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Abstract

Previous neuroscience studies have provided important insights into the neural processing of third-party social interaction recognition.
Unfortunately, however, the methods they used are limited by a high susceptibility to noise. Electroencephalogram (EEG) frequency
tagging is a promising technique to overcome this limitation, as it is known for its high signal-to-noise ratio. So far, EEG frequency
tagging has mainly been used with simplistic stimuli (e.g. faces), but more complex stimuli are needed to study social interaction
recognition. It therefore remains unknownwhether this technique could be exploited to study third-party social interaction recognition.
To address this question, we first created and validated a wide variety of stimuli that depict social scenes with and without social
interaction, after which we used these stimuli in an EEG frequency tagging experiment. As hypothesized, we found enhanced neural
responses to social scenes with social interaction compared to social scenes without social interaction. This effect appeared laterally
at occipitoparietal electrodes and strongest over the right hemisphere. Hence, we find that EEG frequency tagging can measure the
process of inferring social interaction from varying contextual information. EEG frequency tagging is particularly valuable for research
into populations that require a high signal-to-noise ratio like infants, young children and clinical populations.
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Introduction
Recognizing third-party social interactions is essential to navigate
ourselves through the social world. This ability emerges early in
development (Hamlin, 2013) and is shared with other primates
(Sliwa and Freiwald, 2017). We use this ability to form impressions
of others. When observing others interact, we are for instance
able to tell with fair accuracy whether people are co-workers,
friends or lovers (Costanzo and Archer, 1989), teasing or fight-
ing (Sinke et al., 2010; Cowell and Decety, 2015) and what their
social status is (Mast and Hall, 2004). Recognizing third-party
social interactions may also guide our own actions. For exam-
ple, people tend to avoid passing through interacting people or
social units (Efran and Cheyne, 1973; Knowles, 1973, 2015), and
in accord with the impressions formed from third-party social
interactions, we may in turn decide to avoid or approach some-
one (Quadflieg and Penton-Voak, 2017) or change our attitudes
towards them (Christ et al., 2014). Furthermore, interacting dyads
receive preferential access to visual awareness (Su et al., 2016),
and dyad features as well as features of the individuals that make
up a dyad are remembered better when the individuals interact

(Vestner et al., 2019, but also see 2020 for an alternative expla-
nation), further stressing the importance of third-party social

interaction recognition.
Only recently, studies have started to investigate third-party

social interaction recognition using neuroscientific methods to
reveal the brain regions involved in, and the time course of, rec-
ognizing social interactions. Arioli and Canessa (2019) reported

meta-analytic functional magnetic resonance imaging (fMRI) evi-

dence for a ‘social interaction network’ including joint involve-
ment of the action observation network for representing action
meaning and the mentalizing network for representing others’
mental states, possibly in conjunction with an amygdala network
for the evaluation of affective valence. Regarding the time course,

Isik et al. (2020) usedmagnetoencephalography (MEG) decoding to

investigate whether social interaction recognition is a primarily
rapid feedforward process, like object recognition (about 150ms),
or a slower post-perceptual inference that requires iterative top-
down computations. They found that social interaction recogni-
tion could only be read out from subjects’ MEG data 300ms after
image onset, well after feedforward visual processes. Their results
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suggest that even though social interaction recognition is spon-
taneous, it relies on slower post-perceptual inferences. Further-
more, event-related potential (ERP) research has focused on the
differentiation of different types of social interaction and found
distinct neural responses for, for instance, harm vs help in chil-
dren (Cowell and Decety, 2015) and intentional vs unintentional
harm in adults (Decety and Cacioppo, 2012).

In sum, prior neuroscience research has already provided valu-
able information on the processing of third-party social interac-
tion recognition. Unfortunately, however, the methods used have
an important limitation, that is, they are highly susceptible to
noise (i.e. external noise from electronic equipment as well as
movement and ocular artefacts) and therefore do not offer a high
signal-to-noise ratio (SNR). Hence, long test sessions and large
samples are required to somewhat mitigate this limitation and
acquire robust data, which is not always ideal or feasible. This
limitation and the accompanying requirements also make it par-
ticularly difficult to test certain populations like infants, young
children or clinical populations. To overcome these challenges,
here, we investigated whether a promising novel technique, elec-
troencephalogram (EEG) frequency tagging, known for its high
SNR (Norcia et al., 2015), can be used tomeasure social interaction
recognition implicitly.

In short, EEG frequency tagging is a method based on the
principle that stimuli presented periodically induce ‘steady-state
visual evoked potentials’, also referred to as ‘cyclical electro-
physiological responses’ (Retter and Rossion, 2016), in the EEG
signal that are coupled to the stimuli (Norcia et al., 2015). For
instance, stimuli presented two times per second (2Hz) will
induce a response in the EEG signal that is detectable in the
frequency domain as a high amplitude ‘peak’ at exactly 2Hz
and at harmonic frequencies that are integer multiples of this
fundamental frequency (4Hz, 6Hz, etc.; Regan, 1966). The key
advantage of this approach over traditional ERP analyses is that
brain responses can be identified objectively at a narrow, pre-
defined frequency. Importantly, as a result, noise from other
frequencies does not contaminate the response of interest, lead-
ing to a very high SNR. Furthermore, frequency tagging also does
not require an explicit behavioural task or task comprehension,
which makes this technique particularly interesting to use in
young populations.

Although EEG frequency tagging was originally used to inves-
tigate low-level processes such as luminance information (e.g.
Kamp et al., 1960), it has recently also been used to study more
complex cognitive processes (Norcia et al., 2015), such as face
processing (e.g. Alonso-Prieto et al., 2013) and perspective taking
(Beck et al., 2018). Still, the stimulus complexity in these stud-
ies has been rather limited. More specifically, existing research
has mainly used stimuli depicting objects/tools or (parts of) sin-
gle agents. In contrast, research on social interaction processing
requires stimuli that depict at least two agents. Adibpour et al.
(2021) addressed this issue in their frequency tagging study by
comparing facing and non-facing dyads. The results revealed
stronger responses for facing agents than for non-facing agents.
However, while two persons oriented towards each other may
be a cue for social interaction, not all interactions involve fac-
ing and not all facing individuals interact. Indeed, recent work
suggests that the facilitated detection of facing dyads may even
reflect a general attentional mechanism not specific to social
interaction (Vestner et al., 2022). Instead, social interaction is
often inferred from the context. Although Adibpour et al. (2021)
showed two agents, their stimuli were devoid of any contextual
information and, therefore, did not resemble the complexity of

what we encounter in daily life. Hence, it remains unclear if fre-
quency tagging can be used to measure the process of detecting
social interaction from contextual information in variable situa-
tions, which, as mentioned above, is thought to require iterative
top-down computations (Isik et al., 2020).

In the current study, we provide a direct test of whether EEG
frequency tagging can be used tomeasure the process of inferring
social interaction from context by measuring neural responses to
rich social scenes depicting either social interaction or not. To
this end, we first created a database of stimuli with and with-
out social interaction, based on the PiSCES database (Teh et al.,
2018). In study 1, we validated these stimuli and then used them
in an EEG frequency tagging experiment in study 2. We had the
following hypothesis: the neural response to scenes depicting
interaction will be stronger than the neural response to scenes
without interaction.

Validation study
Methods
Participants
Seventy participants were recruited using Prolific (www.
prolific.co, accessed January 2020). The sample size was based on
the sample size of the PiSCES database validation study (Teh et al.,
2018). We restricted submission toWest-European residents1 aged
18–35 years without an autism spectrum disorder (ASD) diagno-
sis. The latter restriction was included as ASD is characterized by
social interaction difficulties (American Psychiatric Association,
2013). The average age of our sample was 28years old (M=27.97,
s.d.=4.81), and our sample included 46 females (65%). The aver-
age years of education starting from year 1 (learning to read)
was 16 years (M=16.17, s.d.=4.23), and the majority of par-
ticipants were white (nWhite =58, nHispanic or Latino =3, nBlack =3,
nAsian/ Pacific islander =6). Before the start of the survey, participants
signed an online informed consent, after which they completed
the online survey. The whole survey lasted about 60min. Partici-
pants were reimbursed for their time. This study was conducted
according to the ethical rules presented in the General Ethical
Protocol of the Faculty of Psychology and Educational Sciences
of Ghent University.

Stimuli
We aimed for a balance between experimental control and eco-
logical validity in the stimuli. The database of images we created
is based on the PiSCES database (‘pictures with social context
and emotional scenes’; Teh et al., 2018). The PiSCES database
includes 203 black-and-white drawings, of which 100 depict mul-
tiple agents in interaction and 103 images depict a single agent.
All images are normed on perceived valence, intensity and social
engagement. Furthermore, all images include a situational con-
text to resemble the complexity of real-life people and objects
but are free from distractors that might influence interpretation
(e.g. shadows and patterns on clothing).

In order for the control stimuli to meet our requirements
(i.e. a set of images that depict two agents who are not in social
interaction with each other), we merged (i.e. cross-paired) agents
from the original 103 PiSCES single-agent images into one image.
We crossed-paired only within valence and managed to create

1 Defined as countries that are in the Western European and Other States
Group, but not including Israel, Turkey, Australia, New Zealand, Canada and
the USA.
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47 control images. This set of control stimuli included 14 nega-
tively valenced, 19 neutral valenced and 14 positively valenced
images. For the social interaction stimuli, we erased agents from
images that depicted more than two agents to match the num-
ber of agents of the control stimuli. One image was excluded
because erasing an agent was not possible. Two other images
were excluded because they depicted only one agent in interac-
tion over the phone. We created five new interaction images from
the erased agents, again, cross-paring only within valence, result-
ing in a total of 102 social interaction images. The final set of
social interaction stimuli included 28 negatively valenced, 30 neu-
tral valenced and 44 positively valenced images. Altogether, our
stimuli database included 149 (47 control and 102 social interac-
tion) images depicting two agents performing an activity and/or
embedded in a range of contextual settings (e.g. supermarket,
school and restaurant). See Figure 2 for one example image of
each category (control and social interaction). Photoshop was
used to adjust and cross-pair the images (Adobe Photoshop CS5).

Norming task
The survey was set up using LimeSurvey (LimeSurvey Project
Team, 2012). To collect norms, we asked participants to rate
all images on four rating scales querying about the valence,
intensity, social engagement and complexity of the image. First,
participants judged the emotional valence experienced by the
persons in the image (from 1= strongly negative to 7= strongly
positive). Second, participants judged the intensity of feelings
experienced by the persons in the image (i.e. perceived arousal;
from 1= extremely low to 7= extremely high). Third, partic-
ipants judged the degree of social interaction or engagement
depicted in the image (from 1= completely no interaction or
engagement with the other person to 7= extremely high degree
of interaction or engagement with the other person). Fourth, par-
ticipants rated the complexity of the image (from 1= extremely
low to 7= extremely high). Additionally, we gave participants the
option to comment on the image in case they noticed something
unclear/strange/unusual in the image. All participants were pre-
sented with all 149 images in random order, with the order of the
questions fixed.

The survey startedwith demographic questions (age, sex, years
of education and ethnicity), the autism-spectrum quotient (AQ)-
10 (Allison et al., 2012), and three questions from each of two
scales: the free will inventory (Nadelhoffer et al., 2014) and the
mentalization scale (Dimitrijević et al., 2018). The questionnaires
were included for the purpose of another study and are therefore
not further discussed here.

Results
Analyses were conducted following the analysis procedure of
Teh et al. (2018). To detect outliers, for every scale and every
participant, we correlated the participant’s image ratings with
the mean image ratings across all other participants. From
the set of obtained correlation coefficients, we then identi-
fied the outliers per scale across participants (i.e. outside 1.5
times the interquartile range above/below the upper/lower quar-
tile). We removed nine outlying participants for the valence
scale, three for the intensity scale and eight for the social
scale. The complexity scale had no outliers, but one partici-
pant was excluded as the participants’ standard deviation for
this scale was zero. The mean correlation over images between
each participant’s rating and the overall mean rating of all partic-
ipants minus the participant themselves for the respective scales

were as follows: Mcorrelation valence =0.89, Mcorrelation intensity =0.68,
Mcorrelation social =0.87, Mcorrelation complexity =0.22. The low correla-
tion for the complexity scale likely reflects low validity due to
the question being ambiguous. Therefore, we excluded this scale
from further analyses.

To measure the inter-rater agreement, intra-class correla-
tions (ICCs) were conducted for each scale using a multiple-
raters, consistency, two-way random-effects model. The ICCs
were excellent for all three scales: ICCvalence =1, ICCintensity =0.98
and ICCsocial =0.99, indicating a high degree of agreement among
raters on the valence, intensity and social engagement depicted
on the images. The distributions of the image ratings for valence
(M=4.25, s.d.=1.46), intensity (M=4.43, s.d.=1.04) and social
(M=4.05, s.d.=1.78) are shown in Figure 1.

See Supplementary Material for a comparison of themean rat-
ings of the current study and the original study by Teh et al. (2018).
The Supplementary Material also includes additional analyses on
the relationships between emotional valence, intensity and social
interaction similar to the original study by Teh et al. (2018).

Frequency tagging study
Using the validated stimuli from study 1, in study 2 we investi-
gated whether EEG frequency tagging can be used to measure the
process of inferring social interactions from context by measur-
ing neural responses to rich social scenes depicting either social
interaction or not. We had the following hypothesis: the neu-
ral response to scenes depicting interaction will be stronger than
the neural response to scenes without interaction. We did not
have a hypothesis concerning the topographical distribution of
the effect.

In addition to this confirmatory research question, we also
explored the relationship between ASD symptomatology and
social interaction processing. To explain the social interaction dif-
ficulties associated with ASD (American Psychiatric Association,
2013), much ASD research has been conducted on the neural cor-
relates of social stimulus (e.g. face) processing. However, less
is known about the neural correlates of social interaction pro-
cessing. In line with a behavioural study that found a negative
correlation between the ability to recognize meaningful human
interactions and ASD symptomatology (Van Boxtel et al., 2017),
we expected social interaction recognition to correlate negatively
with ASD symptomatology.

Methods
Participants
This study had the following inclusion criteria: normal or
corrected-to-normal vision, no psychiatric or neurological condi-
tion and sufficient knowledge of the Dutch language. To deter-
mine the sample size, we conducted an a priori power analysis
with a significance level of 0.05, a power level of 95% and an
effect size of dz =0.80, chosen based on the fact that previous
frequency tagging studies have reported large effects due to the
high SNR (e.g. Norcia et al., 2015). This power analysis indicated
that we needed at least 23 participants to achieve our goal. How-
ever, we decided to test five more participants to ensure a large
enough sample even after the possible exclusion of bad-quality
data. Eventually, no data had to be excluded based on data
quality. Therefore, our final sample contained 28 participants.
Note that of those 28 participants, one participant was excluded
and replaced with another participant because it was revealed
after the test session that the participant had an attention deficit
hyperactive disorder (ADHD) diagnosis, not meeting the inclusion
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Fig. 1. Distribution of picture ratings with the mean dashed blue line for valence, intensity and social interaction.

Table 1. Participant characteristics

M (s.d.) Range

Age 22.43 (1.77) 20–29
Gender (% female) 50% n/a
Years of education 15.89 (1.83) 10–19
Ethnicity (% White) 92.9% n/a

Note. N=28; ethnicity: one participant was Asian, and one participant was
half White, half South-African.

criteria. See Table 1 for participant characteristics. Participants
were reimbursed for their time. This study was approved by
the Research Ethics Committee of the Faculty of Psychology and
Educational Sciences (2020/112).

Frequency tagging task and procedure
Participants were seated in a Faraday cage of ∼80–100 cm from a
24-inch computer monitor with a refresh rate 60Hz. Before the
start of the experiment, all participants signed informed consent
and completed a questionnaire.

Subsequently, participants completed the frequency tagging
task programmed in PsychoPy3 (Peirce et al., 2019). Stimuli were
presented by sinusoidal contrast modulation at a frequency of
1.66Hz (600ms per stimulus). The task included four types of
stimuli: images that depicted social interaction, images that
depicted no social interaction and the scrambled versions of
both image types. Scrambled stimuli were included to control for
potential low-level differences between the two image types. The
four stimulus types were presented in separate blocks, and each
block was presented four times resulting in 16 blocks in total.
A block consisted of 110 stimuli, and a single block lasted 66 s.
A block started and endedwith a 3 s fade-in (0–100%) and 3 s fade-
out (100–0%) period to avoid abrupt eye movements and blinks
due to the sudden (dis)appearance of stimuli.

The task included no practice block, but participants were
told that they would see images of social interaction, no social
interaction and scrambled images. They also saw two exam-
ple images from the social interaction and no social interaction
categories. These example images were not included as stimuli
in the actual task. We decided to be open about the included
stimulus categories because with block designs, participants
often become aware of the categories during the task regardless.

By giving participants this information upfront, we reduce vari-
ability regarding the time point at which participants recognized
the stimulus categories. Participants were instructed to fixate on
a black cross positioned in the centre of the stimuli while also
continuously monitoring the presented images. To ensure a con-
stant level of attention throughout the task and across conditions,
participants had to press the spacebar as fast and accurately
as possible when they detected (400ms) a colour change of the
fixation cross (which randomly occurred three to six times per
block). Detection was high overall (97% on average), with no dif-
ference between the interaction and no interaction conditions
when presented normal or scrambled (P=0.841, P=0.481). The
participants were further informed that they would be presented
with eight unscrambled images after the task and would have
to indicate which four images had appeared during the task. On
average, participants recognized the same number of images for
both categories, namely 1.27 of two images. The sole aim of these
instructions (i.e. identification of fixation cross colour change and
identification of the shown images) was to encourage participants
to pay attention to the presented stimuli. The total task dura-
tion was ∼18min, after which they completed two additional
frequency tagging tasks, addressing a different research question,
not further described here. The whole experiment, including the
two additional frequency tagging tasks, lasted around 1h.

After the experiment, participants filled in a questionnaire,
namely, the Dutch version of the AQ (Baron-Cohen et al., 2001;
Dutch version: Hoekstra et al., 2010). The AQ was administered to
explore the relationship between ASD symptomatology and social
interaction processing, in addition to our confirmatory research
question. The AQ contains 50 items. Items are rated on a 4-point
Likert scale ranging from 1 (‘definitely agree’) to 4 (‘definitely dis-
agree’). Reverse items are included in such a way that agreement
suggests the presence of an autistic-like trait in approximately
half of the items. Each of the items was later recoded to either
0 or 1 (total score ranging from 0 to 50; Baron-Cohen et al., 2001),
with higher scores indicating more autistic-like traits. The inter-
nal consistency of the AQ in the current sample was acceptable,
α=0.71.

Stimuli
Stimuli were selected from the adjusted PiSCES database (valida-
tion study) and included 36 images with a mean rating of three
or lower on the social interaction scale for the no interaction
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Fig. 2. One example image for each stimuli type (i.e. social interaction normal, no social interaction normal and the corresponding scrambled
versions).

stimulus category (M=1.89, s.d.=0.36; range=1.32–2.66) and 36
interaction images with a mean rating of five or higher for the
interaction stimulus category (M=5.74, s.d.=0.37; range=5.05–
6.62). The stimuli from these two categories were balanced for
valence, t(69.71)=−1.01, P=0.315, and intensity, t(63.47)=−1.57,
P=0.121. The corresponding control stimuli were created by
scrambling the images into a 10×10 grid. Stimuli were presented
at the centre of the screen and were drawn randomly from their
respective categories, never repeating the same stimulus back-to-
back. See Figure 2 for an example stimulus of each category. The
stimuli can be found on the Open Science Framework (https://
osf.io/4r7yp/?view_only=44ee621078ea46f3893e46f9e13412c5).

EEG recording and pre-processing
EEG was continuously recorded from 64 scalp sites using an
ActiCHamp amplifier and BrainVisionRecorder software (version
1.21.0402, Brain Products, Gilching, Germany). Ag/AgCI (active)
electrodes were mounted in an elastic cap (ActiCAP, Munich, Ger-
many). Electrode positions were based on the 10% system with
the exception of two electrodes (TP9 and TP10) that were placed at
OI1h and OI2h according to the 5% system, as wemainly expected
posterior occipital activation. During EEG recording, all chan-
nels were referenced to Fz, and the sampling rate was 1000Hz.
Horizontal electro-oculogram (EOG) was recorded with FT9 and
FT10 electrodes embedded in the cap. Vertical EOG was recorded
with additional bipolar AG/AgCI sintered ring electrodes placed
above and below the left eye. Off-line processing of the EEG signal
was done using Letswave 6 (www.letswave.org). First, a fourth-
order Butterworth band-pass filter (0.1–100Hz) was applied, after
which we segmented the data to obtain epochs extending from 2 s
before to 68 s after the stimulus onset. Next, ocular artefacts were
removed with an independent component analysis (ICA) on the
merged segmented data using the Runica algorithm and a square
matrix. For each participant, the first 10 independent components
(ICs) were inspected, and the IC related to eye blinks was removed
manually. After ICA, we interpolated noisy or faulty electrodes.
More specifically, we interpolated one electrode for seven partic-
ipants using data from three (or two in case of OI1/2h electrodes)

neighbouring electrodes. We then re-referenced the signal to an
average reference, before cropping the segments into 60 s epochs
(3–63 s), cutting out the fade in and fade out periods. Finally, tri-
als per condition were averaged, and subsequently, a fast Fourier
transformwas applied to the data of each electrode to normalized
(divided by N/2) amplitudes (µV) in the frequency domain.

Statistical analysis approach
The statistical data-analysis approach of this study was pre-
registered (https://aspredicted.org/si3s4.pdf), while data col-
lection was ongoing but before pre-processing and analy-
ses of the data. The data and analyses can be found on
the Open Science Framework (https://osf.io/4r7yp/?view_only=
44ee621078ea46f3893e46f9e13412c5). For the data analyses, we
computed the signal to noise-subtracted amplitudes (SNS) at each
frequency bin by subtracting the average voltage amplitude of
the 20 neighbouring bins (10 on each side, excluding the imme-
diately adjacent bin; Norcia et al., 2015) from the amplitude of
the frequencies of interest. Based on a visual inspection of pilot
data (see Supplementary Figure 2 for a visualization of the SNR
pilot data across all conditions and over electrodes of interest)
not included in this study, and as preregistered, the SNS was
calculated as the sum of the first eight harmonics (i.e. the fre-
quencies of interest: 1.66, 3.33, 5.00, 6.66, 8.33, 10.00, 11.66 and
13.33Hz; Retter et al., 2021). To ensure an unbiased (indepen-
dent of condition effects or hypotheses) selection of electrodes,
regions of interest (ROIs) were chosen based on visual inspec-
tion of the scalp topography across participants and conditions
(collapsed localizer approach, Luck and Gaspelin, 2017, see Sup-
plementary Figure 3 for the collapsed scalp topography), which
revealed lateral posterior activity with a maximum at PO8. The
right posterior cluster included PO8 and two neighbouring elec-
trodes (PO4 and O2), and the left posterior cluster included the
corresponding electrodes on the left hemisphere (PO7, PO3 and
O1). See Figure 3 for a visualization of the SNR of the included har-
monics across all conditions and over electrodes of interest. The
SNR computation was identical to the SNS computation except
that division was used instead of subtraction. On the SNS data,

https://osf.io/4r7yp/?view_only=44ee621078ea46f3893e46f9e13412c5
https://osf.io/4r7yp/?view_only=44ee621078ea46f3893e46f9e13412c5
https://www.letswave.org
https://aspredicted.org/si3s4.pdf
https://osf.io/4r7yp/?view_only=44ee621078ea46f3893e46f9e13412c5
https://osf.io/4r7yp/?view_only=44ee621078ea46f3893e46f9e13412c5
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Fig. 3. SNR across all conditions and over electrodes of interest. See
Supplementary Figure 4 for SNR plots per condition.

we conducted a 2×2×2 repeated measures analysis of variance
(ANOVA) with laterality (left and right), stimulus type (scrambled
and normal) and interaction type (no interaction and interaction)
as within-subject factors. Although not specified in our preregis-
tration, we included laterality as an additional factor, given that
visual inspection of our collapsed localizer revealed activity to
be lateralized. Significant interactions were followed-up by two-
tailed paired-sample t-tests. For the t-test, P-values as well as
Bayes factors (BFs) are reported. BFs were calculated with a non-
informative Jeffreys prior and a Cauchy prior on the standardized
effect size (Rouder et al., 2012). As we expected large effect sizes,
we used a wide prior (r=1).

As preregistered, we also explored the relationship between
ASD symptomatology and social interaction processing. For this,
we performed a Spearman rho correlation between AQ total
scores and the Stimulus Type × Interaction Type interaction
effect [(normal interaction− scrambled interaction) − (normal no
interaction− scrambled no interaction)]. Here too, we reported
P-values as well as BFs, but for these correlations, we used default
priors.

Results
The repeated measures ANOVA revealed significant main effects
of all three factors. The main effect of Laterality showed a
stronger response in the right cluster (M=4.71, s.d.=1.77) than
in the left cluster (M=4.08, s.d.=1.97), F(1, 27)=7.08, P=0.013,
ηp

2 =0.21. Themain effect of Stimulus Type was due to a stronger
response for the normal stimuli (M=4.78, s.d.=2.12) than for the
scrambled stimuli (M=4.01, s.d.=1.47), F(1, 27)=19.73, P<0.001,
ηp

2 =0.42. Finally, the main effect of Interaction Type indicated a
stronger response for the interaction stimuli (M=4.49, s.d.=1.80)
than for the no-interaction stimuli (M=4.30, s.d.=1.75), F(1,
27)=11.45, P=0.002, ηp

2 =0.30. The repeated measures ANOVA
further revealed a significant Laterality × Interaction Type inter-
action effect, F(1, 27)=10.27, P=0.003, ηp

2 =0.28, and in line
with our hypothesis, a Stimulus Type × Interaction Type inter-
action effect, F(1, 27)=27.67, P<0.001, ηp

2 =0.51, as well as a
Laterality × Stimulus Type × Interaction Type interaction effect,
F(1, 27)=13.04, P=0.001, ηp

2 =0.33. There was no interaction
between Laterality and Stimulus Type, P=219.

To follow-up on the Laterality × Stimulus Type × Interac-
tion Type interaction effect, we looked at the Stimulus Type ×
Interaction Type interaction effect, our effect of interest, sep-
arately for the left and right cluster. The left cluster Stimulus
Type × Interaction Type interaction, F(1, 27)=9.91, P=0.004,
ηp

2 =0.27, revealed a stronger response for interacting than
for non-interacting stimuli when they were presented normally,
t(27)=2.62, P=0.014, BF10 =2.87, dz =0.49, but not when they

were scrambled, t(27)=−1.26, P=0.22, BF10 =0.31, dz =0.24. The
right cluster Stimulus Type × Interaction Type interaction, F(1,
27)=29.77, P<0.001, ηp

2 =0.52, revealed a similar effect, with a
stronger response for interacting than for non-interacting stim-
uli when they were presented normally, t(27)=6.19, P<0.001,
BF10 =15321.37, dz =1.17, but not when they were scrambled,
t(27)=−1.02, P=0.318, BF10 =0.24, dz =0.19. However, the Inter-
action Type effect for normal stimuli was stronger in the right
cluster than in the left cluster, t(27)=4.17, P<0.001, BF10 =99.03,
dz =0.40. See Figure 4 for a bar plot of the SNS per condition and
for the two regions separately, Figure 5 for the topographies of all
stimulus conditions and Supplementary Table 1 for means and
standard deviations of all stimulus conditions for the two regions
separately.

In addition to these confirmatory analyses, we also ran an
explorative analysis investigating whether social interaction pro-
cessing, quantified as the Stimulus Type × Interaction Type
interaction effect [(normal interaction− scrambled interaction)
− (normal no interaction− scrambled no interaction)], correlates
with ASD symptomatology, quantified as the AQ total score. This
revealed anecdotal evidence for a positive correlation between the
right cluster Stimulus Type × Interaction Type interaction effect
and AQ total scores (left cluster: rs =0.17, P=0.37, BF10 =0.67;
right cluster: rs =0.47, P=0.011, BF10 =1.57).

Discussion
Previous neuroscience studies have already provided important
insights into the neural processing of third-party social inter-
actions (Decety and Cacioppo, 2012; Cowell and Decety, 2015;
Arioli and Canessa, 2019; Isik et al., 2020). However, these stud-
ies all used methods that are highly susceptible to noise (e.g.
fMRI, MEG and ERP) and therefore require large samples and long
experiments. This is not always feasible and poses an impor-
tant challenge for researchers studying infant, children or clinical
samples. A possible solution to this problem could be to use EEG
frequency tagging, as this technique is known to have a very high
SNR (Norcia et al., 2015), but EEG frequency tagging has so far
only been used to study relatively basic social processes such as
face perception (Alonso-Prieto et al., 2013) and distinguishing fac-
ing from non-facing dyads (Adibpour et al., 2021). Therefore, in
the current study, we investigated whether it can also be used
to investigate the more complex social process of inferring social
interaction from contextual information (Isik et al., 2017).

To this end, we first created and validated a database of stimuli
that depict two agents either in interaction or not. As we sought to
capture social interaction recognition from contextual informa-
tion and not from a single social cue such as facing or not facing
(Adibpour et al., 2021), we used awide variety of social stimuli that
differed greatly from each other in terms of agent configuration
(e.g. facing or not facing), agent activity (e.g. talking or paying)
and/or contextual background (e.g. supermarket and school). As
such, the only systematic difference between the interaction and
no-interaction stimuli was the absence or presence of interac-
tion. Additionally, the wide variety of stimuli increased ecological
validity because the rich social scenes resemble the complexity
of what we encounter in daily life. This validated database was
subsequently used in an EEG frequency tagging experiment. As
hypothesized, and in line with previous findings that highlight
the saliency of third-party social interaction (Su et al., 2016), we
found enhanced neural responses to social scenes with social
interaction compared to social scenes without social interaction.
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Fig. 4. SNS per condition and for the two regions separately. Error bars represent SEMs corrected for within-subject designs (Morey, 2008).

Fig. 5. Topographies per condition. Topographies are scaled from 0 to
the maximum amplitude across the four conditions (i.e. 6.53µV).
Included electrodes are indicated in white.

This effect appeared laterally at occipitoparietal electrodes and
strongest over the right hemisphere.

Our findings imply that EEG frequency tagging can be used in
future investigations on social interaction recognition, a complex
cognitive process thought to require iterative top-down compu-
tations (Isik et al., 2020). This is positive because EEG frequency
tagging has the key advantage of being largely resistant to noise
and therefore of providing a very high SNR. This advantage is pri-
marily driven by the fact that frequency tagging elicits a narrow
response in a predefined frequency band, determined by the stim-
ulus. As such, frequency tagging not only reduces noise but also
makes it possible to objectively define the response.

Although these strengths are interesting in general for future
research on social interaction recognition, they should prove par-
ticularly useful for research into different developmental stages
(e.g. infants and young children) and clinical populations. Ide-
ally, tasks for infants and children should be kept as short

as possible to accommodate their short attention span, and
for certain populations that experience a diminished ability to
concentrate (e.g. depression and ADHD; American Psychiatric
Association, 2013). By increasing the SNR, EEG frequency tagging
allows researchers to achieve this goal. Furthermore, develop-
mental research requires a technique largely resistant to noise, as
infants and young children hardly remain still (Raschle et al., 2012;
Maguire et al., 2014; Azhari et al., 2020). Finally, clinical population
studies often compare groups (e.g. clinical vs control group), and
a high SNR is therefore needed to have enough sensitivity to be
able to detect group differences. In the current study, we explo-
ratively looked at the relationship between ASD symptomatology
and social interaction processing and found anecdotal evidence
for a correlation in the opposite direction as expected. This would
be an interesting relationship to explore further in an autism
vs neurotypical group study, given that ASD is characterized by
social interaction difficulties (American Psychiatric Association,
2013). Besides the possibilities this frequency tagging method has
for future clinical and developmental research into social inter-
action recognition, future studies may also use it to investigate
more fundamental questions. The current study just takes the
first step of investigating social interaction recognition with fre-
quency tagging, but plenty of questions could still be investigated
using this method, such as how social interaction processes are
modulated by factors like number or proximity of agents, valence
or type of interaction (e.g. joint attention, joined actions, mutual
eye contact and touch).

Our findings further tentatively suggest that frequency tagging
could also be used to study other complex cognitive processes.
However, it is important to note that our designmight have played
a role in this. We used a block design instead of the nowadays
more commonly used oddball design (Heinrich et al., 2009). In odd-
ball studies, standard stimuli are presented together with oddball
stimuli at fixed intervals. In these tasks, responses to the oddball
stimuli represent a differential response to the oddball stimuli
in contrast to the standard stimuli. For instance, presenting no
social interaction stimuli at a frequency of 2.5Hz, with social
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interaction stimuli embedded every fifth stimuli (i.e. 2.5/5=0.5Hz
oddball rate), should result in not only a peak at exactly 2.5Hz, but
also at 0.5Hz, if social interaction stimuli are discriminated from
no social interaction stimuli. Therefore, an advantage of oddball
tasks is that there is no need to subtract two blocks (Norcia et al.,
2015). However, pilot data from an oddball task acquired in prepa-
ration of this study showed no oddball response to our stimuli.
Although speculative at this point, this lack of oddball response
might be due to the complexity of our stimuli, which may take
longer to process. Therefore, these stimuli may require a lower
frequency rate than 2.5Hz, like the one used in the current study
(1.66Hz), in order for them to be properly processed. This is, how-
ever, not ideal for oddball tasks, as a lower standard frequency
rate would also imply an even lower oddball frequency rate that
is likely too low, considering that experimental noise is present
particularly at the lowest frequencies (Norcia et al., 2015). Thus,
slower paradigms like the block design used here are perhaps
more suitable to study complex cognitive processes.

Block designs do have the limitation of expectation and antic-
ipation influences, and therewith attention influences, about the
nature of the stimuli presented. However, the idea that partici-
pants paid more attention to either one of the stimulus categories
is not supported by our attention check data. The memory task
showed that, on average, participants recognized an identical
number of images for both categories. There was also no differ-
ence in performance on the detection task between the interac-
tion and no interaction blocks. Furthermore, this limitation is by
nomeans unique to themethod (EEG frequency tagging) or design
(blockwise) used here. Other techniques such as ERP, fMRI and
MEGare susceptible to attentional differences between conditions
as well. Similarly, using another design, like a frequency tagging
oddball design, for example, could have given rise to an expla-
nation in terms of bottom-up attention. That is, one could then
explain oddball responses as attentional capture of ‘interesting
stimuli’, unspecific to interaction processing.

Furthermore, the current study results are limited to how we
provided task instructions. More specifically, in this study, par-
ticipants were informed in the instructions that they would see
stimuli of social interaction and no social interaction. Although
previous studies did not always explicitly include the stimulus
categories of interest in the instructions, the categories are usu-
ally blatantly obvious: different vs identical faces (Alonso-Prieto
et al., 2013), animals vs non-animals, birds vs non-birds, natu-
ral vs non-natural: (Stothart et al., 2017) and facing vs non-facing
people (Adibpour et al., 2021); hence, awareness of the stimulus
categories is not unique to this study. Furthermore, similar to
other frequency tagging studies, participants were not informed
about the research question, and the categories of interest did not
connect to the tasks they had to perform (i.e. discriminating the
two categories was not part of the tasks). However, an interest-
ing question that remains unanswered, and that future research
should address, is whether prior awareness of the stimulus cat-
egories modulates the brain response. In a similar study, Isik
et al. (2020) found that social interaction recognition did not occur
earlier when subjects performed an explicit compared with an
implicit social interaction detection task. This gives some reason
to believe that steady-state visual evoked potentials magnitude
would also not depend on stimulus awareness. However, only a
direct test can provide a definite answer.

Lastly, it should also be mentioned that although frequency
tagging has some benefits over other neuroscientific methods,
it does have its own limitations. Therefore, frequency tagging
is not necessarily better than other neuroscience techniques.

For example, although it has the advantage of a high SNR, this
comes at the cost of reduced temporal sensitivity. Similarly, like
all measures based on EEG, spatial localization is relatively poor.
Hence, which technique to use depends first and foremost on the
research question and population. Given its high sensitivity, fre-
quency tagging is a particularly useful technique for studies with
clinical populations or infants, where large samples or long exper-
iments are often not feasible. Our findings further indicate that
frequency tagging can be used in those samples not only to study
lower-level visual processes but also to study higher-level social
processes. That said, frequency tagging alone can only reveal so
much of the underlying process, and to obtain a complete picture
of a process, it should therefore be studied with several com-
plementary techniques to account for the inherent limitations of
each technique.

To conclude, the current EEG frequency tagging study found
evidence for enhanced neural responses to scenes depicting
social interaction relative to scenes without social interaction.
Our results therefore indicate that EEG frequency tagging can
be used in future studies on social interaction recognition. The
strengths of EEG frequency tagging will in particular open doors
for expanding this research line to different developmental stages
and clinical populations.
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