historical or
ahistorical ends of the spectrum, there will be a trade-off between inferred geological
realism and expediency. In practice, all experiments sacrifice some degree of realism.
For example, the original Miller–Urey experiment [1] was guided by ideas regarding the
reducing atmosphere of the early Earth [6,29], but did not attempt to simulate the effects of
all possible energy sources (e.g., ultraviolet radiation) or the presence of minerals.

Even restricting our attention to prebiotic soups in aqueous solution, there is surely
no single correct solution to use. Even if there is some desire to focus on historical origins,
soups that are made to be realistic facsimiles of Earth’s prebiotic oceans might be different
from those made to mimic lakes or other microenvironments, let alone water bodies
elsewhere in the Universe. Nonetheless, there are likely to be more and less reasonable
soups for any given targeted environment, posing the question of how these mixtures
should be designed.

Two main strategies for generating prebiotic soups suggest themselves. The first is
an assembled soup, made by dissolving reagent-grade commercial chemicals and mixing
them in proportions mimicking environments of interest. The second is a synthesized
soup, made by standardizing a prebiotically plausible mixture of small organic chemicals
and then allowing them to react under specified conditions. These two strategies have
complementary strengths and weaknesses (Table 1).

Table 1. Comparison of approach to making prebiotic mixtures.

Consideration
Assembled

Mixture

Synthesized Mixture

Atmospheric
Synthesis

Liquid
Synthesis

Complexity of Products Low High High
Procedure Difficulty Low High Low
Control of Chirality High Low Low

Control of Composition High Low Low
Analytical Tractability High Low Low

Assembled soups have the advantage that they can be produced without complex
chemical reactors and should be similar between experimentalists (at least insofar as the
same chemical sources are used). The fact that an assembled soup’s composition is largely
known (although not entirely due to impurities and reactions among the soup’s compo-
nents) is potentially useful for replication and comparison among conditions. Additionally,
selective subtraction or isotopic labeling of some components might allow elucidation of
key chemical mechanisms. On the negative side, the total number of distinct compounds
in an assembled soup will likely be lower, and the relative concentrations of individual
components higher, than strict realism might demand.

Synthesized soups have the advantage of starting with few ingredients at relatively
high concentrations yet yielding highly complex mixtures through recursive chemical
processes, including many compounds at extremely low concentrations. As a result,
synthesized soups might more accurately mimic prebiotic concentration profiles. On the
other hand, synthesized soups starting from gases may be more difficult to produce under
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laboratory conditions in the absence of specialized equipment and safety protocols, a
problem that can be avoided using liquid synthesis methods. Furthermore, synthesis
experiments are likely to be sensitive to the choice of starting chemicals, the reaction
conditions, and the presence of minerals or trace ingredients. In all cases, the design
of a soup should be guided by the best available predicted geochemical/environmental
conditions for the desired location.

3. Prebiotic Sources of Organics and Challenges for Soup Design
3.1. Terrestrial Sources of Organics

Dissolved organics on primitive Earth could have derived from a combination of
exogenous sources (comets, meteorites, and IDPs) and endogenous sources [30], which
includes both atmospheric and hydrothermal synthesis. One of the challenges with un-
derstanding the chemical inputs from these sources is that each would have been highly
dependent on imperfectly known aspects of the Hadean environment.

Geothermal energy may have plausibly driven prebiotic synthesis in some contexts,
since mineral surfaces and high pressure and temperature provide conditions favorable to
the generation of organic compounds [31]. At high pressure and temperature, high concen-
trations of CO2 and H2 in the presence of metal catalysts (e.g., iron-sulfur clusters; [32,33])
can produce organic compounds, including membrane forming amphiphiles like fatty
alcohols and fatty acids [34,35]. These Fischer-Tropsch-Type reactions, may be possible
in hydrothermal systems, although only small amounts of hydrocarbons and fatty acids
have been detected in modern environmental samples [36]. However, mid-ocean ridge
vent fluid can be rich in reduced gases like hydrogen [37], which, in a prebiotic context,
could have reacted with prebiotic chemicals generated from other mechanisms to drive
early metabolism [17,38].

Atmospheric synthesis likely provided an additional source of endogenous organics.
Miller (1953) showed that when an electric discharge is passed through a reducing gas
mixture, similar to that envisioned by Oparin in the 1920s [29,39], organics were readily
generated. It has been estimated that ~4 Ga, between ~4 × 108 and 2 × 1011 kg yr−1

of organics were produced from atmospheric reactions, depending on the atmospheric
oxidation state [30,40], which would correspond to a material influx to the oceans of
between 0.8 and 390 mg m−2 yr−1. These high production rates may give a false sense of
abundance: if these organics were entirely composed of glycine, and this were all dissolved
in oceans of the modern volume (~1.35 × 1021 L), a year’s production would generate a
glycine concentration in the picomolar to low nanomolar range. Assuming no loss, even
after a million years, concentrations might still be too low for many types of reactions to
occur without additional concentrating mechanisms.

The types of products made via atmospheric synthesis are sensitive to the types and
abundances of gases present and the energy sources used (e.g., UV, spark-discharge, shock
waves) [41,42]. There is no consensus regarding the oxidation state of Earth’s early at-
mosphere during the period from ~4.3 Ga to 3.5 Ga which most scientists consider to
be the window for the origin of life. While it was likely neutral (composed mostly of
N2 and CO2), there may have been sporadic reducing periods after volcanic activity or
meteorite impacts [43,44], generating conditions thought to be more conducive to atmo-
spheric organic synthesis both in terms of compound diversity and abundance [41,45,46].
Furthermore, since mineral surfaces and dissolved inorganic species can greatly alter pre-
biotic chemistry [47,48], and since the types of inorganic species would have been highly
dependent on environmental context, there are reasons to expect considerable variation
across microenvironments such as deep sea hydrothermal vents, tidal pools, and rain-fed
lakes and ponds.

In addition to spatial heterogeneity and uncertainty as to the chemical conditions
at any one time and place, there was likely considerable temporal variation in chemical
conditions. As well as periodic extraterrestrial impacts, mentioned above, heat flow from
Earth’s interior has been decreasing over time [49] and photon flux from the Sun has varied
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both in terms of flux and spectral intensity [50]. There is also the question of when Earth’s
geodynamo became active, which would have affected the rate of atmospheric hydrogen
loss on early Earth and the efficacy of solar energy-mediated atmospheric and surface
synthesis [51,52].

Nonetheless, despite all this uncertainty, the Miller–Urey experiment and subsequent
studies revealed that a handful of small reactive organic compounds can form readily,
including formaldehyde and hydrogen cyanide (HCN). This is significant because the
autocatalytic formose reaction [53], commonly invoked as an abiotic source of sugars,
can be initiated by the photochemical formation of formaldehyde from water and carbon
dioxide [54,55]. Given the variability in the products of endogenous prebiotic syntheses
and its dependence on starting conditions, bottom-up experiments aiming to mimic en-
dogenous sources should perhaps prioritize the inclusion of diverse organics and key
reactive compounds (e.g., HCN) rather than attempt to perfectly replicate the actual
synthesis mechanisms.

3.2. Exogenous Delivery of Organics

The synthesis of organics in space and their delivery to Earth via interplanetary dust
particles (IDPs), meteorites, and comets is another potentially important source of organ-
ics [40,56]. Such materials would have delivered organic molecules during and after the
accretion of the planet. Many scientists believe that the influx of extraterrestrial materi-
als to Earth decreased exponentially over time, although it may have been punctuated
by periodic heavy bombardment [57,58]. It is estimated that 6 × 107 kg yr−1 of organic
material were delivered to Earth around 4 Ga, corresponding to a surface-averaged flux
of ~0.1 g m−2 yr−1, which is significantly less than that estimated from endogenous atmo-
spheric reactions [30]. It should also be noted that most organics are not indefinitely stable
in aqueous environments, especially at high temperatures and pH values, and thus steady
state concentrations may have been somewhat lower [59].

Though likely not the major exogenous source of organics to early Earth, carbonaceous
chondrite meteorites have been the focus of considerable study due to their diverse organic
contents. These meteorites make up only approximately 4% of all meteorites in collections
but contain significant amounts of organic materials that sometimes give evidence for
thermal, aqueous, and radiation alteration over their long tenure in space [60]. In some
cases, this processing seems to have generated a large diversity of organic compounds [61],
including enantiomeric excesses in certain compound classes [62]. The compounds formed
and their abundances may depend on the extent of processing experienced by the specific
meteorite [26], which indicates that trying to replicate a specific meteoritic composition
exactly may be unimportant; it may be more important to aim for a diversity of molecules
with concentrations similar to those measured in a typical carbonaceous meteorite. There
is significant overlap of abundance patterns between the composition of carbonaceous
meteorites and laboratory spark-discharge experiments, which points to there being some
similarity in synthetic mechanisms (e.g., Wolman et al., 1972 [63]).

Undoubtedly, the best-characterized carbonaceous chondrite is the Murchison mete-
orite, whose organic components have been extensively catalogued. Amino, hydroxy, and
carboxylic acids are among some of the important biologically relevant components [64],
though it should be borne in mind that untargeted analyses suggest there may be several
million relatively low molecular weight compounds present [12], and thus the compounds
of biological relevance are only a small fraction of the non-biological suite. Nevertheless,
the Murchison meteorite is used in the present paper to provide an example of a “meteoritic
soup” recipe for origin-of-life studies, for which chemical details and assembly instructions
are presented in the supplemental material (Tables S2 and S3).

4. How to Make Prebiotic Soup

As summarized in Figure 1, we outline and discuss considerations for the design of
both assembled and synthetic soups, and then provide examples of recipes and procedures
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to illustrate the overall approach. The technical details accompanying these examples can
be found in the SI. These examples can be used directly, be modified to suit a different type
of experiment, or inspire others to search the literature and generate a novel recipe. When
using either a synthetic or assembled mixture for experimental purposes, the “bottom-up
prebiotic experiments” (bottom of Figure 1) would directly impact the design rationale for
mixture preparation, as elaborated below.
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4.1. Assembled Prebiotic Soup

To assemble a soup, commercially available chemicals are mixed according to a pre-
defined recipe. One of the major advantages of assembled soups is that downstream
analysis is much easier with a smaller number of compounds than in a synthesized soup.
Additionally, it is relatively easy to control chirality by adding specific enantiomers to
an assembled soup, something that cannot be done with synthesized soups, or to track
chemical transformations by including isotopically labeled compounds. However, assem-
bled soups also have important disadvantages. Extracts from the Murchison meteorite
have been found to contain tens of thousands of distinct CHONSP-containing molecular
formulas, with a likely even greater number of distinct molecular structures [12], which
suggests that mixing even a few hundred compounds in solution would not mimic the true
molecular diversity of prebiotic organics. However, it is also possible that all of the main
chemical reactions that occur among the many chemicals present in a prebiotic mixture
would occur in a less diverse mixture. For example, even though many α-amino acids are
generated by prebiotic synthesis, the reactivity of the carboxylate group may be similar
for the entire compound class. This implies that it may be more important for assembled
soups to sample major organic functional groups and chemical reactivities than to include
the full diversity of chemical compounds.
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Based on these considerations, assembled soups may be preferable if an experimental
program (1) requires having control over the composition of the soup, including the addi-
tion of chiral compounds, (2) does not require a high diversity of products, (3) is focused on
particular types of chemistry or compound class rather than on the full spectrum of chemi-
cal possibilities. In the following sub-sections, we discuss how to select compounds, set
their concentrations, decide on chirality, and approach other aspects of soup composition.

4.1.1. Selection of Compounds

There are several factors that should be weighed when deciding which compounds to
add to a prebiotic soup recipe, including the hypothesized source(s) of prebiotic organics
and the processes or features arising from prebiotic soup that are under study. A concern
with synthesized soups is that the chemicals that are detected and abundant as products
of abiotic processes will be those that are most stable and, thus, less reactive. In cases
where an influx of chemicals is expected in a new environment (for example, being washed
into a hot spring) mixtures of the more stable compounds are perhaps justified. However,
when modeling environments in which chemicals are produced in situ, short-lived reactive
species (e.g., radicals) may have had an important role [65]. Such considerations recently
prompted researchers to use a combination of assembly and synthesis, where specific labo-
ratory grade chemicals were combined with a synthetized prebiotic soup to characterize
potential interactions [66].

The compounds that are ultimately included in an assembled soup will also depend
on the recipe’s compatibility with selected environmental conditions. Examples of issues
that can arise include insolubility at a given pH or in the presence of inorganic species.
Attention should also be given to the process or phenomenon that is being studied in an
experimental program. For instance, prebiotic soups designed for studies of autocatalytic
behavior may prioritize chemical diversity, while research into specific chemical pathways
or reaction types might favor higher concentrations of a few focal compounds. To illustrate
some of the decisions and tradeoffs that need to be made in designing assembled prebiotic
soups, two examples are described: a meteorite soup and a spark-discharge soup. We use
these two examples for the sake of discussion throughout this section.

The proposed meteorite recipe is based on data from the Murchison meteorite (Table S1).
Any chemical compound detected with a concentration greater than 10 nmol g−1 meteorite
that was commercially available/affordable was included [61,67–78]. We used a systematic
approach based on a threshold concentration to make decisions about which compounds to
add. This narrowed the list down to a more manageable number. Importantly, we checked
that this subset of chemicals included compounds representative of each major compound
class (e.g., amino acids, alkanoic acids, etc.) detected in the meteorite.

A different approach was used to design the spark-discharge soup (Table S3). The gen-
eral strategy was to use data on the chemical outputs from multiple sources to identify com-
pounds present in multiple experiments carried out under different conditions [2,41,79–81].
To compare concentrations across separate studies, which sometimes characterized dif-
ferent compound types (amino acids, organic acids, nitriles, nucleobases, etc.), we used
a benchmark species (glycine) that appeared consistently. We did not include all classes
of compounds that have been reported in spark-discharge experiments [82,83], focusing
instead on those with potential roles in metabolism-like processes. Thus, for example, we
omitted hydrocarbons and fatty acids, although these could be added readily in the future.
Likewise, we opted not to include every possible chemical detected within a compound
class. For instance, we only included cysteine rather than other sulfur-containing amino
acids and excluded decomposition products and intermediates that were sometimes de-
tected. Such simplification is guided by the particular chemical questions being asked.
For example, if one were specifically interested in sulfur chemistry and its role in the
emergence of life processes, it would make sense to assemble a soup with a wider variety of
sulfur-containing compounds, while perhaps reducing the number of nitrogen-containing
compounds. Details on the approach can be found in the SI.
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There are obvious pros and cons to each recipe. The meteoritic soup is based on
mixtures that were highly likely on early Earth, and not biased by modern biology (except
to the extent that the compounds detected to date may be biased by the interests of
analytical chemists). However, adding 80+ organics to a solution is difficult and the
resulting solution may include insoluble components. The spark-discharge soup has fewer
components which are all water soluble, making it easier to prepare, work with, and
analyze. However, the selected compounds are more biased toward extant life and based
on less rigorous, more arbitrary criteria for inclusion.

4.1.2. Setting Concentrations

Realistic concentrations of organics in primitive aqueous planetary environments are
difficult to estimate. Even if all the organics produced over half a billion years were to
accumulate in oceans of the modern volume (how the volume of the oceans has changed
over Earth history is also debated; [84]) the solution would still be very dilute. Nonetheless,
concentrations could be higher in local environments due to concentration mechanisms
such as evaporation [85], eutectic freezing [86,87], or the dehydration of aerosols [88].
Regardless of absolute concentrations, it seems wise to include reactants in molar ratios
similar to those detected in prebiotic simulations or natural samples.

To illustrate different potential approaches for setting concentrations, we refer back
to our two working examples. For the meteorite soup, we generated a 1 L solution with
100 g of organic material. Each selected compound was taken as representative of a
particular compound class and the amount added was selected to maintain the relative
concentrations of compound classes seen in Murchison. This is a very concentrated soup,
but it can be diluted arbitrarily to make a working solution. Using the provided spreadsheet,
compounds can be added by changing the “include” value to “yes”, which will shift all the
gram amounts within that compound class without changing the combined amount of that
compound class. Additionally, the compound classes can be modified to represent other
meteorite compositions. This spreadsheet can also serve as a starting point for assembling
other kinds of soups.

For the spark-discharge soup, the absolute concentrations of individual compounds
were increased compared to those reported in spark-discharge synthesis experiments to
(1) help with downstream detection of new products (by raising their concentration above
the limit of detection of analytical instruments), and (2) facilitate the preparation of the soup
by avoiding weights and volumes that are too small to be handled and measured reliably. To
set concentrations, we first fixed the concentration of glycine and used approximate molar
ratio data from the references listed in Table S2 to adjust the relative concentration values of
the remaining compounds. To select concentrations, we assigned ranges of concentrations
reported in the original literature to specific concentration values, in multiples of 0.08 mM
(see SI for exact method and concentration conversion multipliers), the lowest concentration
value in our example recipe. This was an arbitrary decision made to simplify the task of
setting concentrations for each compound in the assembled soup recipe.

4.1.3. Chirality

Most prebiotic reactions conducted to date have been found to produce roughly
racemic product suites, which contrasts with the enantiomeric excess (ee) seen in some
meteoritic organics [89]. It is unclear whether the ee seen in meteorites arose from the
enhancement of small initial fluctuations by autocatalytic reactions [90] or by differences in
stability/reactivity [91]. For many purposes, for example to see if ee enrichment emerges
spontaneously, it may be preferable to assemble soups from racemic components. Thus,
the meteorite soup uses racemic ingredients. Although it should be noted that supposedly
racemic compounds from a commercial source almost always show a significant ee [92],
it would be possible to measure this ee before and after an experiment to evaluate chiral
enrichment. In case of the spark discharge soup, biological entantiomers were chosen, for
example L-amino acids, for the simple reason that they are more readily available and less
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expensive. As a result, this soup, as designed, would not be suited for applications that
focused on the origins of ee.

4.2. Synthesizing Prebiotic Soup

There are many potential ways to make a synthesized prebiotic soup, but a key
concern is defining reagents and conditions that will be minimally sensitive to experimental
variation. The first decision is whether to start synthesis from atmospheric gases or
to conduct experiments in the liquid phase, starting with the water-soluble, reactive
products of gas-phase synthesis. While the former may yield a more authentic soup,
gas-phase synthesis methods are significantly more challenging and may not be practical
for many research groups. We review each of these approaches below, focusing on gas-
phase synthesis with spark discharges and “polymerization” reactions using small, reactive
organic inputs (formaldehyde, formamide, and HCN). Generic recipes for each of these
can be found in the SI.

4.2.1. Gas Phase Synthesis

The most famous gas-phase prebiotic synthesis strategy uses spark discharges [1],
which is known to generate an array of small organics, including both proteinogenic
and non-proteinogenic amino acids (see Tables S2 and S3). Although a video protocol
for conducting spark discharge experiments has been published [93], the procedure is
somewhat complex, hazardous if not conducted with some precision, and difficult to
conduct in a high-throughput fashion. Some lack of reproducibility has also been reported,
which may be due to nuances in experimental design [94]. Nonetheless, if one strives
for the most realistic primordial soup, direct, gas-phase synthesis might be the most
appropriate strategy.

When using spark discharges, the material of the electrodes can have an effect, with
tungsten oxide being the historically preferred option (mainly due to the coefficient of
thermal expansion of tungsten oxide which allows it to be easily fused with laboratory
glass). Likewise, the temperature to which the water is heated is not necessarily constant
across experiments. Furthermore, reaction time likely has an effect. The relative volumes
of gas phase to aqueous phase reservoirs likely also matter [13,93,94], a small amount
of gas reacted over a large volume of water likely gives a different result than a large
volume of gas reacted over a small volume of water. We therefore recommend that if
spark discharges are used to generate soup, these variables be rigorously standardized to
maximize repeatability.

The product composition of gas-phase synthesis is known to depend sensitively on the
gas mixture [95]. Due to the current debate on predominant atmospheric conditions on early
Earth, the gas composition applied in spark-discharge experiments can range from reducing
(i.e., CH4, NH3, and NH3) to neutral (i.e., CO2 and N2) [13,81]. Atmospheric synthesis is
subject to its own complexities which depend on input species, energy fluxes, and reaction
and rainout rates, thus it seems unlikely a simple standardized set of compositions can be
defined with regard to these variables.

4.2.2. Liquid Phase Synthesis

Given the practical challenges of gas-phase processes, the alternative is to use liquid-
phase syntheses, which start with small, reactive organic species that are known to be
produced in abundance in many gas-phase contexts. Perhaps the simplest mechanism
for generating a large molecular library is through HCN polymerization [96], which is of
particular interest due to the importance of HCN in the formation of nucleobases [97] and
amino acids via the Strecker synthesis [75]. However, HCN polymerization should only be
attempted by experienced chemists since there is a risk of releasing the poisonous cyanide
gas into the laboratory.

Given the hazards of HCN, there has been an increasing interest in the chemistry of
formamide (see SI for a generic recipe), which can act as a solvent as well as a reactant
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for the synthesis of a variety of biochemical compounds and is much easier to handle [98].
Formamide is the first hydrolysis product of HCN and is a ubiquitous molecule in the Uni-
verse [99]. Studies have demonstrated that heating formamide in the presence of different
catalysts of terrestrial and meteoritic origin yields complex combinations of nucleobases,
amino acids, sugars, amino sugars, and condensing agents [81,100]. Formamide reactions
also result in selective synthesis of certain nucleobases and nucleosides when mineral
surfaces are added to the reaction [101,102].

Time of reaction is also a factor since many radicals and unstable intermediates may be
present while the reaction is actively occurring but may be absent as the starting chemicals
become depleted and the soup converges on an equilibrium composition. As a result,
factors that alter reaction rates, such as pH, temperature, and the concentration of the
starting materials need to be controlled. For example, when the formose reaction is carried
out at high temperature, the solution quickly turns into a complex intractable mixture, due
to competing mechanisms such as the Maillard reaction, degradation, and uncontrolled
polymerization of the carbohydrates, but this can be avoided by performing the reaction
for short periods of time and in moderate temperatures [103].

The outcomes of liquid-phase synthesis using HCN or formamide depend on concen-
tration, pH, and temperature [59,104,105]. In the case of formamide condensation, typical
conditions involve heating pure formamide at 160 ◦C (the boiling point of formamide is
210 ◦C) in the presence of inorganic catalysts or UV irradiation. However, the synthesis
of nucleobases from formamide has been demonstrated at lower temperatures (i.e., 50 ◦C)
using longer reaction times and recursive addition of formamide [19]. An alternative
protocol, developed by Ricardo et al. (2004) [106], uses relatively dilute inputs, borate
minerals, alkaline pH (8–11), and a 2-month incubation to promote ribose formation and
inhibit the generation of tar.

4.3. Inorganic Components

Even after one has decided on a standard way to assemble or synthesize the organic
components of soup, inorganic components need to be considered. In large part, choice of
experimental variables will be governed by the particular microenvironment researchers
aim to mimic, which might range from shallow surface environments such as subaerial
hot springs [107,108] to deep ocean environments such as hydrothermal chimneys [109].
Major factors which distinguish these various environments include dissolved inorganic
and ionic components, as well as minerals that can affect pH.

Inorganic species, whether dissolved or in the solid phase, can influence synthesized
soups (e.g., Surman et al., 2019) [21]. Thus, it will generally be more realistic to conduct syn-
theses in solutions that already contain relevant inorganic components. All surface waters
on Earth contain significant amounts of dissolved inorganic salts. Indeed, many prebiotic
chemistry exploration experiments have considered the effects of dissolved salts [110,111].
Seawater-like ionic solutions, however, do introduce experimental difficulties, especially for
mass spectrometry and NMR investigations. Instead of synthesizing soups in the presence
of inorganic species, it is also possible to add salts and other inorganic solutes after soup as-
sembly/synthesis. If mimicking an ocean environment, an inexpensive and simple starting
point for the aqueous phase could simply be to add modern sea salt, which is available as a
commercial product (although modern seawater contains significant amounts of sulfate,
which may not have been the case in the primitive oceans). However, the composition of
seawater has likely changed markedly over time, and the early oceans may have had up
to twice the salinity of the modern oceans (35–70 g L−1) [112]. If a prebiotic simulation
attempts to mimic prebiotic pond or river water, ionic concentrations might be considerably
lower (less than 1 mM for Na+, Cl−, Ca+, Mg+, K+) [113].

The inorganic components of the soup that may have had the greatest role in nascent
biochemistry include polyatomic ions containing nitrogen, phosphorus, sulfur [114,115].
Early sea water may also have contained more carbonate, due to higher atmospheric CO2
levels [112,116], more sulfur in the −2 oxidation state (compared to the +6 state) [117] and
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significant amounts of Fe2+ [118]. These additions may be very challenging to use when
working with a prebiotic soup in the lab as they are sensitive to oxygen in our modern
atmosphere. One possibility is to use a glove box or anaerobic chamber to reproduce the
anoxic atmosphere and avoid an undue influence of oxygen on experiments [119].

pH may be one of the most important variables in directing prebiotic synthesis. The pH
of natural water varies widely, with extreme values ranging from pH 0 to pH 13 [120,121],
although modern rivers average a pH of 7.4 [122], and modern ocean water is near
pH 8.1 [122]. Ocean pH has likely varied over time, but was likely lower in the Hadean
than today due to higher atmospheric pCO2 [116]. When adjusting the pH in an assembled
soup, pH can either be left unmanipulated, adjusted to a target using simple acids or
bases (e.g., HCl, NaOH), or adjusted and kept within a target range by including buffering
components in the soup (e.g., acetate/acetic acid), although buffering raises its own set
of experimental issues (e.g., concentration of buffer relative to reactants, common ion
effects, etc.).

4.4. Storage and Transport

As a practical matter, it may not always be possible for a soup to be consistently
assembled or synthesized immediately before each experiment. Thus, thought needs to be
given to soup storage. A soup is likely to be most out of thermodynamic equilibrium when
first prepared and to react and dissipate this disequilibrium over time. These changes are
likely to result in soups that become progressively less able to sustain life-like reactivity
over time because life usually entails energy dissipation.

In the case of synthesized soups, the ideal approach would be to conduct syntheses
simultaneously with their use in experiments, as might be possible using continuous
flow reactors. Failing that, the soup needs to be stored in the most inert form possible,
which probably requires rapid freezing at −80 ◦C or below or, perhaps, freeze-drying,
although the chemical consequences of drying and re-hydration need to be considered.
The same is true for assembled soups, except that it is also advisable to break the soup
into two or more “subsoups” that can be stored separately and mixed together just prior
to each experiment. This way, one can keep more reactive subsets of chemicals separate
until the time of experimentation, which might allow more out-of-equilibrium chemical
reactions to occur. We also recommend dividing up the total soup volume into smaller
aliquots to avoid the negative effects of serial freeze–thawing cycles on the integrity of
the chemical constituents. It may also be preferable to add unstable and/or temperature
sensitive components after sterilization or immediately prior to use, in a manner analogous
to microbiological media preparation that add sensitive components such as antibiotics at
the last minute.

Regardless of the care taken to store soups, it is important to design experiments such
that degradation in storage or during freezing and thawing does not yield misleading
results. Minimally, some kind of negative control is needed to be able to detect chemical
differences that are due to differences among batches of soup or the same batch of soup
thawed at different times. For example, Vincent et al. (2019) conducted a chemical ecosys-
tem selection experiment with an assembled soup in which experimental vials with an
accumulated history of transfer were always compared to a control set of vials that were set
up with the same soup and at the same time but lacked a history of transfer. Indeed, given
the high probability that no two batches of primordial soup will be chemically identical,
the careful design of experimental controls is absolutely critical for all prebiotic chemistry
experimentation.

5. A Shared Infrastructure for Complex Prebiotic Chemistry

If our goal is to explore the space of possible soups, physical conditions, and ex-
perimental designs to find those that yield life-like chemical phenomena (e.g., Cleaves,
2013) [123], then a community-wide effort is needed. To efficiently scan the parameter
space and identify conditions conducive to the emergence of life processes, there is a need
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to systematically track which parts of the space have already been investigated, how they
have been investigated, and whether those conditions yielded positive (or at least interest-
ing) results. Community coordination could facilitate such work by offering standardized
procedures for assembling or synthesizing soups, and by sharing a few commonly used
experimental paradigms. In particular, it would be useful to establish an online database
for depositing and accessing information about specific recipes, synthesis procedures,
experimental conditions, etc.

In addition to facilitating inter-lab coordination and a more productive exploration
of different experimental parameters, a valuable consequence of sharing information in a
“prebiotic soup database” would be the availability of data related to recipes or experimen-
tal procedures that do not necessarily produce positive results (or at least results that are
consistent with the hypotheses of a particular experimental program). What may constitute
a negative result in one research program could provide meaningful information to another,
but such opportunities are hindered by the traditional publication scheme of primarily
reporting positive results. To fill this gap, we propose the community should develop
an Origins-of-Life equivalent to GenBank, where experimentalists from across the globe
contribute soup recipes and the results of experiments to a publicly accessible database.

As an added advantage, such a community resource for sharing information on
prebiotic soups could also house other information of broad interest, in particular methods
for analyses of complex chemical mixtures. Untargeted analysis of complex chemical
mixtures is notoriously challenging [13,124] so prebiotic researchers often fall back on
methods optimized for the targeted analysis of biologically relevant compounds (e.g.,
proteinogenic amino acids, components of the citric cycle, or DNA/RNA components).
However, to understand the emergence of many life-like phenomena, it will be necessary
to track compounds that are not important in biology for which analytical methods are less
readily available.

It is becoming easier to identify chemical formulae using extremely high-resolution
mass spectrometry, and structures can also sometimes be inferred from mass-fragmentation
spectra using searches in compound databases. However, the informatic pipelines are
mainly designed for biological experimental data (e.g., metabolomics), which biases hits
towards biological compounds [124]. Libraries developed for environmental analysis
of complex mixtures (i.e., NIST (https://chemdata.nist.gov/) for pesticides, petroleum,
and others) do include other small molecules, but are not as widely distributed. The
recent development of computational methods for predicting the composition of prebiotic
soups [125], may also be very useful in expanding our ability to identify unknowns in
chemical mixtures.

Since prebiotic chemists all face similar analytical challenges, the prebiotic chemistry
database that we are calling for should also include analytical pipelines and compound
databases to help the community deal with the challenges of analyzing complex chem-
ical mixtures. Furthermore, this resource could allow for dissemination of metrics and
statistical tools for extracting useful insights from mixtures even when many of its com-
ponent compounds cannot be identified. After all, as well illustrated by Van Krevelen
diagrams [126], summary statistics can provide valuable insights into the overall character-
istics of a chemical ensemble. Similarly, even when few if any mass spectral features can
be tied to specific chemicals in a complex mixture, multivariate analyses (e.g., MDS, PCA)
can be used to make comparisons across experimental treatments (e.g., Colón-Santos et al.,
2019; Surman et al., 2019) [19,21] and to prioritize features for in-depth targeted analysis. A
repository of relevant statistical methods and their corresponding scripts would therefore
make a valuable third component of a community resource for prebiotic chemistry.

6. Conclusions: The Future of Messy Prebiotic Chemistry and Its Interplay with
Reductionist Approaches

Although we have primarily focused our discussion on messy chemistry approaches
to the study of the origin of life, we recognize that these approaches will always coexist
with, and be complementary to, more reductionist research strategies for studying prebiotic

https://chemdata.nist.gov/
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chemistry [66,127–129]. Reductionist approaches allow chemists to home in on specific
components of modern metabolism and explain how they might have originated in plausi-
ble prebiotic environments. For example, thanks to the work of organic chemists exploring
the origins of genetic biopolymers, we know of several alternative polymer systems that
could have preceded the appearance of RNA and would have been more easily synthesized
and/or more stable under prebiotic conditions [130]. Similarly, research focused on com-
ponents of the citric acid cycle has strengthened the idea that this or similar cycles could
have been involved in prebiotic anabolic and catabolic processes [38,131–135]. However,
reductionism cannot, by itself, tell us about the dynamic aspects of prebiotic chemistry or
the appearance of emergent processes such as autocatalysis and adaptive evolution. As a
result, systems chemistry approaches are needed to help us understand life as a general
phenomenon without being biased by historically contingent features of life as we know
it [136–139]. Only through bottom-up, untargeted methods can we determine what aspects
of cellular biochemistry were inevitable for any living system given the specific chemistry
of Earth, or were, instead, “frozen accidents” [140]. Likewise, because complex systems
chemistry approaches can use soups and conditions that resemble other worlds it offers
the potential to discover what other life-like phenomena might have emerged and what
features they would be likely to manifest. Thus, more bottom-up chemical experimentation
is needed, and this will depend on developing reasonably realistic and replicable prebiotic
soups as inputs. In light of this we hope that the community of scientists studying the
origins of life, regardless of their preferred experimental strategy, will pay more attention to
the rational design of prebiotic soups and invest in a shared infrastructure for information
sharing in prebiotic chemistry.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life11111221/s1, Document S1: Soup recipes, Table S1: Meteoritic soup, Table S2: Spark-
discharge soup.
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