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Model-based (likelihood and Bayesian) and non-model-based (PCA and K-means clustering) methods were developed to identify
populations and assign individuals to the identified populations using marker genotype data. Model-based methods are favoured
because they are based on a probabilistic model of population genetics with biologically meaningful parameters and thus produce
results that are easily interpretable and applicable. Furthermore, they often yield more accurate structure inferences than non-
model-based methods. However, current model-based methods either are computationally demanding and thus applicable to
small problems only or use simplified admixture models that could yield inaccurate results in difficult situations such as unbalanced
sampling. In this study, I propose new likelihood methods for fast and accurate population admixture inference using genotype
data from a few multiallelic microsatellites to millions of diallelic SNPs. The methods conduct first a clustering analysis of coarse-
grained population structure by using the mixture model and the simulated annealing algorithm, and then an admixture analysis of
fine-grained population structure by using the clustering results as a starting point in an expectation maximisation algorithm.
Extensive analyses of both simulated and empirical data show that the new methods compare favourably with existing methods in
both accuracy and running speed. They can analyse small datasets with just a few multiallelic microsatellites but can also handle in
parallel terabytes of data with millions of markers and millions of individuals. In difficult situations such as many and/or lowly
differentiated populations, unbalanced or very small samples of individuals, the new methods are substantially more accurate than
other methods.
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INTRODUCTION
Inferring the genetic structure of a population at family and
subpopulation levels from a sample of multilocus genotypes is
important for understanding the acting evolutionary forces and
population demography, for managing populations in conserva-
tion (Crandall et al. 2000), and for controlling the stratification in
genome wide association studies (GWAS) of complex traits such as
inheritable diseases (Francioli et al. 2014). We can use genotype
data in reconstructing the pedigree that underlies the data (e.g.,
Wang and Santure 2009), and in detecting subdivision, identifying
subpopulations and assigning sampled individuals to the inferred
populations (e.g., Pritchard et al. 2000). Indeed, pedigree and
subdivision are both genetic structures, the former being a
structure at a (finer) family level and the latter being a structure at
a (coarser) subpopulation level. In reality, however, the two
structures can be difficult to distinguish because a family can be
regarded as a subpopulation and a subpopulation can be
regarded as an extended family.
Many methods have been proposed to estimate population-

level structure since the seminal work of Pritchard et al. (2000).
They can be classified into two broad categories, model-based
and non-model-based methods. The former is in a probabilistic
framework built from a population genetics model. When
implemented in a Bayesian approach, it has a pivotal function of
the probability of genotype data conditional on population

parameters such as individual ancestry and allele frequencies in
inferred populations. Sampling (by Markov Chain Monte Carlo,
MCMC) from the posterior distributions of the parameters given
the data and some suitably selected priors (e.g., Pritchard et al.
2000; Raj et al. 2014; Gopalan et al. 2016) yields Bayesian estimates
of the parameters. When implemented in a likelihood approach, it
has a likelihood function of the parameters which are estimated
by maximising the function (e.g., Tang et al. 2005; Alexander et al.
2009). Non-model-based methods are not based on a probabilistic
population genetics model, but on more generic statistical
approaches such as principal component analysis (PCA, Patterson
et al. 2006; Price et al. 2006) and K-means clustering analysis
(Jombart et al. 2010). The former projects high-dimensional
genotype data into a few orthogonal variables, called principal
components (PCs), which (hopefully) summarize the data well and
make it possible for the clustering of sampled individuals and for
the visualisation of the clustering. The latter classifies individuals
directly into a predefined number of clusters by minimising the
genetic differences within a cluster and maximising the genetic
differences between clusters. Compared with model-based
methods, non-model methods make much fewer assumptions
and are thus more robust, computationally much faster, and
applicable to larger datasets. However, because of the lack of a
solid population genetics model, non-model methods give results
that are much harder to interpret and apply. PCA results can also
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be confounded by demographic factors or irregular sampling
designs (Novembre and Stephens 2008; McVean 2009).
The first and most popular Bayesian method was proposed and

implemented in the software STRUCTURE by Pritchard et al.
(2000). Further work extended and improved the method
substantially (Falush et al. 2003; 2007; Hubisz et al. 2009). Many
similar methods were also developed and applied (e.g., Dawson
and Belkhir 2001; Corander et al. 2003; Gao et al. 2007;
Huelsenbeck and Andolfatto 2007). However, STRUCTURE remains
unequivocally the most popular because of its elaborated models
(e.g., correlated and uncorrelated allele frequency models, Falush
et al. 2003), robustness to marker genotyping problems (e.g., null
or recessive alleles, Falush et al. 2007), and ease of use (e.g.,
Windows graphical user interface). STRUCTURE works well for
small datasets. However, it becomes infeasible computationally to
apply to a large sample of genomic markers or individuals, or to an
analysis with many populations. With the rapid developments in
sequencing technology, data of genome wide SNPs in thousands
(Leslie et al. 2015) or hundreds of thousands (Bryc et al. 2015) of
individuals are increasingly collected to study the fine-scale
genetic structure or to hunt for disease genes in genome wide
association studies (GWAS). STRUCTURE was not designed for and
thus incapable of handling genotype data at this large scale, in
gigabytes or even terabytes (Gopalan et al. 2016; Bose et al. 2019).
Since the development of STRUCTURE, two noticeable advances

have been made to use large-scale genomic data in model-based
admixture analysis. One was initiated by Tang et al. (2005), who
proposed a likelihood method of the admixture model and
developed an expectation maximisation (EM) algorithm for
maximum likelihood estimation of both individual admixture
proportions (ancestries) and population allele frequencies. Alex-
ander et al. (2009) improved the computational efficiency greatly
by introducing into the EM algorithm a fast block relaxation
scheme using sequential quadratic programming for block
updates. The software ADMIXTURE, which implements the
algorithm, turns out to be a great success, being used routinely
in analysing large-scale genomic data. The same likelihood
function can also be solved by an even faster algorithm, sparse
nonnegative matrix factorisation (sNMF) and least-squares opti-
misation, developed by Frichot et al. (2014). Another development
was to use variational Bayesian inference method to approximate
the relevant posterior distributions as an optimisation problem
(Raj et al. 2014; Gopalan et al. 2016). Implementing the method in
software fastSTRUCTURE, Raj et al. (2014) showed that it could
handle large-scale genomic data as fast as and as accurate as
ADMIXTURE. Gopalan et al. (2016) implemented the method in
software TeraStructure which can deal with an unprecedented
amount of genotype data (e.g., 1 million individuals genotyped at
1 million loci). Both fastSTRUCTURE and TeraStructure run much
faster but are much less flexible (e.g., unable to handle multiallelic
or recessive markers) and less accurate than STRUCTURE.
All developments of Pritchard et al.’s probabilistic model of

STRUCTURE were either on improving computational efficiency
(above), or on extending the model for application to tricky data
(e.g., recessive markers, Falush et al. 2007; Hubisz et al. 2009) or
non-standard populations (e.g., inbreeding, Gao et al. 2007). Little
attention is paid to investigating and improving the convergence
of the algorithms and the accuracy of the method in difficult
situations such as very small or highly unbalanced samples of
individuals, low differentiation, many populations, or a large
sample of markers and individuals. This is unfortunate as the
admixture model is high-dimensional, containing many variables
to estimate jointly. As a result, the model, implemented in either
Bayesian or likelihood framework, may have a high risk of non-
convergence or converging to a local rather than global optimum.
A typical admixture analysis must handle roughly V= (K− 1)N+
(A− L)K (independent) variables, where the admixture proportions
of N individuals and the allele frequencies in K source populations

are to be inferred from the genotype data at L loci with a total
number of A alleles. Current methods face an increasing risk of
non-convergence with an increase in the scale of the problem
determined mainly by V, as well as an increase in the complexity
of population structure. They may not converge even for a small
problem (small V, say V= 76 when K= 4, N= 12, A= 20 and L=
10) in difficult situations such as when few individuals are sampled
from a source population or vastly different numbers of
individuals are sampled from different populations. The EM and
sNMF algorithms in the likelihood framework make no effort
(except for the suggestion of making multiple replicate runs) in
seeking the global rather than local maximum likelihood, just like
other generic clustering approaches such as K-means method.
These, like the MCMC algorithm in the Bayesian framework, may
fail to converge in a large-scale admixture analysis.
In this study, I propose a two-step procedure to infer population

structure and individual admixture proportions from genotype
data. First, I assume a mixture model (i.e., no admixture) to
conduct a clustering analysis (i.e., assigning individuals to distinct
clusters with each representing a population), using the simulated
annealing algorithm with extra care to avoid converging to local
maxima of the likelihood. Second, I assume an admixture model to
conduct an admixture analysis (i.e., estimating individual admix-
ture proportions), using an EM algorithm and the clustering results
of the first step as initial values. I implement the approach in a
software package PopCluster runnable on all major computer
platforms. I show, by using extensive simulated and empirical
data, that PopCluster can handle both small and large datasets,
from a few multiallelic microsatellites traditionally analysed by
STRUCTURE to large genomic datasets with millions of SNPs
usually analysed by ADMIXTURE and PCA. I also show that
PopCluster converges well and yields more accurate results than
other methods in difficult situations such as a small sample of
individuals per population, unbalanced sampling, low differentia-
tion, high admixture, and many populations. Coupled with
efficient data encoding and parallel computation using both
openMP and MPI (Message Passing Interface), PopCluster is
capable of handling large datasets from many gigabytes to
terabytes that other model-based methods may fail to run or run
much slower.

METHODS
Overall strategy
An admixture analysis aims to estimate the admixture proportions (or
ancestries), Q, of each sampled individual in a given number of K source
populations (Pritchard et al. 2000), and the characteristic allele frequencies,
P, at each locus of each inferred source population. Even though Q is
frequently of the primary interest, P must be estimated simultaneously
because we have genotype data only and Q is highly dependent on P
which actually defines the source populations. For N individuals from K
source populations genotyped at L loci with a total number of A alleles, the
numbers of independent variables in Q and P are VQ= (K− 1)N and VP=
(A− L)K, respectively. The high dimensionality of an admixture analysis,
with V= VQ+ VP= (K− 1)N+ (A− L)K variables, not only incurs a large
computational burden, but also poses a high risk of non-convergence (to
the global maximum) for any algorithm, especially when either Q or P is
expected to be poorly estimated in difficult situations such as a small
sample (say, a couple) of individuals from each source population or low
differentiation.
I propose a two-step procedure with corresponding algorithms to

reduce the risk of non-convergence, to speed up the computation, and to
make more accurate inferences of both Q and P. In the first step, I assume
a mixture model (Pritchard et al. 2000; Falush et al. 2003) that individuals in
a sample can come from different source populations, but each individual’s
genome comes exclusively from a single population. Under this simplified
probabilistic model, I conduct a clustering analysis to obtain estimates of
both individual memberships and allele frequencies of each cluster by a
global maximisation algorithm, simulated annealing, with extra care
(details below) of convergence. In the absence of admixture and with
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sufficient information for complete recovery of population structure, the
estimated individual memberships and allele frequencies of the clusters
are expected to be equivalent to Q (with element qik= 1 and qil= 0 if
individual i is inferred to be in cluster k where l ≠ k) and P, respectively.
Otherwise, they are expected to be good approximations of Q and P,
because an admixed individual i with the highest ancestral proportion
from a population would be expected to be assigned (exclusively) to that
population. In the second step, I assume an admixture model (Pritchard
et al. 2000; Falush et al. 2003) to refine estimates of Q and P, using an EM
algorithm and the start parameter (Q and P) values obtained from the
clustering analysis. Because the starting values are already close to the
truth, the algorithm is fast and has a much-reduced risk of converging to a
local maximum than the original EM algorithms (Tang et al. 2005;
Alexander et al. 2009).

Clustering analysis
I assume N diploid individuals are sampled from K source populations. The
origin of a sampled individual from the K source populations is unknown,
which is the primary interest of structure analysis. However, if it is (partially)
known, this information can be used to supervise (help) the clustering
analysis of other sampled individuals of unknown origins. Each individual’s
genome comes exclusively from one of the K unknown source populations
(i.e., mixture model, no admixture). I assume each individual is genotyped
at L loci, with a diploid genotype {xil1, xil2} for individual i (=1, 2, …, N) at
locus l (=1, 2, …, L). The task of the clustering analysis is to sort the N
individuals with genotype data X= {xila:i= 1, 2, …, N; l= 1, 2, …, L; a= 1,
2} into K clusters, with each representing a source population. No
assumption is made about the evolutionary relationships of the popula-
tions, which, when summarized by F statistics, are estimated from the
same genotype data in both clustering and admixture analyses.
Suppose, in a given clustering configuration Ω= {Ω1, Ω2, …, ΩK}, cluster

k (=1, 2, …, K), Ωk, contains a set of Nk (with Nk > 0 and
PK

k¼1 Nk � N)
individuals, denoted by Ωk= {ωk1, ωk2, …, ωkNk} where ωkj is the index of
the jth individual in cluster k. The genotype data of the Nk individuals in
cluster k is Xk= {xila: i ∈ Ωk; l= 1, 2, …, L; a= 1, 2}. The log-likelihood of Ωk

is then the log probability of observing Xk given Ωk

Lk Ωkð Þ ¼ LogP Xk Ωkjð Þ ¼
XL
l¼1

XJl
j¼1

ckljLog pklj
� �

(1)

where cklj and pklj are the count of copies and the frequency, respectively,
of allele j at locus l in cluster k, and Jl is the number of alleles at locus l.
Given Ωk, cklj is counted from genotype data Xk, and allele frequency pklj is
estimated by

pklj ¼ plj þ cklj
� �

=
XJl
m¼1

plm þ cklmð Þ (2)

where plj is the frequency of allele j at locus l in the entire population
represented by the K clusters. plj is calculated by

plj ¼
XK
k¼1

cklj=
XJl
m¼1

XK
k¼1

cklm ¼ clj=
XJl
m¼1

clm (3)

where clm ¼PK
k¼1 cklm is the count of allele m (=1, 2, …, Jl) at locus l in the

entire sample of individuals.
Under the mixture model above, clusters are only weakly dependent

(with the extent of dependency decreasing with an increasing value of K)
and the total log-likelihood of the clustering configuration, Ω= {Ω1, Ω2, …,
ΩK}, is thus

L Ωð Þ ¼
XK
k¼1

Lk Ωkð Þ; (4)

where Lk Ωkð Þ is calculated by (1).
It is worth noting that allele frequencies, P, are modelled as hidden or

nuisance variables and are estimated as a by-product of maximising (4) for
estimates of Ω. Yet, careful modelling of P proves important for estimating
Ω, as the two are highly dependent. Bayesian admixture methods assume
allele frequencies pkl= {pkl1, pkl2, …, pkljl } in a Dirichlet distribution (e.g.,
Foreman et al. 1997; Rannala and Mountain 1997; Pritchard et al. 2000),
D λ1; λ2; ¼ ; λJlð Þ. For any population k, the uncorrelated (Pritchard et al.
2000) and correlated (Falush et al. 2003) allele frequency model assumes
λj= 1 and λj ¼ polj FK=ð1� FkÞ, respectively, for j= 1, 2, …, Jl. In the latter

model, p0lj is the frequency of allele j at locus l in the ancestral population
(common to the K derived populations), and Fk is the differentiation of
population k from the ancestral population. In contrast, likelihood
admixture methods (e.g., Tang et al. 2005; Alexander et al. 2009; Frichot
et al. 2014) and non-model based clustering methods (e.g., K-means
method, Jombart et al. 2010) do not use any prior, which is equivalent to
assuming plj ≡ 0 for j= 1, 2, …, Jl in Eq. (2). However, properly modelling
prior allele frequencies, as carefully considered in Bayesian methods
(Pritchard et al. 2000; Falush et al. 2003), becomes important in situations
where allele frequencies are not well defined or tricky to estimate, such as
when few individuals are sampled from a source population or when rare
alleles are present. The frequentist estimator (2) is in spirit similar to the
Bayesian correlated allele frequency model (Falush et al. 2003), and leads
to accurate results in various situations to be shown in this study. I have
also tried alternatives such as plj≡ 1/Jl (which is similar to the uncorrelated
allele frequency model of Pritchard et al. 2000) or plj≡ 0 (which is
equivalent to the treatment in previous likelihood admixture analysis or
non-model based clustering analysis) in replacement of (2), but none
works as well as (2) and could yield much less accurate results in difficult
situations (below).

Scaling for unbalanced sampling
Bayesian methods of STRUCTURE’s admixture model assume an individual
i’s ancestry, qi= {qi1, qi2, …, qiK}, follows a prior Dirichlet probability
distribution qi � D α1; α2; ¼ ; αKð Þ (Pritchard et al. 2000; Falush et al. 2003).
By default, α1= α2= ···= αK= α, which essentially assumes that an
individual has its ancestry originating from each of the assumed K
populations at an equal prior probability of 1/K. To model unequal sample
sizes such that an individual comes from a more intensively sampled
population at a higher prior probability, STRUCTURE also has applied an
alternative prior, α1 ≠ α2 ≠ ··· ≠ αK. It is shown that, when sampling intensity
is heavily unbalanced among populations, the default prior could lead to
the split of a large cluster and the merge of small clusters, while the
alternative prior yields much more accurate results (Wang 2017). These
priors have a large impact on admixture analysis; applying the default prior
to data of highly unbalanced samples leads to inaccurate Q estimates even
when many informative markers are used (Wang 2017).
Unfortunately, current non-model based or likelihood-based admixture

analysis methods do not utilise these or other priors for handling
unbalanced sampling. As a result, they can give inaccurate admixture
estimates, just like STRUCTURE under the default ancestry prior model, for
data from highly unbalanced sampling. To reduce the cluster split and
merge problems, herein I propose the following method to scale the
likelihood of a cluster by the size, the number of individual members, of
the cluster.
The original log-likelihood of cluster k, Lk Ωkð Þ, is calculated by (1). It is

then scaled by the cluster size, Nk, as

LSk Ωkð Þ ¼ Lk Ωkð Þ= 1þ esNk= 8Nð Þ
� �

; (5)

where s is the scaling factor taking values 1, 2, 3 for weak, medium and
strong scaling, respectively. This scaling scheme encourages large clusters
and discourages small clusters. Although (5) is not an analytically derived
but an empirical equation and is thus not guaranteed to be optimal,
extensive simulations (some shown below) verify that the scaling scheme
works very well for data from highly unbalanced sampling, yielding
accurate clustering analysis results and thus similarly or more accurate
admixture estimates than STRUCTURE under its alternative ancestry model.
The most appropriate scaling level (1, 2 or 3) for a particular dataset
depends on how unbalanced the sampling is, how much differentiated the
populations are, and how much informative the markers are. For example,
a low scaling level, s= 1, is appropriate when many markers are genotyped
for a set of lowly differentiated (low FST) populations. Usually, we do not
know these factors in analysing the data. Therefore, when the data are
suspected to be unbalanced in sampling among populations, they are
better analysed comparatively with different levels of scaling (0, 1, 2, and
3). When the applied level of scaling is too low, large populations tend to
be split and small populations tend to be merged. When the applied level
of scaling is too high, small populations tend to be merged among
themselves or with a large population. With the help of some internal
information such as consistency of replicate runs at the same scaling level
and the same K value and some external information such as sampling
locations in examining the admixture estimates, the appropriate scaling
level can be determined.
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Simulated annealing algorithm
A likelihood function with many variables, such as (4), is difficult to
maximise for estimates of the variables. Traditional methods, such as
derivative based Newton-Raphson algorithm (e.g., Tang et al. 2005) and
non-derivative based EM algorithm (Dempster et al. 1977; Tang et al. 2005;
Alexander et al. 2009), may converge to a local rather than the global
maximum for a large scale problem with ridges and plateaus (Gaffe et al.
1994). Although trying multiple replicate runs with different starting values
and choosing the run with the highest likelihood could reduce the risk of
landing on a local maximum, a global maximum cannot be guaranteed
regardless of the number of runs. The Bayesian approach as implemented
in STRUCTURE (Pritchard et al. 2000) has a similar problem, as different
replicate runs of the same data with the same parameter and model
choices but different random number seeds may yield different admixture
estimates and likelihood values (Tang et al. 2005; below).
Simulated annealing (SA) was developed to optimise very large and

complex systems (Kirkpatrick et al. 1983). Using the Metropolis algorithm
(Metropolis et al. 1953) from statistical mechanics, SA can find the global
maximum by searching both downhill and uphill and by traversing deep
valleys on the likelihood surface to avoid getting stuck on a local maximum
(Kirkpatrick et al. 1983; Goffe et al. 1994). It has been proved to be highly
powerful in pedigree reconstruction (Wang 2004; Wang and Santure 2009)
from genotype data, which is probably more difficult than population
structure reconstruction (i.e., clustering analysis) because the genetic
structure (i.e., sibship) of the former is, in general, more numerous, more
complicated with hierarchy, and smaller (thus more elusive and more
difficult to define) than that in the latter. Herein I propose a SA algorithm
for a population clustering analysis, as detailed in Supplementary
Appendix 1.

Admixture analysis
Under the mixture model, the above clustering analysis partitions the N
sampled individuals into a predefined K clusters, each representing a source
population. The properties (e.g., genetic diversity) of and the relationships
(e.g., FST) among these populations can be learnt from the inferred clusters.
However, the clustering results are accurate only when the mixture model is
valid. For a sample containing a substantial proportion of highly admixed
individuals (i.e., who have recent ancestors from multiple source popula-
tions), the clustering results are just approximations. In such a case, the
admixture model is more appropriate and can be used to refine the mixture
analysis results by inferring the admixture proportions (or ancestry
coefficients) of each sampled individual.
Under the admixture model (Pritchard et al. 2000), an individual i’s

ancestry (or admixture proportions) can be characterised by a vector qi=
{qi1, qi2, …, qiK}, where qik is the proportion of its genome coming from
(contributed by) source population k. Equivalently, qik can also be taken as
the probability that an allele sampled at random from individual i comes
from source population k. Obviously, we have qik ≥ 0 and

PK
k¼1 qik � 1. The

overall admixture extent of individual i can be measured by
Mi ¼ 1�PK

k¼1 q
2
ik , the probability that the two alleles at a randomly

drawn locus come from different source populations. Individual i is
purebred and admixed when Mi= 0 and Mi > 0, respectively. An F1 and F2
hybrid individual i is expected to have Mi= 0.5 and Mi= 0.625,
respectively.
The task of an admixture analysis is to infer qi for each individual i,

denoted by Q= {q1, q2, …, qN}. The log-likelihood function is

L Q;P Xjð Þ ¼
XN
i¼1

XL
l¼1

X2
a¼1

Log
XK
k¼1

qikpklxila

 !
(6)

Note (6) is essentially the same as those proposed in previous studies (e.g.,
Tang et al. 2005; Alexander et al. 2009). It assumes independence of
individuals conditional on the genetic structure defined by Q, and
independence of alleles both within and between loci. The former can
be violated when the data have genetic structure in addition to the
subpopulation structure defined by Q, such as the presence of familial
structure (Rodríguez‐Ramilo and Wang 2012) or inbreeding (Gao et al.
2007) within a subpopulation. The assumption of independence among
loci is violated for markers in linkage disequilibrium. It, as well as the
assumption of independence between paternal and maternal alleles within
a locus, is also violated due to admixture (Tang et al. 2005) or inbreeding
(Gao et al. 2007). However, (6) is a good approximation and works well in
general even when these assumptions are violated, as checked by
extensive simulations.

If P were known, it would be trivial to estimate Q from X. Unfortunately,
usually, the only information we have is genotype data X, from which we
must infer K, Q and P jointly. Herein I modify the EM algorithm of Tang
et al. (2005) to solve (6) for maximum likelihood estimates of Q and P given
K, as detailed in Supplementary Appendix 2.
Despite essentially the same likelihood function, my EM algorithm differs

from that of Tang et al. (2005) in three aspects. First, I use the clustering
results of mixture model as initial values of Q. Even in the worst scenario of
many highly admixed individuals included in a sample, the clustering
results should still be much closer to the true Q than a random guess, as
used in previous likelihood methods (Tang et al. 2005; Alexander et al.
2009). It is possible (and indeed it has been trialled) to use the results of a
faster non-model based clustering method, such as K-means method, in
place of those of the likelihood-based clustering method with simulated
annealing algorithm as described above. However, such non-model based
methods are less reliable and less accurate, especially in difficult situations
(below). Second, rather than updating Q and P in alternation, I update Q to
asymptotic convergence under a given P. I then update P using the
converged Q. This two-step iteration process is repeated until the
convergence of both Q and P is reached. Third, the allele frequencies for
a specific individual i are calculated by excluding the genotypes of the
individual, which are then used in the EM procedure for iteratively
updating qi.

Optimal K
The above-described clustering analysis and admixture analysis are
conducted by assuming a given number of source populations, K.
Apparently, different genetic structures would be inferred from the same
genotype data if different K values are assumed. In some cases, a
reasonable K value is roughly known. For example, individuals might be
sampled from K known discrete locations (say, lakes), and the purposes of a
structure analysis are to confirm that populations from different locations
are indeed differentiated and thus distinguishable, to identify migrants
between the locations, and to find out the patterns of genetic
differentiations (e.g., whether isolation by distance applies or not). In
many other cases, however, we may have no idea of the most likely K
value. For example, individuals might be sampled from the same breeding
or feeding ground and we wish to know how many populations are using
the same ground, and to learn the properties of these populations from
the individuals sampled and assigned to them. In such a situation of
hidden genetic structure, we need first to identify the most likely one or
more K values, and then investigate the corresponding structure/
admixture.
Estimating the most likely K value from genotype data is difficult

(Pritchard et al. 2000). Although many methods have been proposed and
applied (see review by Wang 2019), they are all ad hoc to some extent and
may be inaccurate in difficult situations such as highly unbalanced
sampling from different populations and low differentiation (Wang 2019).
Herein I propose two ad hoc estimators of K that can be calculated from
the clustering analysis presented in this study. They have a satisfactory
accuracy as checked by many test datasets, simulated and empirical.
The first estimator is based on the second order rate of change of the

estimated log-likelihood as a function of K in a clustering analysis, DLK2.
This estimator is similar in spirit to the ΔK method of Evanno et al. (2005),
but does not use the mean and standard deviation of log-likelihood values
among replicate runs (for a given K value) because the standard deviation
(the denominator of ΔK) is frequently zero thanks to the convergence of
our clustering analysis by the simulated annealing algorithm.
The second estimator, denoted by FSTIS, is based on Wright (1984)’s F-

statistics. The best K should produce the strongest population structure,
with high differentiation (measured by FST) of each inferred cluster and low
deviation from Hardy-Weinberg equilibrium (measured by FIS) within each
inferred cluster. Details of how to calculate the two estimators are in
Supplementary Appendix 3.

Simulations
To evaluate the accuracy, robustness, and computational efficiency of the
new methods implemented in PopCluster in comparison with other
methods, I simulated and analysed data with different population
structures and sampling intensities. The simulation procedure described
below is implemented in the software package PopCluster.

Simulation 1, small samples. A population becomes difficult to define
genetically when few individuals from it are sampled and included in an
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admixture analysis. However, a small sample of individuals can be common
in practice when, for example, archaeological samples (usually few) are
used in studying ancient population structure or in studying the
relationship between ancient and current populations (e.g., Lazaridis
et al. 2014). In a mixed stock analysis (Smouse et al. 1990) or a wildlife
forensic analysis of source populations, there might also be few sampled
individuals representing a rare population. To investigate the impact of
sample sizes on an admixture analysis, I simulated 10 populations in an
island model with FST= 0.05. Nk (=2, 3, …, 10 and 20) individuals were
sampled from each of the 10 populations, or 1 individual was sampled
from each of the first five populations and 2 individuals were sampled from
each of the last five populations (the case Nk= 1.5, Table 1). Other
simulation parameters are summarized in Table 1.

Simulation 2, many populations. Admixture becomes increasingly difficult
to infer with an increasing K, the number of assumed populations, because
the dimensions of both Q and P increase linearly with K. This contrasts with
the number of individuals, N, and the number of loci, L, which determines
the dimensions of Q and P only, respectively. Therefore, the scale of an
admixture analysis, in terms of the number of parameters to be estimated,
is predominantly determined by K rather than N or L. I simulated data with
a widely variable number of populations (K= [6, 100]) to see if the
structure can be accurately reconstructed by using relatively highly
informative markers (parameters in Table 1), especially when K is large
which is rarely considered in previous simulation studies.

Simulation 3, spatial admixture model. The spatial admixture model
resembles isolation by distance where population structure changes
gradually as a function of geographic location. Under this model,
populations are not discrete as assumed by admixture models and have
no recognisable boundaries, posing challenges to an admixture analysis.
To simulate the spatially gradual changes in genetic structure, I assume
source populations 1, 2, …, K are equally spaced in that order along a line
(say, a river in reality). Sampled individuals 1, 2, …, N are also equally
spaced in that order on the same line. The admixture proportions of
individual i, qi= {qi1, qi2, …, qiK}, being the proportional genetic
contributions to i from source populations k, are a function of the
individual’s proximity to these K source populations. Formally, we have

qik ¼ q�ikPK
k¼1 q

�
ik

(7)

where

q�ik ¼ 1� i � 1
N � 1

� k � 1
K � 1

� �2
" #S

and parameter S is used to regulate the admixture extent of the N sampled
individuals. Under this spatial admixture model, an individual i’s admixture
(qi) is determined by its location, or the distances from the K source
populations. The 1st and the last sampled individuals (i= 1, N) always have
the least admixture, measured by Mi ¼ 1�PK

k¼1 q
2
ik . q11 (=qNK) is always

the largest among the qik values for i= 1, 2, …, N and k= 1, 2, …, K. Given
a desired value of q11 and K, the scaler parameter S can be solved from the
above equations. Given K, N and S, qi of an individual i can then be
calculated from the above equations. In this study, I simulated and
analysed samples generated with parameters K= 5, N= 500, L= 10000
SNPs, and q11 varying between 0.5 and 1.0 (Table 1).

Simulation 4, low differentiation. Population structure analysis becomes
increasingly difficult with a decreasing differentiation, usually measured by
FST, among subpopulations. Fortunately, with genomic data of many SNPs,
it is still possible to detect weak and subtle population structures
(Patterson et al. 2006) as demonstrated in human fine-structure analysis
(e.g., Leslie et al. 2015). I simulated data with varying weak population
structures (low FST, Table 1) and otherwise ideal populational (only 3
equally differentiated subpopulations) and sampling conditions (i.e., a
large sample of individuals per subpopulation, and many SNPs). The
number of SNPs used in analyse was L= 1000/FST such that in principle the
population structures should be inferred with roughly equal power and
accuracy. Because L is large for low FST, STRUCTURE analysis was
abandoned due to computational difficulties.

Simulation 5, unbalanced sampling. Samples of individuals from different
source populations are rarely identical in size in practice. Frequently, Ta

bl
e
1.

Si
m
u
la
ti
o
n
p
ar
am

et
er
s.

Si
m
ul
at
io
n
s

K
F S

T
d
(q

1
1
)

S
L

λ F
S

N
k

Sm
al
l
sa
m
p
le
s

10
0.
1

0
0

10
00

0
1.
5,

2–
40

M
an

y
p
o
p
u
la
ti
o
n
s

3,
6,

12
,2

5,
50

,1
00

0.
05

0
0

10
00

0
20

H
ig
h
ad

m
ix
tu
re

3
0.
1

0.
02

5,
0.
05

,0
.1
,

0.
2,

0.
4,

0.
8

0
10

00
0

50

Sp
at
ia
l
ad

m
ix
tu
re

m
o
d
el

5
0.
05

0.
4,

0.
5,

0.
6,

0.
7,

0.
8,

0.
9,

1.
0

0
10

00
0

0
10

0

Lo
w

d
iff
er
en

ti
at
io
n

3
0.
00

05
,0
.0
01

,
0.
00

2,
0.
00

4,
0.
00

8,
0.
01

6,
0.
03

2
0

0
20

00
00

0,
10

00
00

0,
50

00
00

,
25

00
00

,1
25

00
0,

62
50

0,
31

25
0

0
50

U
n
b
al
an

ce
d
sa
m
p
lin

g
3

0.
1

0
0

10
00

0
4,

8,
12

,1
6,

20
,3

0,
40

,5
0,

60
,7

0,
80

R
el
at
ed

n
es
s

3
0.
02

5
0

0
10

00
0,

2,
4,

8,
16

50

In
b
re
ed

in
g

3
0.
1

0
0,
0.
05

,0
.1
,0
.2
,

0.
4,

0.
8

10
00

0
50

C
o
m
p
u
ta
ti
o
n
al

ef
fi
ci
en

cy
2,
4,
8,
16

,3
2,
64

,1
28

,2
56

,5
12

0.
1

0.
1

0
10

00
0

0
10

Th
e
co

lu
m
n
s
(le

ft
to

ri
g
h
t)
ar
e
si
m
u
la
ti
o
n
sc
en

ar
io
s,
n
u
m
b
er

o
fp

o
p
u
la
ti
o
n
s
(K
),
d
iff
er
en

ti
at
io
n
(F
ST
),
ad

m
ix
tu
re

p
ro
b
ab

ili
ty

d
(s
ee

te
xt

fo
r
d
et
ai
ls
)o

r
q 1

1
(f
o
r
sp
at
ia
la
d
m
ix
tu
re

m
o
d
el
),
se
lfi
n
g
ra
te

(S
),
n
u
m
b
er

o
fl
o
ci

(L
),
av
er
ag

e
fu
ll-
si
b
fa
m
ily

si
ze

(λ
FS
),
an

d
sa
m
p
le
si
ze
s
(N

k)
fo
r
ea
ch

si
m
u
la
te
d
sc
en

ar
io
.F
o
r
th
e
se
t
o
fs
im

u
la
ti
o
n
s
w
it
h
lo
w
d
iff
er
en

ti
at
io
n
,I
as
su
m
ed

va
ri
o
u
s
F S

T
va
lu
es

an
d
co

rr
es
p
o
n
d
in
g
n
u
m
b
er
s
o
f
m
ar
ke
rs
,w

it
h

L
=
10

00
/F

ST
.F
o
r
u
n
b
al
an

ce
d
sa
m
p
lin

g
,I
as
su
m
e
K
=
3
p
o
p
u
la
ti
o
n
s
w
it
h
N
2
≡
N
3
≡
4,
8,
12

,1
6,
20

,2
4,
an

d
N
=
N
1
+

N
2
+

N
3
≡
20

0.
Th

e
ex
te
n
t
o
f
u
n
b
al
an

ce
d
sa
m
p
lin

g
is
m
ea
su
re
d
b
y
th
e
sa
m
p
le

si
ze

ra
ti
o
,N

1
/N

2
.

Fo
r
si
m
u
la
ti
n
g
re
la
te
d
n
es
s
b
et
w
ee

n
in
d
iv
id
u
al
s
sa
m
p
le
d
fr
o
m

a
su
b
p
o
p
u
la
ti
o
n
,I
as
su
m
e
a
Po

is
so
n
d
is
tr
ib
u
ti
o
n
o
ff
u
lls
ib

si
ze

w
it
h
p
ar
am

et
er

λ F
S
(m

ea
n
si
b
sh
ip

si
ze
).
W
h
en

λ F
S
=
0,
n
o
fu
ll
si
b
lin

g
is
si
m
u
la
te
d
.I
n
al
l

n
o
n
-s
p
at
ia
la

d
m
ix
tu
re

si
m
u
la
ti
o
n
s,
Ia

ss
u
m
e
an

is
la
n
d
m
o
d
el

an
d
tw

o
co

d
o
m
in
an

t
al
le
le
s
p
er

lo
cu

s.
R
es
u
lt
s
o
f
th
e
th
re
e
sc
en

ar
io
s
o
f
re
la
te
d
n
es
s,
in
b
re
ed

in
g
an

d
h
ig
h
ad

m
ix
tu
re

ar
e
in
cl
u
d
ed

in
Su

p
p
le
m
en

ta
ry

A
p
p
en

d
ix

4.

J. Wang

83

Heredity (2022) 129:79 – 92



different source populations are represented by different numbers of
individuals in a sample. The impact of unbalanced sampling and how to
mitigate it in applying STRUCTURE have been investigated (e.g.,
Puechmaille 2016; Wang 2017). Similar problems exist for other admixture
or clustering analysis methods but have not been studied yet. The same
population structure and unbalanced sampling schemes (see parameters
in Table 1) used in Wang (2017) were used to simulate data, which were
then analysed by various methods to understand their robustness to
unbalanced sampling.

Simulation 6, computational efficiency. Samples from a variable number
of populations (Table 1) were analysed by the four programs on a linux
cluster to compare their computational efficiencies. Each program uses
a single core (no parallelisation) of a processor (Intel Xeon Gold 6248 2.5
GHz) for a maximal allowed time of 48 or 72 (when K= 1024 only) hours.
Default parameter settings are used for all four programs. For
STRUCTURE, both burn-in and run lengths were set to 104, although
much higher burn-in is required for convergence when K is large (say K
> 20). The running time for STRUCTURE is thus conservative, especially
when K is not small.
Further simulations were conducted to investigate the effects of high

admixture and the presence of familial relationships and inbreeding on
the relative performance of different admixture analysis methods, as
detailed in Supplementary Appendix 4.
In all simulations except for the spatial admixture model, I assumed a

population with K discrete subpopulations in Wright’s (1931) island
model in equilibrium among mutation, drift and migration. For a locus l
(=1, 2, …, L) with Jl alleles, allele frequencies of the ancestral
population, p0l= {p0l1, p0l2, …, p0lJl }, were drawn from a uniform
Dirichlet distribution, D λ1; λ2; ¼ ; λJlð Þ where λj= 1 for j= 1, 2, …, Jl.
Given p0l, allele frequencies of subpopulation k (=1, 2, …, K), pkl = {pkl1,
pkl2, …, pklJl }, were drawn from a uniform Dirichlet distribution,
D λ1; λ2; ¼ ; λJlð Þ, where λj ¼ ð 1

FST
� 1Þp0lj for j= 1, 2, …, Jl (Nicholson

et al. 2002; Falush et al. 2003). Given pkl and the admixture proportion qi

of individual i, two alleles at locus l were drawn independently to form
the individual’s genotype. The multilocus genotype of an individual was
obtained by combining single locus genotypes sampled independently,
assuming linkage equilibrium. Nk individuals were drawn at random
from population k (= 1, 2, …, K), which were then pooled and subjected
to a structure analysis.
For the spatial population and sampling model, allele frequencies at a locus

l, p0l and pkl, are generated as before, assuming FST= 0.05 among K=
5 subpopulations. A number of N= 500 individuals, equally spaced on the line
between source populations 1 and 5, are sampled. The admixture proportion
of individual i, qi, is determined by its location, calculated by Eq. (7). Given pkl
and qi, the multilocus genotype of individual i is simulated as described above.
For each parameter combination, 100 replicate datasets were simulated,

analysed and assessed for estimation accuracy. Each dataset was analysed for
admixture by different methods (see below for details) with an assumed K as
used in simulations. I did not consider estimating the optimal K by analysing a
simulated dataset in a range of possible K values. This is because, like previous
studies (e.g., Pritchard et al. 2000; Alexander et al. 2009), I am more concerned
with admixture inference under a given K, which is important of itself and
forms the basis for inferring the optimal K as well. This is also because it is
almost impossible computationally to estimate the optimal K for so many
replicate datasets and so many parameter combinations in a large-scale
simulation study like the present one, even when using large computer
clusters. The optimal K was estimated for several empirical datasets (below).

Measurement of accuracy
Inference accuracy could be assessed by comparing, for each individual i,
the agreement between simulated ancestry coefficients, qi, and estimated
ancestry coefficients, bqi , obtained by an admixture analysis assuming the
true/simulated subpopulation number K. Because the reconstructed
populations are labelled arbitrarily (Pritchard et al. 2000), no meaningful
results can be gained by comparing qi and bqi directly, however. It is possible
to relabel the reconstructed populations and find the labelling scheme that
has the maximum agreement between qi and bqi as the measurement of
accuracy. However, there are K! possible labelling schemes, making the
approach difficult to calculate when K is large (say, K > 50).
The labelling becomes irrelevant when pairs of individuals are

considered for the co-assignment probabilities (or coancestry) (Dawson
and Belkhir 2001). I calculate and use the average difference between
simulated and estimated coancestry for pairs of sampled individuals to

measure the average assignment error, AAE (Wang 2017),

AAE ¼ 1
N N � 1ð Þ=2

XN
i¼1

XN
j¼1þ1

XK
k¼1

qikqjk �
XK
k¼1

bqikbqjk
 !2 !1=2

: (8)

The minimum value of AAE is 0, when ancestry (admixture) is inferred
perfectly. The maximum value is 1, when there are no admixed individuals
in the sample, individuals from the same source population are always
assigned to different populations and individuals from different source
populations are always assigned to the same population. It is worth noting
that the minimum AAE value of 0 is always possible for any population
structure. However, the maximum value varies and can be much smaller
than 1, depending on the actual underlying population structure. With an
increasing K value or increasing admixture (i.e., qik→1/K for any individual
i), the maximum value of AAE tends to decrease. For this reason, AAE
cannot be compared fairly between different genetic structures (e.g.,
different K values, different actual Q for a given K, or different sizes of
subsamples from the source populations) for measuring the relative
inference qualities. However, it can always be used to compare the
accuracy of different inference methods for a given simulated genetic
structure and a given sample.

Analysis of real datasets
An ant dataset. It was originally used in a study of the mating system of
an ant species, Leptothorax acervorum (Hammond et al. 2001). Ten
sampled colonies, A, B, C, D, E, F, G, H, I, and J, contribute respectively 9, 7,
47, 45, 45, 45, 45, 45, 44, and 45 diploid workers to a sample of 377
individuals. For this species, we know that each colony is headed by a
single diploid queen mated with a single haploid male. Therefore, workers
from the same colony are full-sibs and workers from different colonies are
non-sibs. Each sampled worker was genotyped at up to 6 microsatellite
loci, which have 3 to 22 alleles per locus observed in the 377 individuals.
This dataset was analysed to reconstruct the genetic structure of the
sample, which actually is the family structure. ADMIXTURE and sNMF
cannot handle multiallelic marker data and therefore only STRUCTURE and
PopCluster are used for analysing this dataset.
For STRUCTURE, I used the default parameter settings, except for the

burning-in and run lengths which were both set to 105 to reduce the risk of
non-convergence. Two analyses were conducted. First, optimal K values
were determined using three estimators (Wang 2019) calculated from
STRUCTURE outputs, and using the DLK2 estimator of PopCluster. For this K
estimation purpose, 20 replicate runs for each possible K value in the range
[1, 15] were conducted by both STRUCTURE and PopCluster. Second,
assuming K= 10, a number of 100 replicate runs (each with a distinctive
seed for the random number generator) were conducted by both
STRUCTURE and PopCluster to investigate their convergence.

An Arctic charr dataset. Shikano et al. (2015) sampled 328 Arctic charr
individuals from 6 locations in northern Fennoscandia: two lakes
(Galggojavri and Gallajavri) and one pond (Leenanlampi) in the Skibotn
watercourse drain into the Atlantic Ocean and three lakes (Somasjärvi,
Urtas-Riimmajärvi and Kilpisjärvi) in the Tornio-Muoniojoki watercourse
drain into the Baltic Sea. Individuals were genotyped at 15 microsatellite
loci to study the genetic structure and demography. The data were again
analysed by STRUCTURE and PopCluster but not by ADMIXTURE and sNMF
because the markers are multiallelic. I conducted two separate analyses of
the genotype data. First, I estimated the most likely K value by each
program, making 20 replicate runs with each K value in the range [1, 10].
Second, I investigated the convergence of each program by conducting
100 replicate runs of the data at K= 6. STRUCTURE analyses were run with
default parameter settings except for both burn-in and run lengths being
105.

A human SNP dataset. Using FRAPPE (Tang et al. 2005), Li et al. (2008)
studied the world-wide human population structure represented by 938
individuals sampled from 51 populations of the Human Genome Diversity
Panel (HGDP). Each individual was genotyped at 650000 common SNP loci.
The data were expanded to include genotypes of 1043 individuals at
644258 SNPs, available from http://www.cephb.fr/en/hgdp_panel.
php#basedonnees. In this study, the expanded data were comparatively
analysed by PopCluster, ADMIXTURE, and sNMF, assuming K= 7 clusters
(regions) as in the original study (Li et al. 2008). STRUCTURE was too slow
to analyse this big dataset and thus it was abandoned.
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The human 1000 genomes phase I dataset. The dataset (Abecasis et al.
2012), available from https://www.internationalgenome.org/data/, has
1092 human individuals sampled from 14 populations across all
continents, with each individual having 38 million SNP genotypes.
After removing monomorphic loci (note, no pruning was applied
regarding missing data, minor allele frequency and linkage disequili-
brium, in contrast to other studies), genotypes at a number of L=
38035992 SNPs were analysed by PopCluster and sNMF, assuming K= 9
clusters (regions). Both STRUCTURE and ADMIXTURE were too slow to
analyse this huge dataset and thus were abandoned. No attempts are
made to find the optimal K for this dataset as done for the ant and Arctic
charr datasets, because too much computational time is required for
PopCluster or sNMF to analyse the data with a number of replicate runs
at each of a number of K values even when using a large cluster, and
there might be multiple K values that explain the data equally well (at
different spatial and time scales). For a better understanding of the
world-wide human population genetic structure, the data should be
analysed at least with one replicate under each of a number of possible
K values, say K= [5, 12], to reveal and compare the genetic structure.
This study analysed the data at a single K= 9 for the purpose of
demonstrating the capacity of different methods, and comparing the
admixture estimates of PopCluster and sNMF at this particular value of
K. Because of the incompleteness of the analysis, the biological
interpretations of the results should be taken with caution.

Comparative analyses by different software
I compared the accuracy and computational time of STRUCTURE (Pritchard
et al. 2000; Falush et al. 2003), ADMIXTURE (Alexander et al. 2009), sNMF
(Frichot et al. 2014) and PopCluster in analysing both simulated and
empirical datasets described above. Quite a few other model-based
methods implemented in various software exist. I choose STRUCTURE and
ADMIXTURE because they are the most popular model-based admixture
analysis methods used for small and large datasets, respectively. I also
choose sNMF because it is a very fast model-based method that works for
huge datasets for which other methods, such as ADMIXTURE, fail to run or
take unrealistically too much time to run.
STRUCTURE can handle both diallelic (such as SNPs) and multiallelic

(such as microsatellites) markers, but runs too slowly to analyse large
datasets with many markers, many individuals, or many populations. It was
therefore used to analyse all simulated and empirical datasets with no
more than 10000 loci. The default parameter setting was used for most
datasets, with a burn-in length of 104 and a run length of 104 iterations. For
better convergence, the burn-in and run lengths were increased to 105

iterations for analyses involving a large number of simulated populations
(say, when K ≥ 10) or for analyses of empirical datasets. For unbalanced
sampling, the alternative ancestry model instead of the default model was
used by setting POPALPHAS= 1.
Both ADMIXTURE and sNMF were developed specifically for diallelic

markers and could not analyse multiallelic marker data. In this study,
they were used to analyse SNP data only. For the human 1000 genome
phase I data, however, ADMIXTURE could not complete the analysis
within a realistic period of time (72 h, the maximum allowed in the linux
cluster used for the analysis) even when the maximal number of parallel
threads were used. Therefore, only sNMF and PopCluster were used to
analyse this dataset.
To understand the relative computational efficiency and how much

speedup can be gained by parallelisation, ADMIXTURE, sNMF and
PopCluster were used to analyse the HGDP dataset and the 1000 genome
dataset, by using a variable number of parallel threads on a linux cluster
with many nodes, each having 32 cores. The maximum wall clock time
allowed for a job on the cluster is 48 h.

RESULTS
Simulation 1, small samples
STRUCTURE performs poorly when a sample contains a small
number of individuals drawn from each population (Fig. 1A).
When each population is represented by just a few individuals
(say, 10 or fewer), STRUCTURE is less accurate in inferring
individual admixture proportions, making more errors than other
methods. However, with an increasing sample size for each
population, it becomes more accurate than ADMIXTURE and
sNMF. Across the entire range of sample sizes considered in the

simulation, ADMIXTURE is more accurate than sNMF, and
PopCluster is the most accurate among the four methods.
The poor performance of STRUCTURE, ADMIXTURE, and sNMF

when each population is represented by just a few individuals is
caused by the difficulty in delineating a population by its allele
frequencies. In such a situation, the three methods tend to make
sporadic population splits and merges, to infer extensive
admixture or both, as shown in Supplementary Appendix 5 for a
particular simulated dataset.

Simulation 2, many populations
In the range of simulated number of populations (K from 3 to 100),
STRUCTURE is the most accurate when K is small (K < 6), but
quickly PopCluster becomes the most accurate when K becomes
medium or large (Fig. 1B). ADMIXTURE and sNMF are consistently
less accurate than the other two methods in the entire range of
K= [3100].
ADMIXTURE and sNMF are less accurate than STRUCTURE and

PopCluster because they tend to infer too much admixture, as
shown in Supplementary Appendix 6 for a particular simulated
dataset with K= 10.

Simulation 3, spatial admixture model
The assignment errors of the four methods for different q11 values
used in simulations under the spatial admixture model are shown
in Fig. 1C. STRUCTURE is the most accurate method when the
populations are highly admixed (q11 < 0.45) or lowly admixed
(q11 > 0.75), but is the least accurate when the populations are
mediumly admixed (0.45 < q11< 0.75). PopCluster, ADMIXTURE and
sNMF have similar performance when q11 is not very high.
However, as q11 increases to 1, PopCluster and sNMF become the
most and least accurate one of the three methods, respectively.
The simulated and estimated admixture of a particular dataset
generated with q11= 0.9 is shown in a bar chart in Supplementary
Appendix 7.

Simulation 4, low differentiation
At low differentiation and in otherwise ideal populational and
sampling situations, both PopCluster and ADMIXTURE can infer
structure accurately (Fig. 1D). In contrast, sNMF is inaccurate,
producing much higher inference errors than other methods.
sNMF overestimates admixture, as shown by the admixture bar
chart for a particular dataset in Supplementary Appendix 9. Both
ADMIXTURE and sNMF also have a convergence problem, as
exemplified by Figs. A9–1.

Simulation 5, unbalanced sampling
Using the scaling scheme (Eq. 5) in PopCluster and the alternative
ancestry prior in STRUCTURE, both methods yield accurate
structure inferences when population representations in the
sample are unbalanced (Fig. 1E). In contrast, inferences from
ADMIXTURE and sNMF are very inaccurate when sampling is
highly unbalanced. As a confirmation of the importance of
appropriate scaling and prior, PopCluster without the scaling
scheme and STRUCTURE with the default ancestry prior yield
similar results to those of ADMIXTURE and sNMF (not shown in
Fig. 1E for clarity). The inaccuracy of ADMIXTURE and sNMF is
caused by their overestimation of admixture, as shown in
Supplementary Appendix 8 for a particular dataset.

Other simulations
Overall, PopCluster and STRUCTURE have a similar performance
and are more accurate than sNMF and ADMIXTURE when selfing is
present and when admixture occurs at various extents (Supple-
mentary Appendix 4). However, STRUCTURE is sensitive to the
presence of sibship structure in a sample, and becomes the least
accurate method when large full sib families are included in a
sample.
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Simulation 6, computational efficiency
STRUCTURE is slower than the other programs by roughly 1000
times (Fig. 1F), despite of the use of a short burn-in and run
length (=10000) which could be insufficient for convergence
when K is not small. ADMIXTURE runs faster than PopCluster
only when K < 32. Its running time per iteration increases
quadratically with K (Alexander et al. 2009) and therefore it
becomes slower than PopCluster when K > 32. Within the range
of K= [2512], sNMF is the fastest among the four programs.
However, its computational efficiency advantage over PopClus-
ter diminishes with an increasing K. It is overtaken by
PopCluster when K > 512. Within the 48 h limits, the maximal
number of populations that can be analysed successfully is 32
for STRUCTURE, 128 for ADMIXTURE, and 512 for both

PopCluster and sNMF. For K= 1024, the analyses by PopCluster
and sNMF were conducted on a linux cluster with a maximal job
duration of 72 h. The computational efficiency of PopCluster
over other programs becomes more prominent with an
increasing number of markers. At K= 512, PopCluster and
sNMF have a similar running time (Fig. 1F). However, when the
number of loci is increased to 1 million, PopCluster and sNMF
take 16 and 26 h respectively to complete the analysis using 36
cores in parallel.

Analysis of the ant dataset
Using genotype data of only six microsatellites, both PopCluster
and STRUCTURE recovered the colony structure of the ant sample.
First, different K estimators using STRUCTURE outputs and the DLK2

Fig. 1 Simulation results. A Average assignment error, AAE, as a function of the average subsample size (1.5, 2, 3, …, 10 and 20 individuals)
from each of K= 10 populations. The populations were assumed to have FST= 0.1 in the island model, and each sampled individual was
genotyped at 1000 SNP loci. B AAE as a function of the number of populations (K). 20 individuals were sampled from each of K populations
simulated with FST= 0.05 in the island model, and each sampled individual was genotyped at 1000 SNP loci. C AAE as a function of q11 in
spatial admixture model. 500 individuals were sampled from K= 5 populations simulated with FST= 0.05 in spatial admixture model, and each
sampled individual was genotyped at 10000 SNP loci. D AAE as a function of genetic differentiation between populations (FST). K= 3
populations with varying FST (on x axis) in the island model were simulated, 50 individuals were sampled from each population, and each
sampled individual was genotyped at a number of L= 1000/FST SNP loci. E AAE as a function of the subsample size of population 2 or 3 (Nk).
The island model of K= 3 populations with FST= 0.1 was simulated. A subsample of Nk (x axis) individuals was sampled from population 2 or 3,
and a subsample of 300−2Nk individuals was sampled from population 1. Each individual was genotyped at a number of L= 1000 SNP loci.
F Running time (seconds) as a function of the number of populations (K). The island model of K= [2, 1024] populations with FST= 0.1 was
simulated. 10 individuals were sampled from each population and genotyped at L= 10000 SNP loci.

J. Wang

86

Heredity (2022) 129:79 – 92



estimator of PopCluster yield the same result, K= 10, which agrees
with the known number of colonies represented by the
377 sampled workers. Second, both PopCluster and STRUCTURE
assigned these 377 individuals into 10 populations corresponding
to the 10 sampled colonies (Fig. 2). Each individual was inferred to
have no or little admixture, with its ancestry coming almost
exclusively from a single source population (colony). Relatively,
STRUCTURE yields slightly more admixture than PopCluster.
Analyses by PopCluster conducted with both scaling and no
scaling yielded the same results.
STRUCTURE has a convergence problem for this dataset. Among

the 100 replicate runs with K= 10, 91 runs correctly recovered the
colony structure with minor differences in admixture proportion
estimates, and in estimated log probability of data, LnPrb
(maximum=−3758.1, minimum=−3768.4). Nine runs did not
reconstruct the colony structure correctly. They either merged the
two small colonies (with 7 and 9 workers) and thus produced 9
clusters, or one of the large colonies showed extensive
admixtures, or both (see one example in Fig. 2). The 9 runs had
much smaller LnPrb values, from −3822.2 to −4163.7. For the
example shown in the lower panel of Fig. 2, the LnPrb value is
−3843.4. In contrast, PopCluster converges reliably for this
dataset, with all 100 replicate runs yielding the same colony
structure with the same maximum likelihood value.

Analysis of the Arctic charr dataset
Similar results are obtained from PopCluster and STRUCTURE
(Fig. 3). At K= 6, both programs reconstructed 6 clusters, each
consisting mostly of individuals from a single sampling location
only. The results shown in Fig. 3 are also very similar to those in
the original study (Shikano et al. 2015) using both STRUCTURE (but
the correlated allele frequency model) and BAPS (Corander et al.
2003). Different from the ant data, STRUCTURE converges reliably
for this charr dataset at K= 6, with all 100 replicate runs yielding
essentially the same results, with minor differences in LnPrb (from
−10790.9 to −10820.9) and in individual admixture proportion
estimates. PopCluster again produced the same results (maximum
likelihood and admixture) among the 100 replicate runs.
Also different from the ant data, reliable estimates of the

optimal number of populations, K, are difficult to obtain from this
Arctic charr dataset. The ΔK estimator for STRUCTURE and the DLK2

estimator of PopCluster yield an estimate of K= 6, consistent with
the number of sampling locations. The other two estimators for
STRUCTURE give K= 7, although its supporting evidence is not
much stronger than that at either K= 6 or K= 8 (Fig. 3).

Analysis of the human SNP dataset
ADMIXTURE and sNMF yield almost identical results (Fig. 4). They
merged Middle East and Europe into a single cluster. The main

Fig. 2 Analysis of the population structure of 377 ant workers sampled from 10 colonies and genotyped at 6 microsatellites. The first row
shows the optimal K (indicated by vertical dotted lines) estimated by three different estimators using STRUCTURE outputs, and by the DLK2
estimator of PopCluster. The other rows show individual ancestry inferences by PopCluster (the 2nd row) and STRUCTURE (the 3rd and 4th
rows) assuming the optimal K= 10. Each individual is represented by a thin vertical line partitioned into K= 10 coloured segments that
represent the individual’s estimated membership fractions in K clusters. The 10 colonies (sampled numbers of workers) are shown on the x
axis. The 3rd (A) and 4th (B) rows show the results from two replicate STRUCTURE runs yielding a higher and lower estimated probability
of data.
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Fig. 3 Analysis of the population structure of a sample of 328 Arctic charr individuals genotyped at 15 microsatellites. The upper panel
shows the optimal K (indicated by vertical dotted lines) estimated by three different estimators using STRUCTURE outputs, and by the DLK2
estimator of PopCluster. The middle and lower panels show individual ancestry inferences by PopCluster and STRUCTURE assuming K= 6.
Each individual is represented by a thin vertical line partitioned into K= 6 coloured segments that represent the individual’s estimated
membership fractions in the K clusters. Individuals were ordered according to the sampling locations/populations shown on the x axis.
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Fig. 4 PopCluster (upper), ADMIXTURE (middle) and sNMF (lower) inferred population structures of a world-wide sample of 1043 human
individuals genotyped at 644258 SNPs (644199 polymorphic). Each individual is represented by a thin vertical line partitioned into K= 7
coloured segments that represent the individual’s estimated membership fractions in the K clusters. Individuals were ordered according to the
sampling locations/populations shown on the x axis.
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difference between the two populations is that Middle East has a
small fraction of African ancestry, while Europe has none. Surui
people were split from the Americans to form a separate one of
the K= 7 clusters. These results contrast with those from
PopCluster, which partitioned the 1043 people into 7 clusters
that correspond nicely to the sampling regions of Africa, America,
Central South Asia, East Asia, Europe, Middle East, and Oceania.
PopCluster results are in broad agreement with the original
analysis results of Li et al. (2008) using FRAPPE.

Analysis of the human 1000 genome phase I dataset
At K= 9, sNMF infers much more admixture than PopCluster
(Fig. 5). European populations, except for the Italians (TSI), are all
highly admixed, according to sNMF. However, these populations
are inferred to have much less admixture by PopCluster. The
Japanese and the Chinese form a single cluster by sNMF, but are
separated into two clearly different clusters by PopCluster. The

Japanese share more ancestry with northern Chinese than
southern Chinese according to PopCluster, but this trend is
invisible from sNMF.

Efficiency of parallel computation
Using the same number of cores, sNMF is the fastest and
ADMIXTURE is the slowest for analysing the human HGDP dataset
(Table 2). All three methods take less time to complete the analysis
with the use of an increasing number of parallel threads.
PopCluster benefits more from the parallelisation than sNMF
and ADMIXTURE. All methods run slower with an increasing K.
However, PopCluster is much less affected by an increasing K than
the other methods, as expected because only a small fraction of
variables need to be updated in the clustering iterations of
PopCluster.
When K= 9 is assumed for analysing the 1000 genome dataset

by the same number of parallel threads, ADMIXTURE fails to finish

FIN          GBR     IBS    CEU           TSI              CHS           CHB            JPT           YRI            LWK       ASW   PUR    CLM     MXL 
PopCluster 

sN
M

F

Fig. 5 PopCluster (upper) and sNMF (lower) inferred population structures of a world-wide sample of 1092 human individuals genotyped
at 38035992 SNPs (human 1000 genomes project, Phase I data). Each individual is represented by a thin vertical line partitioned into K= 9
coloured segments that represent the individual’s estimated membership fractions in the K clusters. Individuals were ordered according to the
sampling locations/populations shown on the x axis (top). The 14 sampling populations (sample sizes) are: FIN, Finish (93); GBR, British (89);
IBS, Spanish (13); CEU, CEPH Utah residents (85); TSI, Tuscan (98); CHS, Southern Han Chinese (100); CHB, Han Chinese (97); JPT, Japanese (89);
YRI, Yoruba (99); LWK, Luhya (97); ASW, African-American (61); PUR, Puerto Rican (55); CLM, Colombian (60); MXL, Mexican–American (66).

Table 2. Runtime for analysing two human datasets.

Number of parallel threads

Dataset (K) Methods 1 2 4 8 16 32 64 128 256 512 1024

HGDP (7) sNMF 28 6 12 6 5

Admixture 256 189 147 183 165

PopCluster 352 89 54 25 14

HGDP (12) sNMF 36 30 15 10 13

Admixture 601 326 235 193 185

PopCluster 355 173 81 43 19

HGDP (24) sNMF 48 68 28 28 15

Admixture 1573 987 608 446 325

PopCluster 394 212 90 43 19

1000Genome (9) sNMF 974 789 497 258 197 118 - - - - -

PopCluster * * * 2316 1897 1328 929 714 420 276 193

Runtime is in minutes of wall clock time. The human HGDP dataset (1043 individuals, 644258 SNPs) was analysed by assuming K= 7, 12, and 24 with [1,16]
parallel threads. The human 1000 genome phase I dataset was analysed assuming K= 9 by sNMF with [1,32] parallel threads, and by PopCluster with [8,1024]
parallel threads. “-“ and “*” mean no run was conducted because of the constraint in the number of threads in a node (sNMF) and in wall clock time allowed
for a job (PopCluster), respectively.
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the run within the maximally allowed 48 h on the cluster, and
sNMF runs much faster than PopCluster (Table 2). However, sNMF
must use parallel threads with shared memory. As a result, the
maximum number of parallel threads that can be used by sNMF is
only 32, the number of cores of a node in the cluster used for
analysing the data. PopCluster uses both MPI and openMP to
exploit parallelisation with both shared and distributed memory. It
can therefore use all of the cores and all of the distributed
memories across the nodes in a computer cluster for parallel
computation and storage of data. PopCluster using 1024 threads
runs as fast as sNMF using 16 threads for this dataset with K= 9.
However, at higher K values (say, K= 50), PopCluster runs faster
than sNMF using the same number of threads (data not shown). It
can also handle huge datasets (say, terabytes of genotype data)
that are impossible to fit into any shared memory but can be
subdivided and fitted into distributed memories in a cluster.

DISCUSSIONS
In this study, I proposed a new method to make unsupervised
population structure inference from a sample of multilocus
genotypes only. As verified by analysing simulated and empirical
datasets, it is advantageous over the most popular Bayesian and
likelihood admixture analysis methods. It is the first model-based
admixture analysis method that can handle both small multiallelic
marker datasets (e.g., a few microsatellites) and huge diallelic
marker datasets (e.g., millions of SNPs). STRUCTURE, having
elaborated models of, among others, prior allele frequency
distributions and prior ancestry distributions, is accurate, espe-
cially in difficult situations such as low differentiation and
unbalanced sampling. However, it is computationally too
demanding to analyse genomic data. Even a dataset with a few
thousands of SNPs poses a serious challenge for STRUCTURE to
analyse, especially in determining K as quite a few replicate runs
for each of a number of possible K values need to be conducted
(e.g., Evanno et al. 2005). Methods capable of handling genomic
data, such as ADMIXTURE (Alexander et al. 2009), sNMF (Frichot
et al. 2014) and TeraStructure (Gopalan et al. 2016), use much
simpler methods to allow for the adoption of faster algorithms. As
a result, they are fast and can handle large datasets, but apply to
diallelic markers (SNPs) only and have compromised accuracy in
difficult situations such as low differentiation or unbalanced
sampling (Fig. 1). Furthermore, ADMIXTURE cannot handle
extremely large datasets such as the human 1000 genomes phase
I genotype data (with 38 million SNPs of 1092 individuals), and it
becomes rather slow when many populations are assumed (Fig.
1F). sNMF has the capacity to run such large datasets, and is the
fastest when K is not big (say, K < 100) and L (number of loci) is not
extremely large (say, <10000000). Otherwise, it runs slower than
PopCluster (Fig. 1F). I have also simulated a large dataset of 108

individuals sampled from 100 populations, with each individual
genotyped at 100 loci. While both ADMIXTURE and sNMF fail to
run (with a fragmentation error) this huge sample at
K= 100 on a linux cluster with 192GB RAM and 36 cores per
node, PopCluster can successfully analyse the data, although
taking a long time (4 weeks) on a laptop (running Windows 10)
with an eight-core cpu and 64GB RAM. I also generated a
simulated dataset with 4000 individuals, each genotyped at
50000000 SNP loci. Both ADMIXTURE and sNMF fail to run (with a
segmentation fault) the dataset on the same linux cluster, even
when a small number of K= 2 populations is assumed. PopCluster
completed analysing the dataset using 36 cores of a node of this
cluster in 2 days.
The computational efficiency of PopCluster benefits mainly

from its two-step procedure. The first step makes a clustering
analysis by assuming the mixture model (i.e., no admixture or
hybridisation). It is fast, because each iteration for clustering
reconfiguration involves the use and update of only a small

fraction of the variables. Most often a proposal changes the cluster
membership of one individual only, such that allele frequencies of
only two clusters need to be recalculated. The larger is the number
of clusters assumed in an analysis, the more efficient is this
clustering method. The second step of admixture analysis is also
fast, because the clustering analysis results (cluster membership
and allele frequencies) are adopted as the initial configuration
which is already close to the optimum. Comparative analyses of
simulated and empirical data show that PopCluster is about two
orders of magnitude faster than STRUCTURE. It runs slower than
ADMIXTURE and sNMF when datasets are small or medium (say,
less than 1 million SNPs, individuals in hundreds or thousands), or
when the number of assumed populations are not large. For a
large dataset such as the human 1000 genome phase I dataset,
ADMIXTURE fails to run. While sNMF still runs faster than
PopCluster when K is assumed to be around 7, it runs slower
than PopCluster when larger K value (say, K= 30) is assumed. For
even larger (say, close to terabyte) datasets, sNMF no longer runs
and aborts with a segmentation fault. PopCluster uses MPI for
parallel computation. It is not constrained by data size because
data can be partitioned and loaded into distributed memories of a
cluster with many nodes. With access to a decent computer
cluster, PopCluster can handle terabytes (say, 1 million SNPs for 1
million individuals) of genotype data. Although quite a few
methods, such as ADMIXTURE (Alexander et al. 2009), sNMF
(Frichot et al. 2014) and TeraStructure (Gopalan et al. 2016), can
analyse population structure in parallel to speed up the process,
they all use parallel threads with shared memory, limiting the
number of cores and the memories that can be used in a
computer cluster. PopCluster is probably the first method that can
use the full CPU and memory resources available to a cluster for
population structure analysis.
Extensive simulation and empirical data analyses show that

overall PopCluster is more accurate than ADMIXTURE and sNMF,
and compares favourably over STRUCTURE, especially when few
individuals are sampled from a population (Fig. 1A), many
populations are sampled (Fig. 1B), sampling is highly unbalanced
across populations (Fig. 1E), and inbreeding or family structures
are present in a sample (Supplementary Appendix 4). PopCluster
converges more reliably than STRUCTURE, as demonstrated by the
ant data. While 91 of 100 replicate STRUCTURE analyses of the
data at K= 10 yield similarly high likelihood values and similar
admixture inferences, the remaining 9 replicates yield lower
likelihood values and more admixture. In contrast, all 100 replicate
PopCluster analyses of the data yield the same maximum
likelihood and the same admixture estimates. With an increasing
amount of data and increasing complexity (determined by the
number and differentiation patterns of source populations,
presence of hierarchical or family structures) of population
structure, the risk of non-convergence increases. The better
performance (accuracy and convergence) of PopCluster comes
mainly from the simulated annealing (SA) algorithm adopted in
clustering analysis. It is well known that SA is a global optimisation
algorithm suitable for solving very large and complex systems
(Kirkpatrick et al. 1983), such as our population structure analysis
which involves a huge number (in millions) of variables. My
simulation and empirical data analyses show SA frequently
converges very well, especially when the population structure is
strong, and marker information is ample. In difficult situations
such as insufficient marker information or an assumed K value
different from the truth, different replicate runs of PopCluster may
yield different clustering configurations and admixture inferences
with slightly different likelihood values. However, these config-
urations are usually very close to each other, with just a few
differences in individual memberships.
Estimating K is much more difficult than estimating individual

ancestry or admixture under a given K, when the information
available to an analysis is genotype data only. There may exist
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several different K values that could explain the data and describe
population structure closely or equally well. For example, a
population might split into subpopulations A and B in the past.
After evolving for some time, a new subpopulation, C, split from B,
and again after some time a subpopulation D split from C. When
all four populations evolve independently for some time after
these splitting events and then are sampled for structure analysis,
we may get K= 1, K= 2, K= 3, or K= 4, depending on the
absolute and relative branch lengths of the phylogeny, and the
sampling intensity of individuals and markers. For a given
phylogeny, all 4 possible K values might be equally plausible.
Indeed, a structure analysis at different K values (1,2,3,4) reveals
differentiation patterns at different evolutionary scales and reveals
different aspects of population structures. For example, 4
populations, A, B, C and D, might be inferred at K= 4, and 3
populations, A, B, and (C with D), might be inferred at K= 3, and
so on. All inferences of the four possible K values are correct,
apparently. Only when the inferences at K= 1, 2, 3, 4 are patched
together do we get a complete picture of the population structure
and evolutionary history. In the simple case of a star-like
phylogeny or the island model assumed in most of my
simulations, there does exist a single best K. However, it could
still be difficult to infer K correctly when the populations are not
much differentiated or are numerous, when markers are not much
informative, or when samples from different populations are very
small or highly unbalanced in size. For the ant data, all four
estimators of K yielded a consistent result, K= 10, corresponding
exactly to the sampled number of colonies. For the Arctic charr
data, however, only 2 estimators (one for STRUCTURE and one for
PopCluster) yield K= 6 which agrees with the number of sampling
locations. The other 2 estimators yield K= 7 (Fig. 3). In practice, it
is prudent to treat any unsupervised K inference from any
estimator and admixture analysis with caution. When reliable
external information (not used in structure analysis) such as
sampling location is available, it is advised to make a final
supervised determination of K by checking/comparing admixture
inferences at different K values against external information and
the K estimator.
Like any statistical model, the admixture model has many

assumptions, no matter it is implemented in a Bayesian approach
(e.g., STRUCTURE by Pritchard et al. 2000) or a likelihood approach
(e.g., ADMIXTURE by Alexander et al. 2009; sNMF by Frichot et al.
2014; PopCluster of this study). One assumption is the indepen-
dence of alleles both within and between loci. Independence of
alleles within a locus of a diploid individual essentially assumes
the absence of inbreeding (due to close relative mating), and the
absence of admixture. While inbreeding causes a positive
correlation, admixture leads to a negative correlation, between
the paternal and maternal alleles of a diploid genotype. They
produce too many and too few homozygotes, respectively, than
those expected under Hardy-Weinberg equilibrium. However,
violation of the assumption does not derail a model-based
admixture analysis, as shown in this study (Supplementary
Appendix 4). Even the extreme form of inbreeding, selfing,
occurring at a high frequency (0.8) has almost negligible effects on
admixture inference (Supplementary Fig. A4–4). Similarly, the
methods can still recover the genetic structures accurately for
highly admixed populations (Fig. 1C and Supplementary Fig. A4–
1). The independence of alleles between loci (linkage equilibrium)
is also violated often in practice. Linkage disequilibrium can occur
even between unlinked loci due to factors such as non-random
mating, genetic drift, selection and hybridisation. For linked loci,
the disequilibrium is expected to be high because it dissipates
slower over generations and thus could accumulate. However,
except in the extreme case of all loci sampled from just one or a
few small genomic regions (say, each region of 1 Mb in size),
linkage disequilibrium should have rather limited effects on a
model-based admixture analysis. Many admixture analyses on

large genomic data, such as the human 1000 genome data with
more than 38 million SNPs, yielded sensible results. A simulation
study investigating the impact of linkage disequilibrium on
admixture analysis is lacking, and future such studies should
consider both model and non-model based admixture analysis
methods on their robustness to linkage disequilibrium.
Using several empirical datasets and many simulated datasets

in this study, I show PopCluster is in general advantageous over
existing model-based admixture analysis methods. It is fast,
capable of analysing both small multilocus genotype data such
as a few microsatellites and large genomic data of millions of SNPs,
and is accurate in various sampling conditions and actual
population structures. However, in some situations, STRUCTURE
could yield more robust and more accurate results than
PopCluster. One of these situations is when sampling is highly
unbalanced among populations and the markers are not highly
informative (e.g., just a few microsatellites). In such a case, both
PopCluster and STRUCTURE could recover the number of popula-
tions (as the optimal K value) represented by the sample, and
reconstruct the admixture of the sample analysed at the optimal K
value. For analyses conducted at a higher number of populations
(say, K+ 1 and K+ 2), while STRUCTURE can still yield admixture
estimates similar to those obtained at K, PopCluster sometimes
splits the largest cluster into 2 or more clusters with “confidence”
(i.e., with little admixture inferred for the individuals in the split
clusters). Therefore, I suggest that, wherever possible, a real dataset
be analysed by multiple admixture inference methods, with results
carefully examined, compared among methods and with external
information (such as sampling locations) not utilised in admixture
analyses before reaching a conclusion.
The software package PopCluster described in this work is

available for download from my website https://www.zsl.org/
science/software/popcluster. It includes executables for Windows,
Mac and Linux platforms, user’s guide and example datasets. For
Windows, it also includes two additional components. One is a
graphical user interface that facilitates the input of data and
parameters, and the viewing of analysis results in tables and graphs
(including the admixture stacked bar charts with user defined
colours). The other is a simulation module that generates simulated
genotype data under admixture, hybridisation or migration model
for analysis by PopCluster, STRUCTURE or other methods.

DATA AVAILABILITY
The empirical datasets analysed and presented by this study are publicly available
online. The simulation data are generated by the simulation module of the
PopCluster software (Windows version) which is freely downloadable as stated in the
manuscript.
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