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Abstract
Mouse cytochrome P450 (CYP) 2A5 is induced by inflammatory conditions and infectious

diseases that down-regulate the expression and activity of most other CYP isoforms. En-

hanced oxidative stress and nuclear factor (erythroid 2-related factor) 2 (Nrf2) transcription

factor activation have been hypothesised to mediate up-regulation of CYP2A5 expression

in the murine liver. The unique and complex regulation of CYP2A5, however, is far from

being thoroughly elucidated. Sepsis and high doses of bacterial lipopolysaccharide (LPS)

elicit oxidative stress in the liver, but depression, not induction, of CYP2A5 has been ob-

served in studies of mice treated with LPS. The foregoing facts prompted us to evaluate the

response of CYP2A5 liver activity in female DBA-2 mice over a broad range of LPS doses

(0, 0.025, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20 mg/kg). Cytokine levels (interleukin [IL]-2,

IL-4, IL-6, IL-10, IL-17A, interferon gamma, tumour necrosis factor alpha) and nitric oxide

(NO) were measured in the blood serum. Activities of CYP1A (EROD) and CYP2B (BROD)

in the liver were also determined for comparative purposes. LPS depressed CYP2A5 at low

doses (0.025–2.0 mg/kg) but not at doses (>2 mg/kg) that increased pro-inflammatory cyto-

kines and NO serum levels, and depressed CYP1A and CYP2B activities. Blockade of pro-

inflammatory cytokines and the overproduction of NO induced by co-treatment with pentoxi-

fylline and LPS and iNOS inhibition with aminoguanidine both extended down-regulation of

CYP2A5 to the high dose range while not affecting LPS-induced depression of CYP1A and

CYP2B. Overall, the results suggested that NO plays a role in the reversal of the low-dose

LPS-induced depression of CYP2A5 observed when mice were challenged with higher

doses of LPS.
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Introduction
Cytochrome P450 2A5 (CYP2A5) is a murine enzyme expressed in the liver and olfactory epi-
thelium of the nasal cavity and to a lesser degree in other extra-hepatic tissues such as intes-
tines, oesophagus, lung, and kidneys [1]. It is an orthologue of rat CYP2A3 and human
CYP2A6/13 [1,2]. In mice, oxidation of coumarin to 7-hydroxycoumarin is catalysed predomi-
nantly by CYP2A5, and thus the coumarin 7-hydroxylase (COH) reaction is considered a selec-
tive marker of its activity [3]. CYP2A5 also mediates the metabolism and activation of several
toxicants including nicotine, cotinine, aflatoxin B1, coumarin, tobacco-specific carcinogen nic-
otine-derived nitrosamine ketone, N-nitrosodiethylamine, acetaminophen, and other xenobi-
otic compounds [2,4]. Where endogenous substrates are concerned, CYP2A5 functions as a
bilirubin (BR) oxidase enzyme and converts BR into biliverdin [5,6]. BR is cleared predomi-
nantly through biliary excretion of bilirubin glucuronide, the formation of which depends on a
conjugation reaction catalysed by uridine diphospho-glucuronosyl transferase 1A1 [7]. None-
theless, many researchers believe that oxidation mediated by CYP2A5 in mice (or CYP2A6 in
humans) contributes to the strict regulation of BR levels in liver tissue to achieve adequate bal-
ance between BR antioxidant (low concentrations) and cytotoxic effects (higher levels)
[5,6,8,9].

Chemical and pathological modulation of CYP2A5 expression and activity has unique char-
acteristics. CYP2A5 is induced by a variety of structurally unrelated chemicals including heavy
metals (Cd, Co, Ce, In, Pb, and methylmercury), hepatotoxic agents (e.g. pyrazole, carbon tet-
rachloride, chloroform), porphyrinogenic substances (griseofulvin, thioacetamide, and amino-
triazole), cell cyclic adenosine monophosphate disruptors (e.g. glucagon, isoproterenol,
forskolin), cocaine, and nuclear receptor ligands (e.g. phenobarbital), among other compounds
[2,4,10].

Another apparent singularity of CYP2A5 modulation is that its activity, expression, or both
are up-regulated in a number of pathophysiological conditions under which most other CYPs
are down-regulated. The expression or activity of liver CYPs is generally depressed during
aseptic inflammatory processes and infectious diseases including viral, bacterial, and parasitic
infections, chronic inflammatory conditions, and challenges with stimuli such as lipopolysac-
charide (LPS) and pro-inflammatory cytokines [11–13]. Unlike the expression and activity of
most CYP enzymes, however, CYP2A5 activity remains unchanged in the chronic phase of
murine schistosomiasis [14] and is up-regulated during malaria [15,16], viral hepatitis B
[17,18], liver fluke Fasciola hepatica infection [19], fasting [20], bacterial hepatitis [21], and
liver cancer [22]. In hamsters, Opisthorchis viverrini infection enhances the expression of a pro-
tein reactive to antibodies against mouse-CYP2A5 in hepatic tissue [23].

Although some light has been shed on CYP2A5 gene regulation, the cellular events that ulti-
mately lead to CYP2A5 induction in the liver remain largely unknown [2,4]. Kirby and co-
workers [4,24,25] proposed that overexpression of CYP2A5 in response to some infections and
liver toxicants (e.g., pyrazole) is triggered by pathological changes that occur in hepatocellular
injury rather than by events elicited by immunostimulation that eventually lead to the down-
regulation of most CYPs. As highlighted in recent reviews of research addressing the regulation
of CYP2A5/6 [2,4], accumulating evidence suggests that common gene regulatory mechanisms
(e.g., via nuclear factor erythroid 2-related factor 2, Nrf2) are shared by CYP2A5/6 and cellular
enzymes that respond to oxidative stress. Moreover, metabolism and homeostasis of haeme are
hypothesised to be crucial factors in the regulation of liver CYP2A5 expression mediated by
Nrf2 activation [2,4,6,8].

Surprisingly, LPS induction of CYP2A5 has not yet been demonstrated. Sepsis and high-
dose LPS challenge reportedly elicit oxidative stress response and induce haeme oxygenase 1
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via Nrf2 activation, thereby interfering with haeme metabolism [26–28]. Therefore, if oxidative
stress does indeed lead to CYP2A5 up-regulation, enzyme induction would be expected to
occur under conditions of sepsis and challenges with high doses of LPS. LPS is one of the most
studied inflammatory stimuli and causes a generalized depression of total CYP content and de-
creased expression and activity of many forms of CYP in the livers of rodents. Gilmore and co-
workers [24] noted that messenger RNA (mRNA), protein, and activity (COH) levels of
CYP2A5 were depressed by intraperitoneal (i.p.) LPS treatment (0.5 mg/kg body weight [bw]),
a down-regulation similar to that reported for many CYP forms after challenge with an inflam-
matory stimulus. The authors also reported that a dose of LPS 10 times greater (5 mg/kg body
weight, i.p.) produced time-dependent depression of CYP2A5 protein levels and activity
(COH) that became more marked 24 h after dosing [24].

Experiments carried out at our laboratory demonstrated a marked depression of hepatic
CYP2A5 activity in mice challenged with 0.5 mg/kg bw LPS, a finding consistent with those re-
ported by Gilmore et al. [24]. Most animals treated with higher doses of LPS (e.g., 5 and
20 mg/kg bw), however, exhibited no clear decline in CYP2A5 activity, instead showing a con-
sistent decrease of CYP1A (ethoxy-resorufin-O-demethylase [EROD]) and CYP2B (benzy-
loxy-resorufin-O-debenzylase [BROD]) activities.

These unexpected results prompted us to examine how CYP2A5 (COH) activity changes
over a broad range of LPS doses. We tested the hypothesis that CYP2A5 activity in the liver
switches from down-regulation to up-regulation as the strength of LPS-elicited immune stimu-
lation increases from very low doses to high doses compatible with septic shock. We also inves-
tigated whether blockade of the LPS-triggered rise in pro-inflammatory cytokines and nitric
oxide (NO) blood levels would change the point on the LPS dose-response curve at which
down-regulation of CYP2A5 activity transitioned to up-regulation. The effect of the LPS doses
on the activities of two CYP enzymes that are known to be down-regulated by inflammatory
stimuli, CYP1A1/2 (EROD) and CYP2B9/10 (BROD), were determined for
comparative purposes.

Materials and Methods

Animals
Eight- to 10-week-old female DBA-2 mice bred by the Oswaldo Cruz Foundation were used.
All mice were housed on white wood shavings in standard plastic cages with stainless steel
cover lids. The animals were maintained under controlled environmental conditions (12 h
light/12 h dark cycle; room temperature, 23 ± 2°C; air relative humidity, approximately 70%)
with free access to a commercial rodent pellet diet (Nuvital CR1, Nuvital, Curitiba, PR, Brazil)
and filtered tap water. The study protocol was evaluated and approved by the Ethics Commit-
tee on the Use of Animals of the Oswaldo Cruz Foundation.

Chemicals
The following chemicals used in the experiments were obtained from Sigma Chemical Co.
(St. Louis, MO, USA): pentoxifylline (PTX, P1784), aminoguanidine (AG, A7009), protein
standard (P5619), Bradford reagent (B6916), resorufin (R3257), resorufin benzyl ether
(B1532), resorufin ethyl ether (E3763), umbelliferone (U7626), coumarin (C4261), nitrate re-
ductase (N7265), reduced nicotinamide adenine dinucleotide phosphate (β-NADPH, N1630),
sodium nitrate (S5506), N-(1-naphthyl)ethylenediamine (N9125), sulphanilamide (S9251),
nicotinamide adenine dinucleotide phosphate (β-NADP, N0505), glucose-6-phosphate
(G7250), glucose-6-phosphate dehydrogenase (G6378) and Escherichia coli LPS (type 0127:B8,
L3129). All other chemicals used were of high analytical grade.
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Treatment
Mice received i.p. injections of LPS or phosphate-buffered saline (PBS) only and were killed via
cervical dislocation 6, 12, or 24 h after treatment. Blood was taken from the retro-orbital sinus
immediately before cervical dislocation. Mice co-treated with PTX and LPS received two injec-
tions of PTX (100 mg/kg bw i.p.), one 30 min before and another 30 min after challenge with
LPS or vehicle (PBS). AG (50 or 100 mg/kg bw i.p.) was administered immediately after treat-
ment with LPS or PBS. PTX and AG were freshly prepared using sterile PBS solution. Animals
were always treated between noon and 2 p.m.

Preparation of liver microsomal fraction (LMF)
After euthanasia, the mouse livers were quickly removed, freed from fat and extra tissue,
weighed, and frozen in liquid nitrogen until further use. The LMF was prepared as described by
De-Oliveira et al. [29] with the substitution of Tris (100 mM) KCl (150 mM) buffer (pH 7.4) for
sucrose solution. LMF was aliquoted into cryotubes and stored in liquid nitrogen until further
use. The protein concentration of LMF was determined using the method of Bradford [30]
adapted to a multi-well plate spectrophotometer reader (Spectramax Plus, Molecular Devices,
USA).

Determination of liver monooxygenase activities
COH activity was assayed using the method of van Iersel et al. [31] with a few modifications:
50 mM Tris buffer, pH 7.4, 10 μM coumarin and 0.8 mg/mL protein were added to the micro-
tubes (final volume of 0.5 mL). After a 3-min pre-incubation period, the reaction was initiated by
adding an NADPH regenerating system (0.5 mM β-NADP, 10 mM glucose 6-phosphate,
0.5 U/mL glucose 6-phosphate dehydrogenase and 10 mMmagnesium chloride) for 10 min at
37°C with shaking. The reaction was stopped by adding 2 N HCl to the microtubes. Twenty min-
utes after the addition of chloroform, 500 μL of the reaction product, umbelliferone, was trans-
ferred to tubes containing 750 μL of a 1.6 M glycine-NaOH solution, pH 10.4, and left to stand
for 10 min. The upper phase was then transferred into quartz cuvettes, and umbelliferone levels
were measured using a spectrofluorometer (Shimadzu RF5301 PC). The equipment parameters
were set as follows: excitation at 355 nm, emission at 460 nm, and band slit width at 3 nm.

BROD and EROD were assayed in 96-well microplates using the method of Kennedy and
Jones [32] with modification. The reaction volume in the wells was 270 μL, in which the final
concentrations were 5 μM substrate, 0.25 mM β-NADP, 5 mM glucose 6-phosphate, 0.5 U/mL
glucose 6-phosphate dehydrogenase, and 2.5 mMmagnesium chloride. A constant amount of
microsomal protein (0.025 mg) was added to each well. After a 10-min reaction at 37°C in a
shaker water bath, acetonitrile was added to a final volume of 360 μL to stop the reaction. The
reaction product (resorufin) was measured using a fluorescence plate reader (Spectramax
GeminiXS, Molecular Devices, USA) with excitation and emission wavelengths set at 530 nm
and 590 nm, respectively.

Measurement of NO levels in blood serum
NO production was estimated by measuring the total nitrite in serum samples with the Griess
method, as described elsewhere [33]. Briefly, 40 μL of each serum sample was incubated over-
night at 37°C in a 96-well plate with an equal volume of a cocktail containing 0.5 M KH2PO4,
pH 7.5, milliQ water and nitrate reductase and NADPH to achieve concentrations of 0.4 U/mL
and 1 mg/mL, respectively, per well. Subsequently, 80 μL of the Griess reagent (a 1:1 mixture of
0.2% N-[1-naphthyl]ethylenediamine in milliQ water, 2% sulphanilamide in 5% phosphoric
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acid, 5% phosphoric acid, and milliQ water) were added. The absorbance was measured using
a multi-well plate spectrophotometer reader (Spectramax Plus, Molecular Devices, USA) at
540 nm, and the results were expressed as concentration (μM) of nitrite.

Measurement of cytokine levels in blood serum
Serum levels of tumour necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and inter-
leukin (IL)-2, IL-4, IL-6, IL-10, and IL-17A were determined using the BD Cytometric Bead
Array Mouse Th1/Th2 Cytokine Kit (BD Biosciences, San Jose, CA, USA) according to the
manufacturer’s instructions. Briefly, a 25-μL plasma sample was incubated for 2 h at room tem-
perature with 25 μL cytokine capture beads and 25 μL PE detection reagent. After incubation,
the samples were washed once with the washing buffer via centrifugation (200 × g, 5 min). The
supernatants were discarded, and the pelleted beads were resuspended in 300 μL of the washing
buffer for analysis on a FACSCalibur flow cytometer (Becton Dickinson, San Jose, CA, USA).
The plasmatic concentration of each cytokine (pg/mL) was determined based on the standard
curves for the recombinant cytokines provided in the kit.

Statistical analysis
Data were analysed with one-way analysis of variance followed either by the Dunnett’s or Bon-
ferroni’s post hoc test or by the Kruskal-Wallis test followed by the Mann-Whitney test when-
ever they did not fit a normal distribution. Statistical evaluation was performed using
GraphPad Prism version 5.01 for Windows (GraphPad Software, San Diego, California USA),
and differences were considered statistically significant at a value of P< 0.05.

Results

Modulation of CYP2A5 activity by LPS: dose-response relationship
As shown in Fig. 1, COH activity (indicating a reaction catalysed by CYP2A5) was decreased at
the lowest (2 mg/kg bw, 6 and 24 h post-treatment) but not the highest (5 and 20 mg/kg bw)
doses of LPS. LPS, on the other side, consistently depressed EROD (a marker for CYP1A/2) and
BROD (CYP2B9/10 marker) activities in the mouse liver 6, 12 and 24 h after treatment (Fig. 1).

The foregoing results prompted us to investigate whether down-regulation of CYP2A5 ac-
tivity by an inflammatory stimulus (e.g., LPS) was in fact a non-monotonic and non-linear
dose-response phenomenon. DBA-2 mice were treated with i.p. doses of LPS ranging from
0.025 to 20 mg/kg bw (i.e. 0, 0.025, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 and 20 mg/kg bw), and the
NO levels in the blood serum and the activity of CYP2A5 (COH) in the liver were determined
24 h after treatment. The results demonstrated that LPS depressed CYP2A5 activity at low
doses (0.025–2 mg/kg bw) but not at high doses (5–20 mg/kg bw). Moreover, LPS diminished
CYP2A5 activity at doses below those that elevated serum NO, whereas it did not depress
CYP2A5 activity at doses that markedly enhanced NO levels (see Fig. 2).

Data from these two experiments therefore indicated that, in contrast to the monotonic
down-regulation of CYP1A and CYP2B as the dose of LPS increases, CYP2A5 activity was de-
pressed by low LPS doses but remained unaltered after (high) doses that elicited marked rises
in NO serum levels.

LPS-mediated down-regulation of CYP2A5 activity after blockade of
inflammatory cytokine production with PTX
To verify whether the reversal of low-dose LPS-induced CYP2A5 down-regulation hinged on
the enhanced production of NO and pro-inflammatory cytokines, we co-administered LPS
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with PTX. PTX is a methylxanthine derivative and competitive non-selective phosphodiester-
ase inhibitor with peripheral vasodilator and anti-inflammatory properties. At the tested doses,
PTX did not affect the activities of CYP2A5.

As shown in Fig. 3, co-treatment with PTX (2 × 100 mg/kg bw i.p.) and LPS effectively at-
tenuated the marked rise in serum levels of TNF-α, IFN-γ, IL-6, and IL-17A elicited by LPS at
doses of�5 mg/kg bw. Conversely, this co-administration increased levels of IL-2, IL-4, and
IL-10 compared with those recorded after the administration of LPS alone (Fig. 4). Moreover,
co-treatment with PTX and LPS attenuated the sharp rise in NO serum levels induced by LPS
at doses of�5 mg/kg bw (Fig. 5).

Notwithstanding its anti-inflammatory effect, PTX did not decrease the magnitude of LPS-
induced depression of CYP1A1/2 (EROD) and CYP2B9/10 (BROD) activities in the mouse
liver (see Fig. 5). PTX-induced blockade of TNF-α, IFN-γ, IL-6, and IL-17A and NO overpro-
duction, however, extended the range of LPS doses that down-regulated the activity of
CYP2A5 (COH). LPS-induced depression of CYP2A5 activity also occurred at high doses
(5 and 10 mg/kg bw) when endotoxin-elicited NO and pro-inflammatory cytokine

Fig 1. Changes in nitric oxide (NO) concentration in the blood serum and cytochrome P450 (CYP) 2A5, CYP1A, and CYP2B activities in the liver
with time elapsed after lipopolysaccharide (LPS) injection. Nitrite concentration (μM), coumarin 7-hydroxylase (COH, CYP2A5), benzyloxy-resorufin-O-
debenzylase (BROD, CYP2B), and ethoxy-resorufin-O-deethylase (EROD, CYP1A) activities (pmol/[min·mg protein]) in the hepatic microsomal fraction of
liver samples from female DBA-2 mice injected intraperitoneally (i.p.) with phosphate-buffered saline (control) or LPS (2, 5 or 20 mg/kg) were determined 6,
12 or 24 h after treatment. N = 7 for all groups, except for the control (0 h; N = 20) and LPS (5 mg/kg) groups at 6 h (N = 15). Data represent means ± standard
error of the mean (SEM). An asterisk (*) indicates that the mean value differs (analysis of variance [ANOVA] and Dunnett’s multiple comparison test,
P< 0.05) from that of the control group.

doi:10.1371/journal.pone.0117842.g001
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Fig 2. Non-monotonic dose response of CYP2A5 activity in mouse livers after treatment with LPS. NO
concentration (μM) and COH activity (pmol/[min·mg protein]) in the hepatic microsomal fraction of liver
samples from female DBA-2 mice 24 h after treatment. Mice per LPS dose (mg/kg i.p.) group numbered as
follows: 0 (PBS), N = 26; 0.025, N = 3; 0.05, N = 8; 0.1, N = 6; 0.2, N = 6; 0.5, N = 8; 1, N = 6; 2, N = 7; 5, N = 7;
10, N = 10; and 20, N = 7. Data represent means ± SEM. An asterisk (*) indicates that the mean value differs
(ANOVA and Dunnett’s multiple comparison test, P< 0.05) from that of the control group.

doi:10.1371/journal.pone.0117842.g002
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overproduction was suppressed by co-treatment with PTX and LPS. At the highest dose tested
(20 mg/kg bw) a partial recovery of CYP2A5 activity toward constitutive levels was observed.
However, co-administration of PTX and LPS only partially antagonized the marked rise in NO
levels triggered by this very high dose of LPS. In other words, regarding CYP2A5 down-regula-
tion, PTX-induced suppression of LPS-elicited inflammatory response (i.e. rise in NO and pro-
inflammatory cytokine levels) apparently converted a non-monotonic dose-response curve
into a monotonic curve (up to 10 mg/kg bw; see Fig. 5).

Effect of AG inhibition of NO production on the down-regulation of
CYP2A5 by LPS
PTX suppresses NO generation by blocking the expression of inducible NO synthase (iNOS or
NOS2). To evaluate whether high-dose LPS-elicited NO overproduction plays a role in the
shift from low-dose down-regulation to high-dose up-regulation of CYP2A5, we used AG, a se-
lective inhibitor of iNOS activity. As shown in Fig. 6, administration of AG doses as high as 50
and 100 mg/kg bw i.p. did not alter the activities of CYP2A5, CYP1A1/2 or CYP2B9/10 but at-
tenuated the elevation of NO serum levels elicited by a high dose of LPS (10 mg/kg bw i.p.; see
Fig. 6). Attenuation of this LPS-induced rise in NO serum levels by AG did not change the
magnitude of CYP1A1/2 and CYP2B9 down-regulation. CYP2A5 activity (COH) in mice co-
treated with LPS (10 mg/kg bw i.p.) and AG (100 mg/kg bw i.p.), however, was half the activity

Fig 3. Levels of pro-inflammatory cytokines in the blood serum of mice treated with pentoxifylline (PTX) and LPS.Concentrations of tumour necrosis
factor alpha (TNF-α), interferon gamma (IFN- γ), interleukin (IL)-6, and IL-17A were measured in the serum of female DBA-2 mice 24 h after treatment.
Animals were treated with LPS (0, 0.05, 0.1, 0.5, 1, 5, 10 or 20 mg/kg i.p., N = 8 per dose group (except the 0 and 20 mg/kg LPS groups, N = 10) alone (●) or
PTX plus LPS (2 × 100 mg/kg i.p., 60 min apart, N = 8 per dose group) (▲). Data represent means ± SEM: a indicates that the mean differs from the control
value in the LPS-treated group; b indicates that the mean differs from the control value in the PTX+LPS-treated group; and the asterisk (*) indicates that the
mean value in the PTX+LPS-treated group differs from that in the LPS-treated group for the same dose (Kruskal-Wallis and Mann-Whitney tests, P< 0.05).

doi:10.1371/journal.pone.0117842.g003
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Fig 4. Concentrations of IL-2, IL-4, and IL-10 in the blood serum of mice treated with PTX and LPS.
Concentrations of cytokines were measured in the serum of female DBA-2 mice 24 h after treatment. Animals
were treated with LPS (0, 0.05, 0.1, 0.5, 1, 5, 10 or 20 mg/kg i.p., N = 8 per dose group [except the 0 and
20 mg/kg LPS groups, N = 10]) alone (●) or with PTX plus LPS (2 × 100 mg/kg i.p., 60 min apart, N = 8 per
LPS dose group) (▲). Data are shown as means ± SEM: a indicates that the mean differs from control value
in the LPS-treated group; b indicates that the mean differs from control value in the PTX+LPS-treated group;
and the asterisk (*) indicates that the mean value in the PTX+LPS-treated group differs from the mean value
in the LPS-treated group for the same dose (Kruskal-Wallis and Mann-Whitney tests, P< 0.05).

doi:10.1371/journal.pone.0117842.g004
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Fig 5. Activities (pmol/[min·mg protein]) of CYP2A5 (COH) and CYP1A and CYP2B (EROD and BROD,
respectively) in the liver of mice treated with PTX and LPS.Monooxygenase activities were measured in
the liver of female DBA-2 mice 24 h after treatment. Animals were treated with LPS (0, 0.05, 0.1, 0.5, 1, 5, 10
or 20 mg/kg, i.p., N = 10 per dose group) alone (●) or with PTX plus LPS (2 × 100 mg/kg i.p., 60 min apart,
N = 8 per LPS dose group) (▲). Data are shown as means ± SEM: a indicates that the mean differs from
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determined in animals treated with LPS alone (154.1 ± 30 versus 361.5 ± 38 pmol/[min·mg
protein]). The foregoing findings are consistent with the notion that down-regulation of liver
CYP activities after a challenge with LPS (or other inflammatory stimuli) does not require NO
overproduction. Moreover, the effects of post-translation iNOS inhibition with AG (see Fig. 6)
and those of pre-translational blockade of iNOS synthesis with PTX (see Fig. 5) are both con-
sistent with the hypothesis that augmented generation of NO contributes to the reversal of
CYP2A5 activity depression as LPS dose increases from low to high.

Discussion
Data from this study showed that LPS-induced down-regulation of CYP2A5 activity in the
mouse liver displays non-monotonic dose-response behaviour. Along this line, we demonstrat-
ed that low doses of LPS depressed CYP2A5 activity, whereas high doses did not change the ac-
tivity of this CYP isoform. Moreover, we found that the transition from downward regulation
of CYP2A5 activity to upward regulation along the tested dose range coincided with doses of
LPS that also enhanced the production of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-6
and IL-17A) and NO. The observation that high doses of LPS (5 and 10 mg/kg bw) also de-
pressed CYP2A5 activity when NO and pro-inflammatory cytokine overproduction was
blocked by co-treatment with PTX lent additional support to this interpretation.

Unlike CYP2A5, which was down-regulated by low doses but not by higher doses,
CYP1A1/2 (EROD) and CYP2B9/10 (BROD) were depressed by high doses of LPS only. The
inhibition of NO and pro-inflammatory cytokine production by LPS and PTX co-administra-
tion, however, did not change the magnitude of LPS-induced down-regulation of CYP1A1/2
and CYP2B9/10 activities. These findings are consistent with the notion that the down-regula-
tion of CYP activities does not hinge on the elevation of NO, TNF-α, IFN-γ, IL-6, or IL-17A
elicited by inflammatory stimuli (e.g., LPS).

As mentioned, CYP2A5 activity is induced in the murine liver during inflammatory and in-
fectious conditions under which most other CYP activities are down-regulated. The results of
this study showed that the same inflammatory stimulus (LPS) either down-regulated or up-reg-
ulated CYP2A5 hepatic activity depending on its strength (dose). Additionally, the results dem-
onstrated that discrepancy between CYP2A5 and CYP1A and CYP2B responses exists over a
broad range of doses of LPS—i.e., CYP2A5 activity is depressed at doses of LPS at which
CYP1A and CYP2B remained unaltered, whereas CYP2A5 activity was unaltered at doses that
markedly depressed the activities of the other two CYPs. The point on the dose-response curve
at which down-regulation of CYP2A5 turned into up-regulation toward constitutive levels cor-
responds to the dose that caused a marked rise in blood levels of pro-inflammatory cytokines
and NO. Moreover, co-treatment with LPS and PTX shifted both the reversal of the depression
of CYP2A5 activity and the sharp increase in pro-inflammatory cytokines and NO blood levels
to the right in the LPS dose-response curves.

Notably, PTX did not antagonize LPS-induced down-regulation of CYP1A and CYP2B, and
thus blockade of pro-inflammatory cytokines and NO overproduction by co-treatment with
LPS and PTX resulted in a considerable overlap between the LPS doses that down-regulated
CYP2A5 activity and those that depressed CYP1A and CYP2B activities in the mouse liver. In
other words, down-regulation of CYP2A5, CYP1A, and CYP2B activities in the hepatic tissue

control value in the LPS-treated group; b indicates that the mean differs from control value in the PTX+LPS-
treated group; and the asterisk (*) indicates that the mean value in the PTX+LPS-treated group differs from
the mean value in the LPS-treated group for the same dose (ANOVA and Dunnett’s multiple comparison test
followed by the Student’s t-test, P< 0.05).

doi:10.1371/journal.pone.0117842.g005
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after LPS challenge seemed not to depend on the endotoxin-elicited rise in cytokines or NO
blood levels. Attenuation of LPS-induced NO overproduction by co-treatment with the iNOS
blocker AG, however, seemed to decrease CYP2A5 activity compared to that recorded in the
absence of AG. This result suggests that the marked increase in NO levels (and not an upstream
event in the iNOS induction pathway) may have a role in mediating the transition from down-
regulation of CYP2A5 to up-regulation along the LPS dose-response curve. This finding is con-
sistent with the notion that NO-mediated oxidative stress (and Nrf2 activation) [34] plays a
role in the up-regulation of CYP2A5 in the murine liver.

The results of previous studies have shown that, although it does not increase NO blood
serum levels, malaria infection (Plasmodium berghei ANKA) induces CYP2A5 activity in the
livers of DBA-2 mice [15,16]. A possible explanation for the absence of an overt increase in NO
blood levels in infected animals is the quenching of NO by cell-free haemoglobin released by
malaria-induced haemolysis. The markedly enhanced expression of iNOS mRNA in the liver
of P. berghei-infected mice, however, suggests that NO levels are augmented in the vicinity of
hepatocytes. Increased lipid peroxidation (thiobarbituric acid-reactive substances) in the he-
patic tissue and elevated levels of aspartate aminotransferase and alanine aminotransferase in
the blood of infected mice were additional indications that malaria infection enhanced oxida-
tive stress and the degree of liver injury [16].

Fig 6. Effect of inducible NO synthase (iNOS) inhibition with aminoguanidine (AG) on LPS-induced changes in CYP2A5 (COH) and CYP1A and
CYP2B (EROD and BROD, respectively) activities (pmol/[min·mg protein]) in the mouse liver.NO levels were determined in the blood serum and
monooxygenase was measured in liver microsomes from female DBA-2 mice 24 h after treatment. Animals were treated with LPS (0 or 10 mg/kg i.p.) alone
or LPS (0 or 10 mg/kg i.p.) plus AG (0, 50 or 100 mg/kg i.p.). The mice per group numbered as follows: 0 (PBS alone), N = 7; LPS alone, N = 9; a50 (AG,
50 mg/kg plus PBS), N = 6; a100 (AG, 100 mg/kg plus PBS), N = 6; a50L (AG, 50 mg/kg plus LPS), N = 6; and a100L (AG, 100 mg/kg plus LPS), N = 6. Data
are shown as means ± SEM. a and b above the bars indicate that the mean values differ (ANOVA and Bonferroni’s multiple comparison test, P< 0.05) from
that of the group treated with PBS alone (a), LPS alone (b), or both.

doi:10.1371/journal.pone.0117842.g006
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Conclusions
This study revealed that liver CYP2A5 activity exhibits a non-monotonic dose-response relation-
ship when mice are challenged with LPS. CYP2A5 is down-regulated by LPS doses that do not
alter CYP1A and CYP2B activities and are insufficient to elicit any increase in pro-inflammatory
cytokines and NO blood levels. Depression of CYP2A5 activity, however, is attenuated and even-
tually reversed at higher doses of LPS that down-regulate CYP1A and CYP2B activities and raise
blood pro-inflammatory cytokine and NO levels. When overproduction of pro-inflammatory cy-
tokines and NO was blocked by PTX treatment, the activities of CYP1A, CYP2B, and CYP2A5
were all down-regulated by high doses of LPS. This finding suggests that the overproduction of
pro-inflammatory cytokines or NO is not required for the down-regulation of CYP1A, CYP2B,
and CYP2A5 activities. The overproduction of cytokines and NO elicited by LPS, however, is as-
sociated with the up-regulation of CYP2A5 activity toward constitutive or even supra-
constitutive levels. Nonetheless, when mice were treated with AG, a selective inhibitor of iNOS,
CYP2A5 activity was depressed by a high dose of LPS as well. This finding suggests that NO
plays a role in the reversal of low-dose LPS-induced down-regulation of CYP2A5 activity when
mice are challenged with higher doses of LPS. High levels of NO in the hepatic tissue are associat-
ed with enhanced oxidative stress and Nrf2 activation, and thus these findings seem to support
the notion that oxidative stress up-regulates CYP2A5 expression.

A possible explanation for the two opposite and dose-dependent effects of LPS on CYP2A5
activity is that overproduction of NO (due to iNOS induction at high doses of LPS) leads to ER
stress that in turn enhances CYP2A5 gene transcription. Enhanced ER-stress has been postu-
lated to mediate the induction of CYP2A5 by pyrazole and inflammatory conditions
[24,25,35,36]. In a similar manner, NO has opposite concentration-dependent effects on cell
apoptosis, i.e., low NO concentrations protect from apoptosis whereas excessive NO leads to
ER-stress and apoptosis. It is generally though that the induction of CCAAT-enhancer-binding
protein homologous protein (CHOP) transcription factor by ER-stress leads to NO-mediated
cell apoptosis [37,38]. In principle, the excess of NO may also act directly on CYP2A5 protein
(at a posttranslational level). Post-translational protein modifications such as nitration (e.g.,
adding a nitro group to one of the two ortho-carbons of the tyrosine residue aromatic ring)
and S-nitrosylation (binding an NO group to a protein cysteine residue) caused by NO and re-
active nitrogen species may result in effects such as loss or gain in protein function [34,39,40].
Further studies including in vitro experiments (e.g. with hepatic cell lines) are necessary to
shed light on the mode by which LPS and excess of NO modulate CYP2A5 activity.

In conclusion, the results of this study suggest that, similar to most CYP isoforms, CYP2A5
is down-regulated by inflammatory stimuli via a poorly understood link between inflamma-
tion-signalling pathways and CYP gene transcription regulation. In the case of CYP2A5, how-
ever, up-regulation superimposes the inflammation-caused depression of enzyme activity
when inflammatory stimuli are accompanied by overproduction of NO and high blood levels
of pro-inflammatory cytokines.
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