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Abstract

Major depressive disorder (MDD) is associated with an impairment of episodic memory, but

the mechanisms underlying this deficit remain unclear. Animal models of MDD find impaired

adult neurogenesis (AN) in the dentate gyrus (DG), and AN in DG has been suggested to

play a critical role in reducing the interference between overlapping memories through pat-

tern separation. Here, we study the effect of reduced AN in MDD on the accuracy of episodic

memory using computational modeling. We focus on how memory is affected when periods

with a normal rate of AN (asymptomatic states) alternate with periods with a low rate

(depressive episodes), which has never been studied before. Also, unlike previous models

of adult neurogenesis, which consider memories as static patterns, we model episodic

memory as sequences of neural activity patterns. In our model, AN adds additional random

components to the memory patterns, which results in the decorrelation of similar patterns.

Consistent with previous studies, higher rates of AN lead to higher memory accuracy in our

model, which implies that memories stored in the depressive state are impaired. Intriguingly,

our model makes the novel prediction that memories stored in an earlier asymptomatic state

are also impaired by a later depressive episode. This retrograde effect exacerbates with

increased duration of the depressive episode. Finally, pattern separation at the sensory pro-

cessing stage does not improve, but rather worsens, the accuracy of episodic memory

retrieval, suggesting an explanation for why AN is found in brain areas serving memory

rather than sensory function. In conclusion, while cognitive retrieval biases might contribute

to episodic memory deficits in MDD, our model suggests a mechanistic explanation that

affects all episodic memories, regardless of emotional relevance.

Introduction

Major depressive disorder (MDD) is the most common mood disorder, estimated to affect

20% of the population at some point of a person’s lifetime [1–3]. MDD is characterized by a

constellation of behavioural, emotional and cognitive symptoms, especially in the domain of
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memory [4]. Numerous studies have reported a selective impairment of episodic memory dur-

ing depressive episodes [5–8]. Some studies even find an almost linear relationship between

scores on a depression rating scale and episodic memory performance [9, 10]. Unlike episodic

memory, however, semantic memory, the other type of declarative memory, is relatively intact

in MDD patients [11, 12].

The mechanisms underlying MDD are not understood. The neurogenic theory of depres-

sion suggests that impaired adult neurogenesis (AN) in the dentate gyrus (DG) triggers depres-

sion and that restoration of AN leads to recovery [13]. AN refers to the process that generates

new neurons beyond development in adulthood. It occurs in only two regions of the mamma-

lian brain, one of which is the DG. A number of experimental studies have observed a reduc-

tion of AN in animal models of MDD [14–18]. While there are no direct measurements of AN

in brains of MDD patients, both post-mortem [19] and high-resolution MRI volumetric [20,

21] studies consistently find smaller DG sizes in subjects who had suffered or were suffering

from MDD. In addition, animal studies indicate that the rate of AN can be increased by anti-

depressant treatment [22–24] and ablating AN suppresses the antidepressant effect of the drug

[14, 25]. However, the clear picture painted by these studies is complicated by findings that

even a complete reduction of AN [25] does not produce the behavioural symptoms of MDD,

see [26] for a review. Nevertheless, even though the role of AN in the etiology of MDD remains

uncertain, the evidence strongly suggests that there is a correlation between MDD and AN in

DG.

The DG is a subregion of the hippocampus, which is heavily involved in the storage and

retrieval of episodic memory [27–29]. Marr [30] suggested that memories are stored in an

associative network that is implemented in the recurrent connections of hippocampal CA3.

Computational studies suggest that memory patterns in CA3 have to be uncorrelated to avoid

interference between memories. Since sensory inputs are highly correlated, the hippocampal

network has to pre-proccess these input patterns to reduce the correlations before they can be

stored in CA3 [31]. This process is called pattern separation and the DG, which receives inputs

from the entorhinal cortex (EC) and sends direct projections to CA3, has been suggested to be

especially suitable for this purpose [30, 32–34]. There is mounting empirical support for the

hypothesis that AN in DG plays a role in minimizing interference between overlapping memo-

ries. Animals with AN impairment show a deficit in spatial discrimination [35–37] and in

learning overlapping odour pair discriminations [38]. On the other hand, increasing AN

improves pattern separation [39]. An fMRI study in humans also shows that the presentation

of objects that are very similar, but not identical, to previously learned objects increases BOLD

activity in human DG/CA3 [40]. Linking MDD, AN, and pattern separation together, recent

studies in humans found a negative correlation between depression scores and pattern separa-

tion performance [41, 42]. Déry et al. also find that the memory deficit in depression is selec-

tive for a neurogenesis-dependent task, and does not occur in other hippocampus-dependent

control tasks [41].

In contrast to the abundance of experimental and clinical studies on the link between MDD

and cognitive deficits, there are few modelling studies on this topic. One example is the study

by Becker et al., who proposed a functional cluster hypothesis in their theoretical model by

which cells born at a particular time in the DG encode a context that binds together all memo-

ries formed in that context [43]. An AN deficit then causes deficits in contextual memory. By

contrast, the vast majority of computational studies focus on the broader question of how AN

contributes to normal learning and memory, see [44] for a review. AN is implemented either

by replacing trained cells with new naïve cells or generate additional new cells. In simple feed-

forward architectures, neural replacement improves the encoding of new memories at the cost

of losing previously stored memories [45–48]. By contrast, adding new neurons to the network
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can help avoid catastrophic interference [49] and can preserve old memories as well as store

and retrieve new memories [50]. Aimone et al. emphasizes the role of newborn immature

granule cells which are more broadly tuned to a wide range of inputs [51]. Their model sug-

gests that immature neurons increase the similarity between contemporaneous events, but

once they are mature, they separate events that occur in different time periods. Nonetheless,

these computational studies do not account for the specific episodic memory deficits in MDD.

Finally, little is known about how dynamic changes in the rate of AN might affect episodic

memories. The time course of MDD is highly dynamic [52, 53] and involves transitions

between depressive episodes, when the rate of AN is putatively low, and asymptomatic states,

when the rate of AN is putatively higher. Although memory deficits in depressive patients have

been reported in various episodic memory tasks, these studies generally examine the memories

both formed and retrieved in the depressive state. The accuracy of memories formed during

asymptomatic states and retrieved during depressive episodes, or vice versa, has not been stud-

ied using controlled experiments. Note that this cannot be achieved by asking depressive

patients to recall auto-biographical memories stored in a previous asymptomatic state, since

not all auto-biographical memory can be considered episodic memory [28, 54].

In this study, we develop a computational model that accounts for episodic memory deficits

in MDD by assuming that MDD leads to a reduction in DG AN, which in turn leads an

impairment in pattern separation, which eventually impairs episodic memory retrieval. Unlike

previous models of adult neurogenesis, which consider memories as static patterns, we model

episodic memory as sequences of neural activity patterns. Also, we examine for the first time

how episodic memories are affected by the dynamics of MDD. To simulate this dynamics, the

model differentiates an asymptomatic state with a normal rate of AN and a depressive state

with reduced rate of AN. We compare the retrieval of memories stored and retrieved in the

same state as well as memories stored in one state and retrieved in another. We find that pat-

tern separation indeed improves episodic memory retrieval as well as its robustness to the

retrieval noise. Retrieval performance is significantly worse for memories stored and retrieved

in the depressive state as compared to the asymptomatic state. Interestingly, our model pre-

dicts an retrograde effect of MDD on memories formed in an earlier asymptomatic state. This

effect is a novel prediction of our model, which has not been previously reported by any study,

experimental or computational.

Methods

Memory model

To study episodic memory storage and retrieval, we adopted a model that we proposed and

studied in earlier work [55]. The model consists of three systems (the perceptual, semantic and

episodic system), which are arranged hierarchically (Fig 1A). This model assumes that episodic

memories are represented as sequences of activation patterns, which are stored in the hippo-

campus [28, 29, 56]. These activation patterns are the outputs of a semantic representation net-

work in neocortex, which generates low dimensional semantic representations of high

dimensional sensory input. In other word, episodic memory in the model is defined as

sequences of semantic representations.

Input stimuli. The inputs consisted of sequences of 2-d images containing an L-shaped

object (300 × 300 binary pixels, Fig 1B). To keep the memory requirement and run-time at a

manageable levels, the patterns were scaled down to 30 × 30 greyscale images by averaging

across 10 × 10 patches before they are process by the semantic network. The training sequences

were generated in such a way to ensure that the semantic representations that emerged during

training (see below) can be readily interpreted. In the sequences, the object’s center (r1, r2)
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Fig 1. Schematic of the episodic memory model. A. The relationship between systems involved episodic memory. B. Example of the input stimuli. Top: 300 × 300

black-and-white pixels; bottom: pattern scaled down to 30 × 30 greyscale pixels. C. Hierarchical network of slow feature analysis (SFA) as a model of the semantic

system. The dots in each layer symbolize SFA nodes. The grey patches indicate the receptive field of each node, partially overlapping with the neighbouring nodes’

receptive fields. As an ensemble nodes in a given layer cover the full input space. Each node performs a number of processing steps as visualized on the right hand

side. The activity in the top layer is taken as the output of the semantic system in our memory model. D. Example of the output of the semantic representation

layer. The object in the input sequence i moves along the trajectory (yellow arrow) and rotates by 360 degrees (indicated by black arrows). Shown on the right are

the four slowest features calculated by the SFA-network. The feature values at time t, yi,t (dashed line), form a semantic (more abstract) representation of the input.

E. Sequence storage network (see main text in Methods for details).

https://doi.org/10.1371/journal.pone.0198406.g001
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moved along a Lissajous curve:

riðtÞ ¼ ai sin ðbit þ ciÞ; ð1Þ

where i = 1, 2 and a1 = a2 = 100 due to the square input space. The ratio
b1

b2

¼
p

3
was set to an

irrational number, so that theoretically the trajectory would never repeat. The rotation of the

object was described by

φðtÞ ¼ ot þ φ
0
; ð2Þ

where φ is the orientation and ω = 0.025e.

Test sequences were generated using a different statistics to ensure that our results are not

selective to the specific input statistics used during training. In the test sequences, the object

moved along a random walk trajectory, where the object can translate horizontally and verti-

cally in each time step. The step sizes in the two directions were drawn independently from a

normal distribution v * N(5, 2.2). If a step would have taken the object beyond the boundary,

the object was reflected on the boundary instead. The rotation of the object also followed a ran-

dom walk, where the steps are drawn from δφ * N(0, (0.035e)2).

Semantic representation network. A feedforward hierarchical structure based on slow

feature analysis (SFA) algorithm was implemented as the semantic representation layer

(Fig 1C). SFA finds instantaneous scalar input-output functions that generate slowly varying

output signals from quickly varying inputs [57]. Specifically, in a given function space F and

given a multidimensional input signal x(t), SFA finds a set of functions {g(1)(x), g(2)(x), � � �,

g(i)(x), � � �}, where g(i)(x) 2 F, such that the output signals {y(1)(t), y(2)(t), � � �, y(i)(t), � � �}, where

y(i)(t) ≔ g(i)(x(t)), vary slowly. To this end, the Delta value

DðyðiÞÞ :¼ hð _yðiÞÞ2it ð3Þ

is minimized, under the following constraints:

hyðiÞit ¼ 0 ðzero meanÞ; ð4Þ

hðyðiÞÞ2i ¼ 1 ðunit varianceÞ; ð5Þ

8j s:t: j < i : hyðiÞyðjÞit ¼ 0 ðdecorrelation and orderÞ: ð6Þ

Eq (3) introduces the Δ-value which is a measure of the slowness of the signal y(i)(t). Eqs (4)

and (5) are applied successively for increasing i. Eqs (4) and (5) avoid the trivial solution of a

constant function, for which Δ = 0. Eq (6) ensures that SFA does not yield the same feature

twice and that the extracted features are ordered according to the degree of their slowness.

The semantic network consists of converging layers of SFA nodes. Information is first

extracted locally and then integrated into more global and abstract features, see [55] for a more

detailed description. In each SFA node, the same processing steps are performed (Fig 1C, top

right). The network was implemented using the MDP library [58]. It was trained sequentially

from bottom to top on sequences of 10,000 images in each training session. Although SFA

learns on sequences and the movement statistics determines which features are learned, SFA

does not learn the movement statistics of the training sequences itself. In fact, the network

learns to extract a semantic representation from a single input pattern, i.e., the extracted func-

tions g(i) operate on single input patterns. This makes SFA fundamentally different from low-

pass filtering.

Episodic memory deficits in depression
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Due to our particular choice of the object’s movement parameters in the training sequences

(mainly the translation and rotation speeds), the four slowest features that emerged from the

trained SFA network are related to the coordinates of the object’s center and its orientation

[59]. To illustrate the SFA output, we used input sequences where the object moves along a tra-

jectory and rotates by 360 degrees (Fig 1D). We refer to the vector yi,t of SFA features at a

given time t in sequence i as the semantic, i.e., more abstract, representation of a single input

image. After the semantic representation network had been trained, we used it to process

sequences with different movement statistics. The temporal sequence of these semantic repre-

sentation {yi,1,yi,2,yi,3, . . .}, describing the movement of the object in the input sequence i, is

stored in the episodic memory system.

Sequence storage network. Sequences were stored in a simplified algorithmic model, in

which they are not stored in their entirety, but as individual elements that are linked by “point-

ers”. The mechanism is illustrated in Fig 1E. Except for the last pattern of the sequence, each

sequence element is associated with the next element in the sequence, which serves as the key

for retrieving the next element. To perturb memory retrieval, we added noise ϵðkÞtþ1 � Nð0; s2
nÞ

to the retrieval key y�i;tþ1
to form the retrieval cue and then search for the stored element that is

closest (according to the Euclidean distance) to the retrieval cue, i.e.,

r0; s0 ¼ argmin
r;s

ky�i;tþ1
þ ϵtþ1 � yr;s k : ð7Þ

So, the retrieved pattern is

y0i;tþ1
¼ yr0 ;s0 ; ð8Þ

This retrieval process is then iterated with the next retrieval cue, which is the key associated

with the last retrieved element. Either due to the retrieval noise or when two elements are iden-

tical, the retrieval process can return the wrong element.

To quantify the retrieval error, we calculated the Euclidean distance between the stored and

retrieved sequence pattern by pattern:

eðtÞ ¼ky0i;t � yi;t k : ð9Þ

In the simulation, we always store multiple sequences, with 50 elements each, in the network.

Modeling the effect of adult neurogenesis in episodic memory storage

We assume that AN affects episodic memory through pattern separation. In the following, we

describe the abstract model that we use for pattern separation. A motivation in terms of neuro-

nal mechanisms will be provided in the Discussion. In our model, the semantic representations

yi,t are driven entirely by the inputs and therefore reflect the correlations that are present in the

inputs. Storing these correlated patterns would lead to interference between the patterns

(Fig 2A). To avoid this interference, we augment every sequence element with an additional

pattern separation vector ai, i.e.,

yi;t

ai

" #

where aðkÞi � Nð0; s2
aÞ for all dimension k. In the higher dimensional space of augmented

memory patterns, the patterns are more dissimilar to each other than the original patterns

were (Fig 2B). We assume that a new pattern separation vector is generated for each new

Episodic memory deficits in depression
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sequence that has to be stored in the network when AN occurs at a normal rate in DG. Each

pattern separation vector ai is associated with the first element of a sequence yi,1.

During retrieval,
yi;1
ai

h i
serves as the retrieval key for the next element in the sequence. The

model searches for the augmented pattern that is closest to this retrieval key, plus retrieval

noise. Note that retrieval noise is also added to ai. Since the pattern separation vector only

plays an auxiliary role in memory storage and retrieval, retrieval performance is assessed based

on the retrieved pattern y0i;t alone, i.e., excluding the pattern separation vector (Eq 9).

Modeling memory storage and retrieval in different disease states in MDD

In this study, we limit ourselves to considering only the asymptomatic state (A) and the

depressive state (D). Based on the experimental evidence discussed above, we assume that the

rate of AN is normal in the asymptomatic state and zero in the depressive state. The latter

assumption implies that no new pattern separation vectors are generated for new sequences in

the depressed state and previously generated ones are re-used. Four cases can be distinguished

in principle based on which of the two states a memory sequence was stored and retrieved in

(Fig 3). We use the notation “X|Y” to indicate that a memory was stored in state X and

retrieved in state Y. The four possible cases are A|A, A|D, D|D, and D|A. We will only discuss

Fig 2. Illustration of the role of adult neurogenesis in the dentate gyrus. Top: Schematic of three stored sequences in the memory model, where the first elements in

sequences 2 and i are similiar to each other. A: Without adult neurogenesis, the memory patterns are located in close proximity to each other in the memory space. B: In

the asymptomatic state with a normal rate of adult neurogenesis, the augmentation with distinct pattern separation vectors distributes the sequences along an additional

dimension in memory space. C: In the depressive state, the new sequence (i) is stored by re-using a pattern separation vector that had been assigned to a memory stored in

a preceding asymptomatic state, based on the similarity of their first patterns. As a result, the two memory sequences, 2 and i, are more likely to interfere during retrieval.

https://doi.org/10.1371/journal.pone.0198406.g002
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the first three cases, because the D|A case can be decomposed into those memories for which

A|A applies and those for which D|D applies. We return to this issue in the Discussion.

When memories are stored in the asymptomatic state, the pattern separation mechanism

works just as described in the preceding subsection. However, a new mechanism is required

when the pattern separation mechanism is used, but no new pattern separation vectors can be

generated for new sequences, which is the case in the depressive state (Fig 2C). In this case,

mature cells in DG that have already been associated with specific memories have to be reused

when storing new memory sequences, i.e., the pattern separation vectors already in the system

are reused. More precisely, for a new sequence yj,�, we determine the pattern separation vector

aj to be reused based on the similarity between the first patterns in the sequences, i.e., yj,1 is

compared to yk,1 for all stored sequences k in A|D. So,

i ¼ argmin
k
kyj;1 � yk;1 k; ð10Þ

then

aj ¼ ai: ð11Þ

Reusing the pattern separation vector ai for the new sequence yj,� introduces interference

between the sequences i and j (Fig 2C, top).

Fig 3. Three scenarios of memory storage and retrieval in the model. The rate of adult neurogenesis (AN) is normal

in the asymptomatic state and reduced in the depressive state. The origin of the arrow indicates during which state the

memory was stored, and the termination of the arrow indicates during which state the memory is retrieved. A|A:

memories stored and retrieved in the asymptomatic state; A|D: memories stored in the asymptomatic state and

retrieved in the depressive state; D|D: memories stored and retrieved in the depressive state.

https://doi.org/10.1371/journal.pone.0198406.g003
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Results

Pattern separation improves the robustness of memory retrieval

We study the effect of augmenting memory patterns yi,t with a pattern separation vector ai on

pattern separation in our model. Since the Euclidean distance between patterns plays an

important role in retrieval in our model, we quantified the dissimilarity of patterns using the

Euclidean distance. We find that distance between augmented patterns Da are larger than the

distance between the original target patterns Dt (Fig 4), indicating that pattern separation

indeed occurs in our model. Furthermore, the effect of pattern separation is largest for highly

similar patterns (Dt < 1) and for large variability in the pattern separation vector (large σa).

The next question is how pattern separation affects the retrieval performance in our model.

We first tested retrieval of individual patterns. We randomly drew a stored pattern as the

retrieval cue and performed a one-step retrieval. The retrieved pattern should be identical to

the cue pattern with the retrieval noise removed. Fig 5A–5C shows the retrieval performance

as a function of retrieval noise for different σa. Note that the retrieval error represents only the

distance between the originally stored yi,t and the retrieved y0i;t patterns (see Methods). The

retrieval error curves lie below the diagonal for all σa we tested, even for σa = 0 (Fig 5C), which

indicates that noise is reduced in the retrieval process. In other words, the model performs pat-

tern completion. Furthermore, higher variability of the pattern separation vector leads to

larger effects of pattern separation (Fig 5B and 5C). We will therefore use σa as a proxy for the

degree of pattern separation. Our results confirm the common hypothesis that pattern separa-

tion make memory retrieval more robust.

Next, we analyzed how pattern separation affects the retrieval of memory sequences in a

model that stored 100 sequences (random walk trajectory), each with an unique pattern sepa-

ration vector. Consistent with the result for single pattern retrieval, introducing pattern

Fig 4. Augmentation with pattern separation vector leads to pattern separation. Left: The distance between pairs of augmented patterns (Da), i.e., containing the

pattern separation vectors, against the distance between pairs of original patterns (Dt). A curve above the diagonal means that the augmented vectors and more dissimilar

than the original vectors, indicative of pattern separation. Right: Same data as left panel, but plotted to emphasize pattern separation (= Da − Dt).

https://doi.org/10.1371/journal.pone.0198406.g004
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separation into the memory network (0� σa� 1), increases the retrieval accuracy of memory

sequences (Fig 5D). However, large amounts of pattern separation (σa > 1) do not yield further

improvement of the retrieval performance, indicating that pattern separation cannot fully

eliminate the retrieval error in our model. In our model, DG AN is modelled by the generation

of pattern separation vectors, which is parametrized by σa. Better memory performance for (σa

> 0) therefore means that AN improves episodic memory.

Dynamics of memory retrieval in asymptomatic and depressive state

To test our hypothesis that a reduction of AN in DG induces pattern separation impairment,

which in turn impairs episodic memory in depression, we study the retrieval quality of memo-

ries stored and retrieved in the asymptomatic and depressive states, respectively. Two hundred

sequences are stored in each state. Specifically, we compared retrieval performance in the three

Fig 5. Pattern separation improves episodic memory retrieval. A: Example performance of single-pattern retrieval across different level of retrieval noise (raw data). B:

Distribution of the distance between cued and retrieved patterns at different levels of pattern separation σa (only for the data within the dashed rectangle in A) as indicated

by different colors. The legend is given in panel C, the reference σa = 0 is shown in dark blue. C: Average performance of single-pattern retrieval as a function of retrieval

noise. D: Retrieval error for retrieval of sequences at different levels of σa (100 stored sequences, σn = 0.1, a: 2-D).

https://doi.org/10.1371/journal.pone.0198406.g005
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cases: A|A, A|D and D|D for different levels of retrieval noise σn and pattern separation σa. At

low levels of pattern separation σa = 0.1, retrieval performance is comparable in the three cases

(Fig 6A). Increasing the level of pattern separation (from left to right in Fig 6A), while keeping

the level of retrieval noise fixed, improves the retrieval performance in all three cases, but the

degree of improvement differs. When memories are stored and retrieved in the asymptomatic

state (A|A), memory performance is better than if memories were retrieved in the depressive

phase (A|D), or stored and retrieved in the depressive phase (D|D). This finding indicates that

depression impairs memory performance. The higher the level of retrieval noise is, the more

pattern separation is required to yield an advantage of A|A, or conversely an negative impact

of depression. For example, for σn = 0.05, a difference is already apparent for σa� 0.1, while

for σn = 0.2, a difference is only apparent for σa� 0.5. If retrieval noise dominates, i.e., σn�

0.5, no amount of pattern separation yields a difference between A|A, A|D and D|D. We dis-

cuss these effects in more detail below. To rule out the probability that our results are specific

to a particular input stimulus, we also studied the model with different objects (‘T’, ‘U’, ‘E’) as

input stimuli and find very similar results (data not shown). Together, these results suggest

that retrieval performance in our model depends on the mutual interaction between the

retrieval noise and pattern separation and that a memory deficit in depression would not be

expected in every case.

Impact of depressive episode duration on retrieval performance. fMRI studies suggest

that in MDD the hippocampal volume is reduced progressively as the depressive episodes con-

tinues [60–62]. Since the hippocampus plays a critical role in episodic memory, one would

expect that memory deficit worsen as depression lingers. We can study the effect of the dura-

tion of the depressive episode on memory performance in our model. Note our finding that

across all the parameters shown in Fig 6A the performance in the case of A|D is always as

impaired as in the case of D|D. This is somewhat puzzling since in the A|D case at least some

sequences were stored in an asymptomatic phase, where the pattern separation vector was

unique for each sequence. This result would be explained if new memory storage in the depres-

sive phase leads to retrograde interference with previously stored memories. To test this

hypothesis, we varied the relative duration of the depressive episode in our model, which

means that a different relative number of memories are stored in the depressive and asymp-

tomatic phases, respectively.

k ¼
NDjD

NAjD þ NDjD
: ð12Þ

The results in Fig 6A were obtained with k = 0.9. Across all values of k, we found that the

retrieval performance in the case of A|A is the most accurate, while D|D is the worst. The dif-

ference between the two cases becomes more prominent for larger k (Fig 6B). We also find

that for short duration of depression (small k), the retrieval performance of A|D is as good as

the performance of A|A and then converges to the same level as D|D as the duration of the

depressive episode increases (larger k). This indicates that even the remote memories formed

in earlier asymptomatic state of the depressive patients are impaired as depression lingers.

The role of other model parameters. We studied the influence of two other parameters

that have a potentially important role in memory performance in our model. First, we studied

the role of the memory load by storing larger numbers of sequences in the memory network.

Retrieval performance for all three cases becomes worse for higher memory load. The differ-

ence, however, between depressive state and asymptomatic state is almost constant (Fig 6C).

Second, we expected the dimensionality of the pattern separation vector to influence pattern

separation, i.e., higher dimensionality leads to larger pattern separation effects. Indeed, our
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Fig 6. Sequential memory retrieval in asymptomatic and depressive states. A: Retrieval performance for the three cases A|A, A|D, D|D (indicated by

color) at different levels of pattern separation σa (left to right) and retrieval noise σn (top to bottom). B: The duration of depressive episode affects the

retrieval performance of A|D and D|D. Duration is measured by the fraction of memories stored in the depressive episode k (Eq 12). C: Increasing the

number of stored sequences negatively impacts the retrieval performance in all cases, while the difference are preserved. D: Increasing the dimensionality of

the pattern separation vector, up to a certain point, increases the difference between the A|A and the other cases. Values in B, C and D are calculated based

on the 30th element in the sequence (σa = 1, σn = 0.1). For A,B,C: a:2-D; for A,C,D: k = 0.9; for A,B,D: 200 stored sequences in both asymptomatic and

depressive state respectively.

https://doi.org/10.1371/journal.pone.0198406.g006
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results show that the advantage of the A|A case is already apparent with only a one dimen-

sional pattern separation vector (Fig 6D). The effect is stronger for larger numbers of dimen-

sions. However, for this particular set of memory sequences, increasing the dimensionality

beyond two has little effect on memory performance in each of the three cases.

Accounting for the pattern of retrieval errors. Next, we explored how the difference in

retrieval accuracy among the three cases arises. A retrieval error occurs when the retrieved pat-

tern is different from the stored one, in other words, when retrieval jumps to an incorrect pat-

tern. Intuitively, one might expect that the more frequently incorrect jumps occur, the larger

the retrieval error is, but we found previously that the retrieval error is dominated by another

process, namely the sequence divergence [55]. It refers to the tendency of two sequences that

are close to each other at some point in time to diverge from each other over time. Since mem-

ory patterns are retrieved sequentially in our model, the movement along the sequence exacer-

bates the retrieval error, if the incorrect sequence diverges from the correct one. We therefore

examined the sequence divergence as well as the probability of jumps to an incorrect pattern

within the same sequences (pw) and between two sequences (pb) during retrieval. Sequence

divergence is quantified by the increase in the distance between the subsequent elements of

two sequences after two patterns in the respective sequences were the closest patterns to each

other [55].

Three observations account for the differences in retrieval error seen in Fig 6. First, increas-

ing the retrieval noise leads to more faulty transitions both within and between sequences

(Fig 7A, from top to bottom), which accounts for the increase in the retrieval error with

increasing retrieval noise. Second, with the same level of retrieval noise, increasing the level of

pattern separation (σa) reduces the rate of faulty transitions between sequences, but increases

the faulty transition rate within sequences. This is expected since pattern separation in our

model acts to make sequences more distinct from each other. As a result, incorrect patterns

within the same sequence are more often the closest element to the retrieval cue for the next

element. This effect is more apparent in the A|A case than in the other two cases due to the

stronger effect of pattern separation. Since jumps between sequences lead to larger errors than

jumps within sequences, the differences in pb between the three cases account for the differ-

ences in the respective retrieval errors (Fig 6A), except for the lack of a difference at high levels

of retrieval noise (σn = 0.5).

The third observation fills this explanatory gap. Sequence divergence is maintained across

different levels of pattern separation in the A|A case, while sequence divergence drops in the

other two cases (Fig 7B). The latter effect is the result of reusing pattern separation vectors

based on the similarity of the sequences in the A|D and D|D cases. Through this mechanism

similar sequences become more clustered. Since pattern separation drives these clusters further

apart, incorrect jumps go to similar sequences, thus reducing sequence divergence, when pat-

tern separation is high. The lower sequence divergence offsets the higher jump probability pb

in the A|D and D|D cases and therefore reduces the difference to the A|A case in the retrieval

error, but only if the jump probability pb for the A|A case is not already close to zero. These

conditions are satisfied for all levels of pattern separation, when σn = 0.5, which explains why

the A|A case performs no better in this noise regime.

Pattern separation at input stage

After showing that pattern separation improves episodic retrieval in our model, we asked

whether pattern separation has to occur in the memory system or whether it could instead

occur in the sensory system before the patterns are processed by the memory system. To study

this question, we randomly flipped different numbers of pixels of each input image in the
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Fig 7. Probability of incorrect jumps and sequence divergence. A:left, probability of incorrect jumps between sequences (pb); right, probability of incorrect jumps

within sequences (pw). B: Sequence divergence. For A, B: a:2-D, k = 0.2, 200 stored sequences.

https://doi.org/10.1371/journal.pone.0198406.g007
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testing data (Fig 8A). No noise was added to the memory representations during storage. The

way we added noise to the input patterns followed the same strategy that we used for pattern

separation in the previous simulations. That is, the same pixels are flipped for all patterns

within the same sequences, whereas different sets of pixels are flipped for the patterns in differ-

ent sequences. Therefore, similar input patterns in different sequences should be separated.

We tested whether this kind of pattern separation alleviates the interference between memories

and facilitates the accuracy of memory retrieval.

Unlike what one might expect, we found that the retrieval performance is impaired by pat-

tern separation in the sensory inputs (Fig 8B and 8D). Similar to previous results, retrieval

noise impairs the retrieval performance (Fig 8C). These results indicate that pattern separation

of sensory inputs does not necessarily mean the semantic representation patterns are separated

Fig 8. Retrieval performance with “pattern separation” in the sensory system. A: Example of the manipulated input patterns.

Top: same pattern as in Fig 1B, but with 5% pixels flipped (300 × 300 pixels); Bottom: the scaled version. B: Retrieval error as a

function of the fraction of randomly flipped pixels in the input image (σn = 0.2, 200 stored sequences). Dashed curve: retrieval

performance of the model with neurogenesis (σa = 1) for comparison. C: With the same amount of noise in the input (1% flipped

pixels), retrieval error increases monotonically with increasing retrieval noise σn. D: The difference between the retrieval error for

original patterns and that for noisy input pattern gradually increases with input noise (σn = 0.2). Values in C and D are drawn from

the 30th element in the sequence.

https://doi.org/10.1371/journal.pone.0198406.g008
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as well, since the SFA network is performing a nonlinear operation. These results are consis-

tent with our previous study [55], where we found that the episodic retrieval is more accurate

when the semantic network is trained on the same image statistics that generates the inputs to

be stored in memory, as compared to when the image statistics differ. Episodic retrieval is

impaired when we add noise to the input, because by doing so we changed the input statistics

after the semantic network had been trained. We therefore conclude that pattern separation at

the sensory stage is not effective and therefore has to occur in the memory system.

Discussion

We have developed a computational model to study episodic memory deficits in MDD. We

assumed that MDD is associated with a reduction of AN in the DG, and that this reduction in

AN impairs pattern separation. We hypothesized that the impairment of pattern separation in

turn reduces the accuracy of episodic memory retrieval. In our model, episodic memories are

encoded based on a semantic representation of the sensory inputs [55]. We investigated epi-

sodic memory deficit in MDD with an intact semantic system, which is consistent with obser-

vations that semantic memory is not affected in MDD [11, 12]. Our model of episodic

memory is built around the idea that episodic memories are best represented by sequences of

neural activity patterns [28, 29, 56, 63]. This aspect distinguishes our model from other models

of neurogenesis, which only consider the storage and retrieval of static patterns.

Correspondence to neuronal mechanisms underlying pattern separation

Even though our model does not reflect the anatomy and physiology of the hippocampus, it

nevertheless describes hippocampal function at an abstract level and the functions of our

abstract model can be roughly mapped onto the hippocamal circuit. The hippocampus has

been found to be essential for sequence memory [64, 65] and we previously hypothesized that

the hippocampal circuit is optimized for storing sequences of neural activity patterns [28].

During episodic memory storage, input patterns are mapped onto pre-existing intrinsic

sequences of neural activity in CA3. In CA3, sequences are thought to be generated by the

dynamics of its recurrent network, e.g. [66]. A given state of the network drives the next state

through the recurrent synapses. In our model, we approximate this process in our sequence

retrieval network, where the sequence elements are linked by associating each element with a

retrieval key for the next element. Thus, the sequence elements yi,t correspond to activity pat-

terns in CA3.

The mechanism that we propose for pattern separation also has a correspondence in the

hippocampal circuitry. Since newborn neurons are newly integrated into the network and are

more excitable [67, 68], AN allows the DG to generate uncorrelated patterns of activity when

new inputs arrive via EC. We thus propose that the pattern separation vector ai reflects the

activity patterns in DG. The augmented patterns
yi;t
ai

h i
therefore represents the joint space of

CA3 and DG patterns (Fig 2B). Consequently, memory retrieval based on the augmented pat-

tern in our model corresponds to a bidirectional interaction between DG and CA3 during

retrieval [69]. The choice in our model to retrieve the pattern separation vector ai based on the

initial retrieval cue yi,1 is motivated by the fact that the same EC input drives CA3 and DG

activity and that the feedforward connections EC-CA3 and EC-DG can associate the input pat-

tern with the activity patterns in the target areas [70]. Note that our suggestion that DG is

involved in memory retrieval is a novel prediction. Other authors have previously concluded

that DG is only important during memory formation, but not during retrieval [31, 71]. Finally,

our choice to determine retrieval performance based only on the original component of the
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pattern y0i;� is well-justified because CA3 directly projects to output structures downstream,

while DG does not.

In our model, the pattern separation vector is identical for all patterns within the same

sequence, while different pattern separation vectors are generated for different sequences. This

assumption is consistent with the temporal tagging hypothesis [51]. It was proposed that mem-

ories formed at distinct times would be represented by different groups of neurons in DG

since newborn cells continue to be integrated into the network. As a result, memories formed

close in time would be associated by the same group of immature DG granule cells (pattern

integration), while memories formed at times far apart would be represented by distinct sets of

DG neurons. Similarly, the functional cluster hypothesis proposes that the same contexts are

represented by DG cells that were born simultaneously [43]. We therefore conclude that our

abstract model is firmly rooted in the neuronal mechanisms underlying pattern separation in

the hippocampal formation.

Rate of adult neurogenesis and memory persistence

Empirical evidence suggests that increases in the rate of AN improves the performance on a

variety of memory tasks [24, 41]. Here, we find that increasing AN up to a certain level

improves memory performance (Figs 5 and 6). Moreover, since retrieval performance in our

model depends on the interaction between the retrieval noise and pattern separation, memory

deficits would not be expected in every case of MDD. Indeed, some studies failed to find epi-

sodic memory deficits in depressed individuals [72, 73]. We hypothesize that the retrieval

error in our model is determined by task demands, the subject’s level of engagement, and neu-

ral processing. Pattern separation would be affected by the rate of DG AN, and the severity,

and perhaps the duration, of the depressive phase. To test these predictions, future experimen-

tal studies could systematically vary the rate of AN and retrieval noise, and measure the affect

of these manipulations on retrieval performance.

What is currently missing from our model is a detrimental effect of AN on memory. Exper-

imental [47, 74] and computational [47, 75] studies have found that a high rate of AN leads to

faster forgetting. Apparently, integrating new neurons into the hippocampal circuit affects

memories that are already stored, because new cells and new connections compete with exist-

ing ones. In other words, there is trade-off between plasticity and stability.

Episodic memory deficits in MDD

Our model predicts that MDD has an retrograde effect on episodic memory retrieval (Fig 6B).

That is, memories retrieved in a depressive state are less accurate, even if they had been stored

in a preceding asymptomatic state (A|D), as compared to memories that were stored and

retrieved in an asymptomatic state (A|A). Studies of auto-biographical memories, which we

discuss below, appear to support a retrograde effect of MDD on previously formed memories.

However, to the best of our knowledge, a retrograde effect has yet to be demonstrated under

laboratory-controlled conditions. Moreover, we find that memory deficits depend on the dura-

tion of the depressive episode. The longer the depressive episode lasts, the more severe the

memory performance becomes.

In addition to the three case discussed in our study (A|A, A|D, D|D), there is another possi-

ble scenario. A memory can be stored in the depressive state and retrieved in the asymptomatic

state (D|A). While this case is distinct from the other three, we did not include it in our study

because it can be viewed as a composite of two other cases. Memories stored in the depressive

state are not assigned a distinct pattern separation vector, while memories stored in the subse-

quent asymptomatic state are. New memories would therefore rarely interfere with previously
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stored memories and the D|A case can be decomposed into those memories that fall under the

A|A case (new memories) and those under the D|D case (old memories). Our model, there-

fore, predicts that the memory deficit is not rescued when the depressive state ends. In other

words, the damage caused in the depressive state by interference in the memory system cannot

be undone. By contrast, the A|D case cannot be decomposed, because the pattern separation

vector generated during the asymptomatic phase are re-used during the depressive phase,

which leads to retrograde interference.

We found that the type of error committed during memory retrieval differs during MDD

(Fig 7). According to our model during MDD patients might more frequently confuse memo-

ries formed at different timepoints than healthy controls. Somewhat paradoxically, it also pre-

dicts that controls incorrectly report events that occurred close in time more frequently than

patients do. This novel prediction awaits testing in experimental studies.

Shifting from episodic to semantic memory in MDD

Apart from impairments in episodic memory, patients suffering from MDD also show over-

general memories [12, 76–78]. When subjects are asked to recall a particular event from their

personal history related to a given cue, patients, more often than controls, retrieve rather gen-

eral information that summarizes a category of events [12, 77]. This is called the over-general

memory effect. For instance, when cued with “enjoy” to recall an event, patients tend to pro-

duce generic answers, e.g., “I enjoy a good party”, whereas controls produce specific memories

such as “I enjoyed Jane’s party last Saturday”. To account for this effect, Williams et al. [77]

adopted the Conway and Pleydell-Pearce model [79], which suggests that autobiographical

memories are arranged in a hierarchical structure with the general categories at the top, spe-

cific categories in the middle and specific event memories at the bottom. Autobiographical

memories are retrieved by traversing this memory structure from top-to-bottom. Williams

et al. suggest that MDD patients block the access to specific event memories in order to avoid

retrieving painful memories and therefore end the retrieval process at an abstract level.

By contrast, we propose that the same episodic memory deficit that we studied here might

be sufficient to account for over-general memories, too. Episodic memories together with per-

sonal semantic information forms autobiographical memory. Episodic memories are about

specific events, whereas semantic memories refer to general facts. Therefore, over-general

memory can be seen as a shift from the retrieval of episodic memories to the retrieval of

semantic memories. If episodic memory retrieval is impaired during MDD, retrieval of auto-

biographical memories is more likely to result in a semantic memory which is mostly pre-

served during MDD. This shift from a reliance on episoidic memory to reliance on semantic

memory appears as a shift from specific to over-general memories. This account is consistent

with a previous suggestion that over-general memory could result from reduced episodic

recall, increased semantic recall or the combination of both [12].

In conclusion, the model we present here might be able to account for both over-general

memories and episodic memory deficits in MDD.
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