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Diabetes mellitus (DM) remains one of the most important risk factors for peripheral artery disease (PAD), with ap-
proximately 20% of DM patients older than 40 years old are affected with PAD. The current standard management 
for severe PAD is endovascular intervention with or without surgical bypass. Unfortunately, up to 40% of patients 
are unable to undergo these revascularization therapies due to excessive surgical risk or adverse vascular side effects. 
Stem cell therapy has emerged as a novel therapeutic strategy for these ‘no-option’ patients. Several types of stem 
cells are utilized for PAD therapy, including bone marrow mononuclear cells (BMMNC) and peripheral blood mono-
nuclear cells (PBMNC). Many studies have reported the safety of BMMNC and PBMNC, as well as its efficacy in 
reducing ischemic pain, ulcer size, pain-free walking distance, ankle-brachial index (ABI), and transcutaneous oxygen 
pressure (TcPO2). However, the capacity to establish the efficacy of reducing major amputation rates, amputation free 
survival, and all-cause mortality is limited, as shown by several randomized placebo-controlled trials. The present liter-
ature review will focus on comparing safety and efficacy between BMMNC and PBMNC as cell-based management 
in diabetic patients with PAD who are not suitable for revascularization therapy.

Keywords: Peripheral artery disease, Diabetes mellitus, Stem cell therapy, Bone marrow mononuclear cells, Peripheral blood 
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Introduction 

  Peripheral artery disease (PAD) is a part of non-coro-
nary artery syndrome caused by changes in the lower ex-
tremities’ arterial structure and function, which athero-
sclerotic lesion and thrombo-embolism are generally con-
sidered as the underlying pathophysiology (1). Worldwide, 
more than 200 million people were affected by this disease 
in 2010 (2). Many studies have shown a strong association 
between diabetes mellitus (DM) and an increased preva-
lence of PAD (3, 4). Indeed, PAD is an established mani-
festation of macrovascular complications in diabetes other 
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than coronary artery disease and stroke. Approximately 
20% of DM patients older than 40 years were affected by 
PAD. Meanwhile, 20∼30% of PAD patients have DM (3). 
Our data in Dr. Cipto Mangunkusumo National General 
Hospital, Jakarta, Indonesia, showed that between 2008 
and 2012, there were 54 patients with PAD underwent en-
dovascular revascularization and almost 80% of them had 
type 2 diabetes (T2D) (5).
  As evident, the presence of diabetes greatly accelerates 
PAD disease progression, with a more severe be-
low-the-knee lesion, and significantly increases the risk of 
ischemic ulcer, gangrene, and major amputation rates, 
compared to those without DM (6). Around 10∼20% of 
patients with lower limb PAD will progress to critical 
limb ischemia (CLI), a severe form of PAD characterized 
by pain at rest, ulceration, and necrosis (7, 8). CLI is asso-
ciated with unfavorable prognosis, recurrent hospital-
ization, lower quality of life, higher risk for cardiovascular 
death, and 5-year survival rates of 50% or even less (9). 
In addition to optimum medical therapy and risk factors 
modification, the current gold standard management for 
severe PAD and CLI is revascularization through endovas-
cular intervention or surgical bypass (10, 11). Unfortunately, 
up to 40% of these patients were not good candidates for 
revascularization procedures due to excessive operative 
risk or unfavorable vascular involvement (12). Therefore, 
a new approach is in great demand for these ‘no option’ 
patients to reduce the amputation and mortality rates. In 
the past two decades, autologous stem cell therapy, espe-
cially mononuclear cells (MNC), has been used extensively 
for ‘no option’ CLI patients with promising results. 
However, it is still not available for routine clinical 
practice. This review will compare the two primary sour-
ces of MNC, peripheral blood and bone marrow (BM), for 
its use in CLI management in diabetes patients.

Stem Cell Therapy

  Stem cell therapy has emerged as a new therapeutic 
strategy for many diseases. Stem cells are cells that have 
the capacity to renew themselves and to produce differ-
entiated cells. Based on the extent to which they can dif-
ferentiate into different cell types, stem cells can be classi-
fied as totipotent, pluripotent, multipotent, oligopotent, or 
unipotent (13). Additionally, based on their origin, stem 
cells can be classified into four broad types: embryonic, 
fetus, infant, and adult stem cells (13, 14). Embryonic 
stem cells, which have pluripotent properties, can differ-
entiate into any type of cell in the body. Meanwhile, the 
adult stem cells with multipotent properties pose a higher 

specificity than embryonic stem cells. They could produce 
different types of cells only for specific organs and tissues 
(14). In contrast to embryonic stem cells, the ethical as-
pects of adult stem cells are relatively not controversial be-
cause they originate from tissue samples of adult humans, 
not human embryos. Although, safety issues especially for 
long-term follow-up, are still becoming a concern (15). 
  In normal tissue experiencing an ischemic injury, there 
will be a revascularization compensatory response consist-
ing of angiogenesis, vasculogenesis, and arteriogenesis that 
plays an essential role in repairing damaged blood vessels 
and forming new blood vessels or neovascularization (16). 
These very intricate processes involved inflammatory cells, 
numerous chemokines and cytokines, various growth fac-
tors, and stem cells (16-18). Unfortunately, these mecha-
nisms are defective in diabetes and CLI patients (19, 20). 
The tremendous potential inherited by stem cells to differ-
entiate and evolve into differentiated cell types holds the 
prospect to be used as one modality for PAD or CLI man-
agement in T2D patients. The stem cells gradually get 
stimulated by the surrounding cellular environment 
(damaged hypoxic tissues), which will lead to the for-
mation of specialized cells identical to those they come in 
contact and grow with (21, 22). Paracrine effects induced 
by the stem cells were also responsible for supporting 
these reparative processes (23). 

Bone Marrow Mononuclear Cells (BMMNC) 

  As one primary source of adult stem cells, bone marrow 
has been explored extensively for its use in stem cell ther-
apy in CLI. Type of stem cells from the bone marrow that 
has have been widely used as therapy include bone mar-
row mononuclear cells (BMMNC), or its subsets, which 
consist of endothelial progenitor cells (EPC) and mesen-
chymal stem/stromal cells (MSC). 
  The term BMMNC is used to describe cells with uni-
lobed or round nuclei and lack of granules in the cyto-
plasm that are found in the bone marrow. This broad defi-
nition results in a diverse cell population that comprises 
hematopoietic stem and progenitor cells (HSC/HPC), 
lymphoid cells, monocyte, and mesenchymal stem cells 
(MSCs). These characteristics differ from those of myeloid 
and red blood cell progenitor, thereby facilitating the sep-
aration of BMMNC by physical means (24). Further ef-
forts have been made to characterize the angiogenic stem 
and progenitor population in the BMMNC fraction. 
Asahara et al. (22) have managed to identify a class of cir-
culating mononuclear cells expressing CD34 with the abil-
ity to differentiate into endothelial cells in vitro and con-
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tribute to vasculogenesis in adult animal models, thus de-
fined as putative EPC. Although, until now, the concept 
of EPC has become a subject of debate and controversies, 
as many studies from different research groups have used 
different isolation methods and identification to define 
EPC-like cells (25-28). Moreover, many markers that were 
previously used to describe putative EPC, such as CD34, 
CD117, and CD133, have also been known to be shared 
by myeloid cells of various stages of differentiation (29, 
30). Thus, make the issues more complicated. 
  Another imperative fraction of BMMNC is the MSC. 
Despite their small number in bone marrow (∼1 in every 
ten thousand bone marrow cells), these cells can be multi-
plied ex-vivo into larger quantities to achieve required 
doses (31). In addition, there are also alternative sources 
of MSCs, including adipose tissues (32, 33), dental pulp 
(34), periodontal ligament (35) peripheral blood (36), cord 
blood (37), umbilical cord (38, 39), and placenta (40). 
International Society for Cell Therapy (ISCT) proposed 
the minimum criteria to describe multipotent MSCs, 
which are plastic adherence in ordinary culture con-
ditions; expression of cell surface CD73, CD90, and 
CD105; lack of expression of cell-surface CD34, CD45, 
HLA-DR, CD14, CD79a, or CD19; and multilineage dif-
ferentiation capacity (41). Despite these proposition, it is 
prominent that MSCs isolated from different tissue and/or 
under different conditions will likely result in diverse or 
more differentiated stem cells, albeit still defined as multi-
potent progenitor cells (42, 43). Due to these variations, 
it should be kept in mind that MSCs between studies are 
less likely to signify identical cell types since details such 
as expansion technique and isolation method may affect 
clinical results.
  BMMNC used for therapeutic purposes in clinical trials 
usually obtained by bone-marrow aspiration from ileum 
under local or general anesthesia depending on the with-
drawn volume (44, 45). Next, the aspirate will undergo a 
purification and concentration step using a density gra-
dient centrifugation, either manually or preferably by an 
automated cell separator (46). The application of an auto-
mated cell separator allowed for shorter processing time 
and reduced risk of microbial contamination with higher 
mononuclear cells recovery and preserved or even better 
functional capacity (47, 48). 

Peripheral Blood Mononuclear Cells (PBMNC)

  A peripheral blood mononuclear cell (PBMNC) is any 
peripheral blood cell having a round nucleus, consisting 
of lymphocytes (T cells, B cells, NK cells) and monocytes 

(49). The EPCs could also be identified in isolated 
PBMNC, although only as a small fraction (50). As the 
mononuclear cells in the peripheral blood originally come 
from bone marrow, these cells could be stimulated or mo-
bilized by giving a systemic injection of granulocyte col-
ony-stimulating factor (G-CSF) or granulocyte-macro-
phage colony-stimulating factor (GM-CSF) to increase the 
number in the peripheral blood without affecting its func-
tion and capacity (51-53). Thus, the quantities or dosage 
of this CD34＋ mobilized PBMNC will be sufficient for 
therapeutic angiogenesis. The receptors of G-CSF are ex-
pressed primarily on neutrophils and bone marrow pre-
cursor cells. Whereas, for GM-CSF, the receptors are more 
widely expressed and present on neutrophils, monocytes, 
eosinophils, dendritic cells, basophils, and B cells (54). 
Both growth factors decreased the expression of adhesion 
molecules on the CD34＋ cells, such as very late antigen-1 
(VLA-1), L-selectin, vascular cell adhesion molecule-1 
(VCAM-1), and CXCR4 – a receptor for stromal-cell de-
rived factor-1 (SDF-1) – thus facilitating the mobilization 
of these CD34＋ cells to peripheral blood (55). 
  Several trials have shown that G-CSF and GM-CSF ad-
ministration leads to a dose-dependent increase of EPC in 
peripheral blood (56, 57). In addition, G-CSF is known 
to augment differentiation of marrow cells into vascula-
ture endothelial cells, resulting in early blood flow recov-
ery in ischemic tissues (58). However, G-CSF is consid-
ered preferable than GM-CSF due to the higher yield of 
CD34＋ cells and less or shorter duration of apheresis 
(59-61). This might explain the scarcity of study using 
GM-CSF mobilized PBMNC for critical limb ischemia. 
Important drawbacks of research using stem cell mobi-
lization are their efficacy is significantly influenced by 
race, ethnics, and disease status (62). Therefore, it is es-
sential to weight patient characteristics when comparing 
each different PBMNC study. After mobilization with 
G-CSF or GM-CSF, the PBMNCs are then harvested by 
means of cell apheresis, either alone or in conjunction 
with an additional blood-cell separator system (57, 63-65). 

Potential Mechanism of BMMNC and PBMNC in 
PAD

  The mechanism on how BMMNC or PBMNC can pro-
mote neovascularization is still considered as an ongoing 
investigation. A study by Asahara et al. (22) has first dem-
onstrated that peripheral blood CD34＋ mononuclear cells 
can differentiate into endothelial cells and several other 
studies support this finding (66-68). However, this concept 
still becomes a controversy since other studies did not ob-
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serve similar result. Studies by Göthert et al. (69) and 
Purhonen et al. (70) that incorporates fluorescent pro-
tein-labeled BM-derived cells failed to discover these cells 
in the vascular walls after transplantation. 
  Another proposed mechanism for the role of stem cells 
in PAD is the stabilization of neovasculature through peri-
cyte differentiation. Pericytes are branched cells that pres-
ent at intervals along the walls of capillary blood vessels 
(and postcapillary venules), embedded within the micro-
vascular basement membrane and wrapping endothelial 
cells (71). Pericytes are communicating with endothelial 
cells by direct physical contact and paracrine signaling 
pathways. They play an essential role in stabilizing the 
vessel wall, regulating microvascular blood flow, and endo-
thelial cell proliferation (72, 73). By utilizing green fluo-
rescent protein (GFP)-chimeric mice, Rajantie et al. (74) 
were unable to find evidence of BM-derived endothelial 
cells at sites of tumor or vascular endothelial growth factor 
(VEGF)-induced angiogenesis. Instead, they consistently 
observed BM-derived periendothelial cells at the sites, and 
these cells expressed NG2 proteoglycan, a marker for de-
veloping pericytes. These findings are supported by 
Ziegelhoeffer et al. (75), who also used GFP-chimeric mice 
that underwent unilateral femoral artery occlusions as a 
model of hind-limb ischemia. They failed to colocalize 
GFP signals with endothelial or smooth muscle cells 
marker in the growing collateral arteries. Nevertheless, ac-
cumulations of GFP-positive cells were detected in the 
perivascular space, appearing like pericytes and fibroblasts 
based on their shape and distribution. These suggest that 
in the adult organism, BM-derived cells do not promote 
vascular growth by incorporating into vessel walls but may 
function as supporting cells. 
  Besides direct incorporation into the vascular structure, 
BMMNC might play an essential role in neovasculariza-
tion in PAD via its potent paracrine signaling. In the site 
of vascular injury, BMMNC and PBMNC have been found 
to secrete various pro-angiogenic factors, such as basic fi-
broblast growth factor (bFGF), VEGF, hepatocyte growth 
factor (HGF), and angiopoietin-1 (76, 77). VEGF is one 
of the main regulators in angiogenesis. It acts as a chemo-
tactic marker for macrophage and granulocyte and stim-
ulates endothelial cells migration, matrix metallopro-
teinase activity, and forming of the blood vessel lumens 
(78). Additionally, it can also promote vessel enlargement, 
increase vessel branching, and maintaining vascular ho-
meostasis (79). Meanwhile, bFGF exerts its role in angio-
genesis by stimulating endothelial cells migration, in-
vasion, and production of plasminogen activator, as well 
as influencing other growth factors and chemokines secre-

tion (80, 81). HGF has similar properties to bFGF and 
can enhance the angiogenesis potency of VEGF (82). 
These growth factors have been used in several clinical tri-
als as a therapy for critical limb ischemia, although with 
mixed results (83).

Clinical Trials of Stem Cell Therapy for PAD in 
Diabetes Patients

  Animal trials using rabbit, rat, and mouse in hind-limb 
ischemia (HLI) models have shown promising result in 
which BMMNC, PBMNC, or MSC transplantation could 
improve capillary density, neovascularization and collater-
al growth, blood perfusion, upregulation of b-FGF and 
VEGF levels, as well as decreases in auto amputation rate 
and muscle atrophy (84).
  These encouraging results from animal studies prompt 
Tateishi-Yuyama et al. (85) to conduct the Therapeutic 
Angiogenesis using Cell Transplantation (TACT) study, 
the earliest human clinical trial using intramuscular in-
jection of autologous BMMNC or unstimulated PBMNC 
in the ischemic limb of PAD patients with CLI. This pilot 
study demonstrated significant improvement in ankle-bra-
chial index (ABI), transcutaneous oxygen pressure (TCPO2), 
resting pain, and pain-free walking time, that persists af-
ter 24 weeks in BMMNC compared to the unstimulated 
PBMNC. 
  Clinical studies of BMMNC and PBMNC therapy for 
limb ischemia have significantly improved from uncon-
trolled phase I trial to ongoing randomized, placebo-con-
trolled, clinical phase III trial. Huang et al. (56) first de-
scribed the benefit of autologous mobilized PBMNC trans-
plantation in diabetic CLI in terms of lower limb amputa-
tion, limb ulcer healing, ischemic pain, blood perfusion, 
and ABI. This study utilized five days of G-CSF therapy 
to mobilize the MNCs to peripheral blood, followed by 
apheresis which was then used for autologous injection. 
Despite Tateishi-Yuyama et al. (85) demonstrated the su-
periority of BMMNC compared to unstimulated PBMNC, 
it is important to note that Tateishi-Yuyama et al. did not 
mobilize the MNCs using G-CSF. This might result in a 
very low number of MNCs or CD34＋ cells in the PBMNC- 
treated subjects, thus potentially affecting the outcome. 
However, a recent study by Persiani et al. (86) utilizing 
unstimulated PBMNC showed a significant improvement 
of ABI and ischemic pain in diabetic CLI patients after 
transplantation. Ozturk et al. (57) reported better im-
provement of Fontaine score, ABI, TcPO2, and pain score 
in diabetic CLI patients treated with G-CSF mobilized 
PBMNC compared to control subjects treated with stand-
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ard of care. Additionally, a more recent larger-scale 
randomized clinical trial by Horie et al. (87) using G-CSF 
mobilized PBMNC transplantation showed that PBMNC 
therapy was able to significantly improve the progression- 
free survival of mild-to-moderate PAD. 
  Several trials conducted to compare the efficacy between 
BMMNC and PBMNC as CLI therapy has shown mixed 
results. A study by Dubsky et al. (65) diabetic CLI pa-
tients, showed no differences in the improvement of 
TcPO2 between BMMNC and PBMNC group, which com-
plied with the finding from Huang et al. (64). However, 
the latter study reported significantly better improvement 
in ABI, skin temperature, and resting pain after 12 weeks 
in PBMNC than BMMNC group. In addition, a meta- 
analysis by Liew et al. (88) demonstrated a better reduc-
tion of major amputation rate, improvement of ulcer heal-
ing, and ABI in PBMNC but not BMMNC when com-
pared to the control group. Therefore, PBMNC might not 
be inferior to BMMNC, especially with the added practi-
cality of avoiding invasive and painful procedure, its ad-
verse risk, and cost. In the future, PBMNC treatment can 
even be commenced as an outpatient procedure to reduce 
patient burden.
  There has been a significant number of meta-analysis 
assessing the effect of stem cells therapy in PAD. Mostly, 
these meta-analyses demonstrated a substantial improve-
ment of surrogate endpoints such as ABI, TcPO2, ische-
mic pain, ulcer healing, and pain-free walking distance 
(PFWD) after stem cells transplantation. However, in 
terms of primary outcomes such as amputation rate, over-
all survival or mortality, and amputation-free survival 
(AFS), mixed results have been observed (89-93). Ai et al. 
(90) and Rigato et al. (91) showed a reduced major ampu-
tation rate and an increased rate of AFS in cell-based 
therapy. Xie et al. (92) and Gao et al. (94) also revealed 
a reduction in total amputation rate after stem cell ther-
apy but failed to show improvement in major limb 
salvage. Meanwhile, meta-analyses that only include trials 
with randomized placebo-controlled intervention or with 
low risk of bias consistently did not show a significant im-
provement in total or major amputation rate, mortality, 
and AFS in the treatment group compared to placebo, af-
ter stem-cells transplantation (88, 93, 95). 
  It appears that the earlier relatively small and non-pla-
cebo controlled trials demonstrated more evident advan-
tages of cell therapy, whereas the larger placebo-controlled 
studies showed less convincing results. It is important to 
note that there is a high risk of bias in the type of trials 
without randomization and placebo-controlled, whether in 
the intervention given or outcome evaluation. Many clin-

ical trials have failed to show the advantages of stem cell 
therapy for PAD in the major amputation rate and overall 
survival. We could speculate that the improvement of neo-
vascularization as shown by the improved surrogate out-
come is not sufficient to the extent of preventing major 
amputation. Moreover, diabetic patients with CLI might 
already have many complications in the other organs and 
the possibility of diffuse atherosclerotic lesions in the oth-
er vascular beds, including cardiovascular and cerebro-
vascular system (6). These conditions will eventually in-
crease the risk of mortality, which cannot be corrected by 
merely administering stem cell therapy.

Pitfalls of Stem Cell Therapy for PAD in Diabetes

  Preclinical studies initially raise some concerns regard-
ing the efficacy of autologous MNC in diabetic indivi-
duals. Hyperglycemia condition in diabetes is associated 
with decreased number and function of EPC. Animal 
studies have shown that diabetic EPCs exhibit decreases 
adhesion and migration activities; decreased fibronectin, 
collagen I, vitronectin, and laminin expression; impaired 
expression of eNOS and VEGF; and reduced capability to 
incorporate into the vascular structure (19, 96). Many 
studies have revealed a significantly decreased number of 
circulating CD34＋ cells in diabetic patients, especially 
with foot ulcers and PAD (97-99). Additionally, this re-
duced quantity of circulating EPC is more prevalent in 
complicated diabetes rather than uncomplicated diabetes 
(96). Despite all these drawbacks, treatment of autologous 
mobilized PBMNC could still improve neovascularization, 
albeit to a lesser extent than nondiabetics (100). Interes-
tingly, a recent meta-regression analysis by Rigato et al. 
(91) and meta-analysis by Gao et al. (94) implied that the 
benefit of cell therapy on amputation rate was higher in 
trials with a majority of patients having diabetes mellitus. 
  With regards to optimization studies, discussion about 
optimal dose and delivery route remains open. A meta- 
analysis by Ai et al. (90) did not find a significant correla-
tion between cell dosages and the therapeutic effects. 
Additionally, a study by Losordo et al. (101) showed the 
lowest beneficial dose for CD34＋ cells for PAD is 1×105 
cells/kg body weight and increasing the number of in-
jected cells would not result in significant improvement 
of the outcomes. However, a meta-analysis by Pan et al. 
(93) showed significant results in major amputation, total 
amputation, and complete ulcer healing rate in the high 
CD34＋ cell dosage (1×106 cells/kg body weight), which 
were not observed in low-dose studies. Hence, more stud-
ies comparing different cell dosages with a sufficient num-
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Fig. 1. A schematic diagram of angio-
genesis process following stem cell 
injection of the affected area of PAD. 
EC: Endothelial Cells. Adapted from: 
Lawall H, et al. Thromb Haemost; 
2010.

Table 1. Advantages and drawbacks of cell products used for peripheral artery disease

Cell therapy types Advantages Drawbacks

Bone-Marrow derived 
Mononuclear Cells 
(BMMNC) 

- Most widely researched cell product for PAD.
- Several meta-analyses showed improvement in ABI, TcPO2, pain 

scores, and ulcer healing in BMMNC treated patients (90–92).
- Availability of long term safety result (3 years) (109). 

Risk and complications during bone 
marrow aspiration.

Peripheral Blood 
derived 
Mononuclear Cells 
(PBMNC) 

- Head-to-head comparison with BMMNC showed similar benefits (65). 
- Recent meta-analysis showed PBMNC, but not BMMNC are able to 

reduce risk of major amputation and improve ulcer healing (88).
- Availability of long term safety result (1 year) (101).

- Risk and complications during 
G-CSF/GM-CSF administration (105).

- Efficacy of stem cells mobilizations are 
significantly influenced by race, 
ethnics, and disease status (62).

Mesenchymal Stem 
Cells (MSC) 

- Promising result from preclinical and clinical studies.
- Able to be isolated and expanded to achieve consistentand desirable 

dose.
- Allow larger-scale manufacturing with good quality control to 

produce an ‘off the-shelf’ cellular products.
- Possibility of allogeneic therapy due to its non or low-antigenic 

properties.

- Risk and complications during bone 
marrow aspiration (in BMMSC).

- Reports of potential role of MSC in 
tumor development.

- High variability of cell products 
between protocols and research facility.

- Relatively more expensive.

ber of subjects and randomized placebo-controlled designs 
are needed to confirm the optimal dosage for MNC ther-
apy in PAD. 
  The intramuscular approach injects a high concen-
tration of stem cells in the ischemic areas that require 
angiogenesis. Despite documented low engraftment rate 
(0.44 – 10% after 96 hours) (84), the justification behind 
intramuscular injection is to deposit cell reservoir near the 
ischemic area (Fig. 1). On the other hand, the intraarterial 
method aims to direct stem cells to margin areas with ad-
equate supply of oxygen and nutrients to promote new cell 
activities. However, it is not yet known how many cells 
able to reach the ischemic areas from the blood vessels. 
Studies that directly compare intramuscular and intra-
arterial injection of BMMNC in CLI patients have shown 
no significant differences (102, 103).
  The safety of BMMNC and PBMNC therapy for PAD 
has generally been established. Although bone marrow as-

piration as a procedure to obtain the BMMNC is consid-
ered more invasive compared to apheresis for obtaining 
PBMNC, it is still categorized as low-risk procedure. Some 
potential adverse events associated with bone marrow aspi-
ration include pain, low-grade fever, bleeding, and in-
fection (104). In addition, bone marrow aspiration, espe-
cially with large volume aspirate, has also been described 
to decrease mean hematocrit by 2.6% compared to control. 
However, this condition is tolerable in most patients (102). 
Nevertheless, this should be considered in at-risk patients 
such as anemic or coronary artery disease patients. 
Meanwhile, the administration of G-CSF for mobilization 
of PBMNC before apheresis carries some potential risks. 
Mostly, the adverse events are mild such as bone pain, 
headache, fatigue, and flu-like symptoms (105). However, 
there are some case reports on very rare cases of serious 
adverse events associated with G-CSF injection in healthy 
subjects, like spleen rupture (106), acute lung injury (107), 
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and transient state of hypercoagulability that could give 
rise to thrombotic complications (108). No muscular dam-
age, blood vessel malformation, or acute kidney injury has 
been identified with any intramuscular injection of MNCs 
(88). Additionally, there is also no report of unexpected 
long-term adverse effects (109, 110). The advantages and 
drawbacks of cell products used for PAD are shown in 
Table 1.

Conclusions

  Extensive phase I and II trials have established the safe-
ty of BMMNC and PBMNC as well as its efficacy in im-
proving ischemic pain, reducing ulcer size, pain-free walk-
ing distance, ABI, and TcPO2. Nonetheless, the capacity 
to establish the efficacy to reduce major amputation rates, 
AFS, and all-cause mortality is still lacking due to the lim-
ited number of phase III studies. In addition, an occurring 
trend is observed in which small, non-placebo-controlled 
study seems to demonstrate a seemingly larger benefit 
compared to large, placebo-controlled study. This phe-
nomenon raises some concern, especially because several 
important endpoints are susceptible to bias. Future larger 
placebo-controlled RCTs are needed before further trans-
lation of MNC therapy to standard care. Additionally, cur-
rent clinical trials using MNC therapy in PAD are only 
performed in end-stage disease PAD when the patients are 
unable to undergo revascularization treatment. It might be 
important to conduct clinical study in mild to moderate 
PAD to not miss the potential benefit of this novel therapy 
as the more advanced disease is related to the decreased 
regenerative capabilities of the vasculature and the func-
tionality of the autologous stem cells itself. 
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