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Dengue virus (DENV) causes dengue fever, which is prevalent in the tropical and
subtropical regions, and in recent years, has resulted in several major epidemics.
Vimentin, a cytoskeletal component involved in DENV infection, is significantly
reorganized during infection. However, the mechanism underlying the association
between DENV infection and vimentin is still poorly understood. We generated
vimentin-knockout (Vim-KO) human brain microvascular endothelial cells (HBMECs) and
a Vim-KO SV129 suckling mouse model, combining the dynamic vimentin changes
observed in vitro and differences in disease course in vivo, to clarify the role of vimentin in
DENV-2 infection. We found that the phosphorylation and solubility of vimentin changed
dynamically during DENV-2 infection of HBMECs, suggesting the regulation of vimentin by
DENV-2 infection. The similar trends observed in the phosphorylation and solubility of
vimentin showed that these characteristics are related. Compared with that in control
cells, the DENV-2 viral load was significantly increased in Vim-KO HBMECs, and after
DENV-2 infection, Vim-KO SV129 mice displayed more severe disease signs than wild-
type SV129 mice, as well as higher viral loads in their serum and brain tissue,
demonstrating that vimentin can inhibit DENV-2 infection. Moreover, Vim-KO SV129
mice had more disordered cerebral cortical nerve cells, confirming that Vim-KOmice were
more susceptible to DENV-2 infection, which causes severe brain damage. The findings of
our study help clarify the mechanism by which vimentin inhibits DENV-2 infection and
provides guidance for antiviral treatment strategies for DENV infections.

Keywords: dengue virus, vimentin, inhibition, human brain microvascular endothelial cells, SV129 mice
INTRODUCTION

Dengue virus (DENV) is an important arbovirus with four serotypes, belongs to the family
Flaviviridae, and causes dengue fever. More than 3 billion people are at risk of contracting DENV,
and approximately 200 million people are infected each year (Artpradit et al., 2013; Yu et al., 2019).
Unfortunately, there is no effective vaccine against dengue fever at present, and only symptomatic and
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supportive therapies exist (Farrar et al., 2007). It is crucial to
develop novel host-targeted antiviral treatment strategies to avoid
the development of viral resistance observed with direct-acting
antiviral medications.

Several cytoskeletal proteins participate in viral life cycles.
The cytoskeleton is a dynamic structure composed of three
filament systems, namely microtubules, microfilaments, and
intermediate filaments (IFs). Vimentin is a type III IF protein
that is abundantly and widely expressed in eukaryotic cells
(Satelli and Li, 2011). Not only does it contribute to cell
adhesion, migration, organelle localization, and wound healing,
but it is also involved in the infection process of several
pathogens, such as African swine fever virus (Stefanovic et al.,
2005), bluetongue virus (Bhattacharya et al., 2007), foot-and-
mouth disease virus (Gladue et al., 2013), Japanese encephalitis
virus (Liang et al., 2011), Parasites (He et al., 2017; Liu et al.,
2022), Dengue virus, and SARS-CoV-2 (Ramos et al., 2020;
Thalla et al., 2021).

Several studies have examined the specific role of vimentin in
DENV infection. Surface vimentin on DENV-2-infected vascular
endothelial cells (VECs) is highly colocalized with DENV-2 and
directly interacts with it (Yang et al., 2016). DENV-2 infection
results in vimentin fiber rearrangement in human umbilical vein
endothelial cells and increases vimentin Ser71 phosphorylation
(Bauer et al., 2012). Vimentin phosphorylation regulates many of
its biological functions, including its roles in cell adhesion,
migration, and signal transduction (Li et al., 2016; Gelens and
Saurin, 2018; Zhang et al., 2020). Free soluble vimentin
molecules exist in intracellular regions as precursors that can
be assembled into insoluble filaments, and the ratio of soluble/
insoluble vimentin is inversely proportional to the ease of
filament rearrangement (Cogli et al., 2013; Wen et al., 2020).
Different protein kinases phosphorylate filamentous vimentin at
several sites to induce its disassembly, and increased
phosphorylation is associated with vimentin rearrangement in
vitro (Inagaki et al., 1987). The regulation of vimentin
phosphorylation might also be involved in mediating the
dynamic depolymerization of IFs through the regulation of
vimentin solubility (Sripathi et al., 2012; Sjöqvist et al., 2021),
which could alter its function (Pérez-Sala et al., 2015; Usman
et al., 2021). However, the phosphorylation and solubility of
vimentin after DENV infection have not been examined.

A possible pathogenic mechanism for neurological
complications caused by dengue fever is direct invasion of the
central nervous system (CNS) (Kumar and Margekar, 2016;
Calderón-Peláez et al., 2019). The blood-brain barrier (BBB),
composed of human brain microvascular endothelial cells
(HBMECs), separates the blood and the CNS (Meena et al.,
2021). Vimentin is involved in the viral life cycle as an IF to
synthesize the cytoskeleton and inhibits dengue virus infection.
Therefore, studies on vimentin phosphorylation could help to
overcome the limitation of traditional drugs and treat dengue
fever through another mechanism. In this study, HBMECs and
an intracranial challenge mouse model, with or without vimentin
knockout, were used to clarify the correlation between vimentin
and DENV-2 infection in vitro and in vivo. These results suggest
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
a possible host-targeted antiviral strategy to combat DENV
infection, avoiding the risk of resistance inherent to the use of
direct-acting antivirals.
MATERIALS AND METHODS

Ethics Statement
Animal experiments were approved by the Ethical Committee
for Animal Research of Southern Medical University and
conducted based on the guidelines of the Ministry of Science
and Technology of China.

Viruses, Animals, and Cell Lines
The DENV-2 New Guinea C (NGC) strain (GenBank:
KM204118.1) was obtained from our laboratory (Huang et al.,
2016), propagated using mosquito C6/36 cells, and grown to
5×106 PFU/mL. SV129 and SV129 (Vim-KO) mice were donated
by Professor Sheng-he Huang (Los Angeles Children’s Hospital,
University of Southern California, Los Angeles, CA, USA)
(Huang et al., 2016a). Control (Con) and vimentin-knockout
(Vim-KO) HBMECs were provided by Professor Bao Zhang
(Southern Medical University, Guangzhou, Guangdong, China)
and cultured in RPMI 1640 medium (Gibco, Shanghai, China)
containing 10% fetal bovine serum (FBS, Gibco, Shanghai,
China) (Zhu et al., 2019).

Confocal Immunofluorescence Assay
HBMECs were plated in confocal culture dishes and grown to 80%
confluence. After viral infection, the cells were fixed with 4%
paraformaldehyde at 4°C for 30 min, permeabilized with 0.1%
triton X-100 at 25°C for 20 min, blocked with 10% FBS at 37°C for
2 h, and incubated with primary antibody (mouse anti-vimentin
monoclonal antibody, ab8978, Abcam) overnight at 4°C, followed
by secondary antibody (TRITC, ab7065, Abcam, Shanghai, China)
at 37°C for 1 h. After washing, the nuclei were stained with 4’,6-
diamidino-2-phenylindole (BestBio, Shanghai, China) and
mounted with an antifluorescent quencher (Panera AAPR11,
Pythonbio, Guangzhou, China). The samples were analyzed on a
confocal laser scanning microscope (FV1000-EVA, Olympus,
Beijing, China).

Real-Time Cellular Analysis
HBMECs (Con and Vim-KO) were plated in 8-well plates (E-
Plate L8, ACEA Biosciences, San Diego, California, USA) for
examination using an iCELLigence Label-Free Real-Time Cell
Analysis System (ACEA Biosciences, San Diego, California,
USA). The HBMECs were infected with DENV-2 at an
multiplicity of infection (MOI) = 1 for 2 h and then cultured
for 72 h. A control group infected with PBS was set up for each
HBMEC experiment. The system collected data every 1 min and
10 min, respectively, during the infection and culture progress. In
the data analysis system, each curve was normalized with the first
Cell Index collected during infection or culture as the starting
point (normalized cell index = 1), following which, a curve was
generated based on the difference between the infected group and
March 2022 | Volume 12 | Article 868407
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the control group to obtain the dynamic changes during DENV-
2 infection or culture. Finally, the dynamic curves of HBMECs
(Con and Vim-KO) were normalized using Min-Max
Normalization with the formula x = (x − Min)/(Max − Min).

Western Blot Analysis
HBMECs were cultured in 6-well plates and infected with DENV-2
(MOI = 1) for 0, 1, 2, 6, 12, 24, 36, and 48 h. To measure vimentin
levels, total proteins were extracted with radioimmunoprecipitation
buffer containing phenylmethylsulfonyl fluoride (PMSF, 8553S, Cell
Signaling Technologies, Danvers, Massachusetts, USA) as a protease
inhibitor. To measure vimentin phosphorylation levels, we used the
ProteinExt® Mammalian Total Protein Extraction Kit (Transgen
Biotech, Beijing, China) supplemented with PMSF and phosphatase
inhibitors (Roche PhosSTOP, 05892791001, Solarbio, Shanghai,
China). Lysate protein concentrations were determined by a
bicinchoninic acid assay. Proteins (60 mg) were resolved by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE), incubated with primary antibody (Anti-Phospho-(Ser/Thr)
Phe antibody, ab17464, Abcam, Shanghai, China) followed by
secondary antibody (HRP-conjugated Affinipure Goat Anti-
Mouse IgG(H+L), Abcam, Shanghai, China), and visualized by
electrochemiluminescence (Biodlight Western Chemiluminescent
HRP Substrate, BLH01S020, Bioworld Technology, Jiangsu, China).

To measure vimentin solubility levels, total proteins were
extracted with lysis buffer containing 0.1 mM sodium
orthovanadate (AAPR593, Pythonbio, Guangzhou, China). After
centrifugation at 20,000 × g for 30 min at 4°C, samples were
separated into supernatants and precipitates. The supernatants
contained soluble vimentin, and the precipitates could be used to
measure insoluble vimentin after dissolving in PBS (He et al., 2017).
Protein concentrations were determined, and 60 mg of each sample
was resolved by SDS-PAGE, incubated with primary antibody
(mouse anti-vimentin monoclonal antibody) followed by
secondary antibody (HRP-conjugated Affinipure Goat Anti-
Mouse IgG(H+L)), and visualized by electrochemiluminescence
(Biodlight Western Chemiluminescent HRP Substrate). Finally,
vimentin solubility was calculated as follows: vimentin solubility =
soluble/(soluble + insoluble) × 100%. Using b-actin mouse
monoclonal antibody (3700S, Cell Signaling Technologies,
Danvers, Massachusetts, United States of America) as a loading
control, protein levels were quantified, and the proportion of
soluble vimentin to total vimentin was calculated at each time
point using ImageJ (version 1.51j8, National Institutes of Health,
Bethesda, Maryland, USA).

DENV-2 Infection of Suckling Mice
Homozygous female and male SV129 or SV129 (Vim-KO) mice
were housed separately. Male and female mice born in the same
litter were selected, and when they reached 9 weeks of age, they
were bred together at a 1:1 ratio of males and females. The
suckling mice were weighed immediately after birth, and those
for which the body weight was outside the overall 25%–75%
confidence interval was euthanized, whereas the others were
randomly assigned to experiment groups. One-day-old SV129
and SV129 (Vim-KO) suckling mice (n = 6/group) were
intracranially injected with 20 mL of DENV-2 at a titer of 2.6 ×
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
106 PFU/mL. The mice were observed for disease signs and
weighed daily. On days 3, 4, and 5 after DENV-2 injection, one
mouse in each group was euthanized to extract brain tissue and
collect serum. The experiment was repeated in triplicate.

DENV-2 Viral Load Detection
Cell culture, brain, and serum RNA was extracted using the
QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) and
reverse transcribed using the PrimeScript RT Reagent Kit
(Takara Bio, Kusatsu, Japan), followed by qRT-PCR using
Bestar® Taqman qPCR Master Mix (Takara Bio). The DENV-
2 plasmid was used as a standard to calculate viral copy numbers
(in copies/g and copies/mL).

Histopathology
Five days after intracranial DENV-2 injection in SV129 and
SV129 Vim-KO mice, the brain tissues of three randomly
selected mice per group were harvested and immediately fixed
for 16–24 h in 10% neutral buffered formalin. Mice in the control
groups were subjected to double-blind pathological examination.
Tissues were submitted to Guangzhou Huayin Medical Science
Company Limited (Guangzhou, China) for paraffin embedding;
they were processed and sectioned at the same place before
staining with hematoxylin and eosin and being subjected to
microscopic examination for histopathological changes.

Statistical Analysis
The averages of total expression data and solubility level data for
vimentin in HBMEC cells after DENV-2 infection were analyzed
by one-way analysis of variance with p = 0.05 and Dunnett-t
tests. The averages of the Vim/actin ratio, DENV-2 titer,
normalized cell index, daily weight, and viral load of cell
culture, brain, and serum were analyzed by independent
samples t-tests with p = 0.05 for each day and each group.
RESULTS

DENV-2 Infection of HBMECs Causes
Vimentin Rearrangement
To explore how vimentin responds to DENV-2 infection at the
cellular level, we examined HBMECs at different time points
after DENV-2 infection using vimentin immunofluorescence.
Vimentin was observed to be widely distributed in the cytoplasm
in normal HBMECs but began to accumulate around the nucleus
after 1 h of DENV-2 infection (Figure 1).

Dynamic Changes in Vimentin Expression,
Phosphorylation, and Solubility After
DENV-2 Infection
Total vimentin levels, phosphorylation, and solubility fluctuated
at different time points after infection. Total vimentin levels
decreased obviously 24 h after infection (Figures 2A, B).
Vimentin phosphorylation peaked 12 h after infection and
subsequently decreased (Figure 2C). Vimentin solubility was
also highest 12 h after infection (Figures 2D, E).
March 2022 | Volume 12 | Article 868407

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Yu et al. Inhibition of DENV-2 by Vimentin
FIGURE 1 | Vimentin rearrangement in human brain microvascular endothelial cells (HBMEC) infected with dengue virus (DENV)-2 for different periods of time. Ctrl
means control group. All scale bars are 10 mm.
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Vimentin Inhibits DENV-2 Invasion
of HBMECs
Between the control (Con) and Vim-KO HBMEC lines, western
blotting was used to verify the differences in vimentin expression
levels and qRT-PCR was used to determine the differences in
intracellular viral loads. Vimentin expression was significantly
lower in Vim-KO HBMECs (Figures 3A, B). The rate of DENV2
infection into Vim-KO HBMECs was significantly faster than
that with Con HBMECs (Figure 3C).

The ICELLigence Label-Free Real-Time Cell Analysis System
was used to monitor biological state changes in cells. During
DENV-2 infection, the cell resistance value of Vim-KOHBMECs
was significantly higher than that of Con HBMECs, suggesting
that Vim-KO HBMECs have higher cell permeability and are
more conducive to virus invasion (Figures 3D, E). Similarly, in
the process of DENV-2 culture, Vim-KO HBMECs reached the
cytopathic effect endpoint (normalized cell index = 0) earlier
than Con HBMECs, which means that Vim-KO HBEMCs were
more conducive to virus replication and proliferation, causing
cells to die faster due to viral load bursts (Figures 3F, G).

Establishment of DENV-2-Infected
Suckling Mouse Model
To verify the relationship between vimentin and DENV-2 infection
in vivo, we generated mouse models of intracranial challenge, with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
and without vimentin knockout, and observed differences in disease
course, signs, mortality, and body weight. The disease course could
be divided into three distinct periods. Like that in the control mice,
neither infected group displayed disease signs within 2 d of
intracranial DENV-2 injection, indicating that this was the
incubation period. Signs developed to different degrees in both
infected groups on days 3 and 4 after intracranial injection but not
in the uninfected control group; this was considered the onset
period. Both groups of infected mice died within 6 d, with mortality
rates as high as 100%; this was considered the death period.

During the onset period, both groups of infected mice
displayed mild signs 3 d after injection, including arching and
slow walking, and SV129 Vim-KO mice displayed slight tremors.
By day 4, mice in both infected groups had arched backs and low
movement, and their hind limbs trembled while lying down. By
the evening of day 4, both infected groups displayed severe back
signs. The hind limbs were paralyzed and when placed flat on the
table, they fell to one side. Those with milder signs could crawl
with their forelimbs, but their hind limbs trembled constantly.
SV129 Vim-KO mice showed lower limb weakness and could not
walk while maintaining a side squat. On the 5th day after injection,
SV129 mice retained slight use of their forelimbs for crawling,
whereas Vim-KO mice completely lost their exercise capacity and
had side-lying paralysis. Mice in both groups typically died by day
6; however, the signs were more severe in SV129 Vim-KO mice
A

C

B

D E

FIGURE 2 | Dynamic changes in total protein, phosphorylation, and solubility of vimentin after dengue virus (DENV)-2 infection. (A) Changes in vimentin expression
after DENV-2 infection of human brain microvascular endothelial cells (HBMEC) at different time points. (B) Grayscale analysis of the results of Figure (A, C) Changes
in vimentin phosphorylation after DENV-2 infection in HBMECs were detected. (D) Soluble and insoluble fraction of vimentin at different time points of DENV-2
infection in HBMECs, as detected by western blotting. E Grayscale analysis of Figure (D). (A-E) Ctrl: control group. (B, E) *P < 0.05; ***P < 0.001; ****P < 0.0001.
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than in SV129 mice, and death occurred more quickly
(Figures 4A, B). The weights of mice in each group were
recorded daily. Those in the infected groups increased steadily
on days 0–3, plateaued on day 4, and were significantly decreased
compared to those of untreated mice by day 5 (p < 0.05;
Figures 4C, D).

Vimentin Inhibits DENV-2 Infection in
Suckling Mouse Model
Theviral loadsandbrainhistopathologyalsodifferedbetween the two
infectedgroups. Fromday3after infection,we testedbrainand serum
samples for viral loadandhistopathology, sincenosignificant signsor
changes in body weight were observed and the brain tissue samples,
and its circulating blood volumes were too small on the first 2 d after
viral infection. In both SV129 Vim-KO and SV129 mice, the viral
loads in brain and serum showed a trend offirst increasing and then
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
decreasing from day 3 to 5 after infection. However, regardless of
which day or tissue, those in SV129Vim-KOmice were significantly
higher than those in SV129 mice (Figures 5A, B).

Thehistopathology of the brains of SV129VIM-KOmice showed
more severe damage, with not only disorganized nerve cells in their
cerebral cortex, but also a large number of apoptotic pyknotic cells
and neuronal damage; the cortical stratifications among the
molecular layer, external granular layer, external pyramidal layer,
internal granular layer, and internal pyramidal layerhaddisappeared.
Moreover, the hippocampus even displayed apoptotic pyknosis of
glial cells, edema, and local cerebral liquefactive necrosis (Figure 5C).
In SV129 mice, although the neurons in the cerebral cortex were
disordered with apoptotic pyknosis of glial cells, edema and spotty
necrosis could also be found in all six cortical layers; the cortical
stratification was normal, and the hippocampus showed no obvious
abnormalities (Figure 5D).
A C

B

D E

F G

FIGURE 3 | Vimentin might inhibit dengue virus (DENV)-2 invasion of human brain microvascular endothelial cells (HBMECs). (A) Vimentin expression in HBMECs
(Con and Vim-KO). (B) Gray scale analysis of Figure (A, C) DENV-2 titers of intracellular virus in HBMECs (Con and Vim-KO). (D, E) Dynamic curves and normalized
cell index of DENV-2 infected HBMECs (Con and Vim-KO) within 2h. (F, G) Dynamic curves and normalized cell index of DENV-2 cultured with HBMECs (Con and
Vim-KO) within 72h. (B, C, E, G) *P < 0.05; **P < 0.01; ***P < 0.001.
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DISCUSSION

In this study, we used HBMECs (to simulate the BBB) and a
mouse model of intracranial challenge to explore the role of
vimentin in DENV-2 invasion. The results suggested that
targeting vimentin is a potential host-derived antiviral
treatment strategy for DENV infection. At the cellular level,
vimentin is involved in a variety of pathogen invasion and
infection processes. It can promote Escherichia coli K1 invasion
and increase BBB permeability and neuronal inflammation by
regulating nuclear factor (NF)kB signaling to defend against
meningitis (Huang et al., 2016a; Mak and Brüggemann, 2016).
Vimentin also interacts directly with the spike protein of severe
acute respiratory syndrome coronavirus during its invasion (Yu
et al., 2016). The surface vimentin of DENV-2-infected VECs is
highly colocalized with the virus, and the envelope domain III of
DENV-2 directly interacts with the rod domain of surface
vimentin to mediate DENV infection (Yang et al., 2016).
Infection then induces vimentin rearrangement, which is
closely related to Ser71 phosphorylation (Lei et al., 2013;
Murray et al., 2014). In our study, morphological changes in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
DENV-2-infected HBMECs occurred within 1 h of infection, and
vimentin went from being present throughout the cell to only
being present around the nucleus. Marked re-localization of
vimentin to the perinuclear region was observed, consistent
with that in previous reports (Bauer et al., 2012; Cogli et al.,
2013). In our study, both the phosphorylation and solubility of
vimentin were highest at 12 h after viral infection, whereas the
level of protein expression did not follow this trend, which
indicates that vimentin expression, phosphorylation, and
solubility are all regulated by DENV-2 infection.

The iCELLigence Label-Free Real-Time Cell Analysis System is a
cellular monitor that uses electrical impedance sensors to
continuously and quantitatively track the biological state of cells
in real time (Şener et al., 2017; Stefanowicz-Hajduk and Ochocka,
2020). Vimentin is involved in the regulation of cell behavior, and
the vimentin assembly state is sensitive to stimuli that alter cellular
tension and morphology (Patteson et al., 2020). However, vimentin
can have varying effects on pathogen invasion. For example,
vimentin promotes infections by pathogens, such as E. coli K1
and Japanese encephalitis virus (Liang et al., 2011; Huang et al.,
2016b) and inhibits the internalization of human papillomavirus
A

B

C D

FIGURE 4 | Disease signs and weight changes in SV129 and SV129 (Vim-KO) mice after infection with dengue virus (DENV)-2. (A, B) Signs in SV129 and SV129
(Vim-KO) mice with DENV-2 infection. (C, D) Weight changes in SV129 and SV129 (Vim-KO) mice with DENV-2 infection.
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type 16 pseudovirions into host cells (Schäfer et al., 2017). In our
study, the adherent area of Con HBMECs increased at a lower rate
than that of Vim-KO HBMECs, indicating that vimentin acts to
maintain cellular morphology during DENV-2 invasion. In
addition, after 2 h of infection, the viral load in Vim-KO
HBMECs was higher than that in Con HBMECs, suggesting that
vimentin inhibits DENV-2 invasion.

We verified the role of vimentin in DENV invasion in SV129
suckling mice with and without vimentin knockout. Many models
have been used to study DENV, including A/J (Shresta et al., 2004),
BALB/c (Ahmad et al., 2019), C57BL/6 (Byrne et al., 2020), and
AG129 (Tan et al., 2010) mice for dengue virus tropism and
pathogenic research; the DENV-infected non-human primate
(Kayesh and Tsukiyama-Kohara, 2022), AG129 mouse
continuous infection, cross-infection-established ADE mouse
models to study the immune mechanisms of DENV infection
(Blaney et al., 2002); and DENV-infected suckling mouse
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
(Pelliccia et al., 2017) and DENV-infected SCID mouse models in
vaccine research. In this study, we used suckling mice because adult
mice displayed no obvious clinical signs after infection, and DENV-
2 was not detected in the serum. This is consistent with previous
studies, which suggested that the susceptibility of mice to DENV is
inversely proportional to immune system maturity (Zellweger and
Shresta, 2014; Ng et al., 2014; Mustafá et al., 2019). Subcutaneous
injection resulted in low and unstable infection rates in both groups
of suckling mice, preventing accurate comparisons between them.
Intracranial injection was used because of the resulting reliable and
stable infection levels and ease in observing neurological
manifestations (Al-Shujairi et al., 2017).

Several studies have demonstrated the involvement of vimentin
in the occurrence of pathogenic CNS infections in animal models,
resulting in various signs and pathological changes. Listeria
monocytogenes cannot colonize the brains of vimentin-knockout
BALB/c mice (Ghosh et al., 2018). Vimentin knockout mice were
A

C

D

B

FIGURE 5 | Detection of viral load in serum and brain and description of brain histopathological damage after infection of SV129 and SV129 (Vim-KO) mice with
dengue virus (DENV)-2. (A, B) Changes in the viral load in the brain and serum; *P < 0.05; **P < 0.01; ***P < 0.001. (C, D) Brain histopathological section on the 5th
day after infection in SV129 and SV129 (Vim-KO) mice. (C) Left: the cortical stratifications disappeared, with a large number of apoptotic pyknotic cells (black arrow).
Right: the hippocampus displayed apoptotic pyknosis of glial cells (black arrow) and local cerebral liquefactive necrosis (black circled). (D) Left: the cortical
stratification was normal, and apoptotic pyknosis of glial cells (black arrow) was found in all six cortical layers. Right: the hippocampus (black square) showed no
obvious abnormalities.
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also used to show that vimentin could enhance E. coli K1
penetration of the BBB through the NF-kB pathway, contributing
to significant increases in a7 nicotinic acetylcholine receptor-
mediated calcium signaling and neuronal injury (Huang et al.,
2016a). After recombinant major capsid protein (VP1) was
intracranially injected into C57BL/6J mice, increases in albumin
and vimentin and decreases in tight junction proteins in brain
tissues suggested that VP1 and vimentin might act in concert to
increase BBB permeability and promote CNS infection (Wang et al.,
2019). Vimentin serves as a surface receptor that binds enterovirus
(EV)-A71 VP1, and SV129 Vim-KO mice display decreased body
weight changes, morbidity, and cerebral cortex damage in
comparison to those in SV129 control mice, indicating that
vimentin knockout can reduce EV-A71 CNS infection in vivo
(Zhu et al., 2019). After comparing the disease signs, body
weights, intracranial, serum viral loads, and brain histopathology
of the two groups of infected suckling mice, we observed that the
signs in SV129 Vim-KO mice were more serious, with higher
intracranial viral loads and serum viral loads on the 4th and 5th
days after infection. The viral load in the brain tissue of 1 d-old
SV129 Vim-KOmice after the intracranial injection of DENV-2 can
be as high as 3.52 × 1010 copies/g, making them quite suitable for
virus conservation and maintaining high viral titers. This study
reveals for the first time that vimentin can inhibit the infection,
replication, and release of DENV-2 in the brain tissue of suckling
mice, and that it affects the viral load entering the circulation. In
addition, the susceptibility of the SV129 Vim-KO model to
intracranial DENV challenge makes it a useful tool for virulence
assessments of live attenuated vaccines, other strains, RNA
transcripts, and infectious clones, and it is also commonly used
for virus preservation in our laboratory.
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