
MethodsX 9 (2022) 101622 

Contents lists available at ScienceDirect 

MethodsX 

j o u r n a l h o m e p a g e: w w w . e l s e v i e r . c o m / l o c a t e / m e x 

Method Article 

Deep learning program to predict protein 

functions based on sequence information 

Chang Woo Ko 

a , b , June Huh 

c , Jong-Wan Park 

a , b , ∗
a Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea 
b Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea 
c Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea 

a b s t r a c t 

Deep learning technologies have been adopted to predict the functions of newly identified proteins in silico. 

However, most current models are not suitable for poorly characterized proteins because they require diverse 

information on target proteins. We designed a binary classification deep learning program requiring only 

sequence information. This program was named ‘FUTUSA’ (function teller using sequence alone). It applied 

sequence segmentation during the sequence feature extraction process, by a convolution neural network, to 

train the regional sequence patterns and their relationship. This segmentation process improved the predictive 

performance by 49% than the full-length process. Compared with a baseline method, our approach achieved 

higher performance in predicting oxidoreductase activity. In addition, FUTUSA also showed dramatic performance 

in predicting acetyltransferase and demethylase activities. Next, we tested the possibility that FUTUSA can predict 

the functional consequence of point mutation. After trained for monooxygenase activity, FUTUSA successfully 

predicted the impact of point mutations on phenylalanine hydroxylase, which is responsible for an inherited 

metabolic disease PKU. This deep-learning program can be used as the first-step tool for characterizing newly 

identified or poorly studied proteins. 

• We proposed new deep learning program to predict protein functions in silico that requires nothing more than 

the protein sequence information. 
• Due to application of sequence segmentation, the efficiency of prediction is improved. 
• This method makes prediction of the clinical impact of mutations or polymorphisms possible. 
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Specifications table 

Subject Area: Biochemistry, Genetics and Molecular Biology 

More specific subject area: Protein Function Prediction 

Method name: FUTUSA (function teller using sequence alone) 

Name and reference of original method: There is no original method 

Resource availability: https://github.com/snuhl-crain/FUTUSA 

Overview 

Advances in sequencing technologies help us discover a huge amount of protein variants that are

generated from alternative mRNA splicing, incomplete translation, single amino acid polymorphism, or 

gene fusion. These mutations can lead to the expansion of protein functions, including protein-protein

interactions, ligand binding, subcellular localization, or completely novel functions. Evolutionally, the 

sequence variations may be developed to overcome the limitation of gene numbers. 

We designed a deep learning program for protein function prediction, using only amino acids and

named it ‘FUTUSA’ (function teller using sequence alone). Compared with other baseline method, 

FUTUSA achieved a better performance in protein function prediction. In predicting rare GO terms, 

particularly, FUTUSA improved the efficiency of classification performance. We also successfully 

predict the contribution of each amino acid to protein function. Therefore, FUTUSA could detect the

functional motifs in the case of newly identified proteins and may also help us predict the critical

impact of some clinically identified mutations in disease progression. 

Methods 

Data source and preprocessing 

To minimize human cognitive biases in machine training steps, we only used GO annotation

data and protein sequence data. We downloaded UniProtKB/Swiss-Prot database (version 2020_02) 

( https://www.uniprot.org/downloads ) [1] . The datasets included 17,965 human proteins and 6,195 

yeast proteins. The hierarchical information of GO terms and GO annotation data was obtained from

Gene Ontology Consortium ( http://geneontology.org ) [ 2,3 ]. We here used a GO OBO file (released on

Sep 19th in 2018) containing 47,343 GO terms. The performance comparison was done with a previous

GO file (released on Jan 1st 2016) containing 43,937 terms. The downloaded human and yeast GO

annotation data files (released on Feb 2nd 2020) contained 495,361 annotations for human and

120,936 annotations for yeast. In this research, we used all evidence codes, including experimental, 

phylogenetically-inferred, and computational analyses. To compare ours with other prediction models, 

we used only EXP, IDA, IPI, IMP, IGI, IEP, TAS, and IC, which were considered as experimental evidence

codes according to CAFA3 [4] . Using the datasets, we narrowed down the training target functions and

constructed target specific dataset. For instance, if we picked one GO term such as “oxidoreductase

activity”, we labeled all proteins that were annotated the GO term and its ‘is_a’ relation descendants

such as “sulfur reductase activity”. We used protein segments composed of 16, 32, 64, or 128 amino

acids for machine training. With this approach, we excluded zero padding step for fixing protein

sequence information and reduced the file sizes of training data. We padded (size of segmentation-

1) zeros at the N-terminus and (size of segmentation) zeros at the C-terminus of the sequence to

give same weight to all amino acids except N-terminus methionine. Also, we didn’t omit ‘ambiguous’

amino acids and considered all kinds of amino acids in sequence data. To reduce training time,

however, we limited the maximum protein length catching up with each training purpose. 

https://github.com/snuhl-crain/FUTUSA
https://www.uniprot.org/downloads
http://geneontology.org
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B  
eep learning architecture 

We built the deep learning neural network models using Tensorflow2.0 framework and

mplemented them with the Keras deep learning library [5] . We used cloud-based environment,

oogle Colaboratory ( https://colab.research.google.com ) and trained the neural network models on

PUs offered by Google Cloud [6] . The models are organized with four subdivided sections,

mbedding layers, feature extraction, dense layers, and scoring steps. The first embedding layers

onvert preprocessed sequence data to numerical vector space that can be fed to the neural network.

ne hot encoding, one of the most common encoding methods, represent each amino acid with binary

ector. This approach is straightforward and able to preserve original amino acid information, but it

an cause the excessive complexity of model and cannot concern about physiochemical properties of

mino acids. Recently, several research groups try to use machine-learning based encoding methods

nstead of manually define methods to solve the problems [7] . In this study, we used 1 × 1

NN to generate amino acid embedding vector. And next, we extracted and learned the spatial

eatures using CNN. The dense layers calculate the weight of previously generated feature map

ithout concerning the topology, improving the recognition of distant features and concerns of

heir combinations for the classification. Lastly, the final output of binary classification from the

ense layer are assumed as a predictive score of input segment and the total score for the input

rotein sequence is computed. We used the one-dimensional convolutional neural network (Conv1D)

o extract the protein sequence-derived features. In Conv1D, 1D array-like kernel slides along one

imension and identify the patterns from sequence information. Conv1D has been widely used in

equence-based protein function prediction techniques [8–11] . ‘FUTUSA’ was built to get more flexible

t the feature extraction steps. We added 1 × 1 CNN after the one-hot encoding to make the model

lso learn how to understand each amino acid [12] . Using 1D convolution neural network with

ax pooling layer, it extracted the features without reducing its size. This model used variously

ized convolution kernels, 2 and its geometric progressions with common ratio 2 smaller than its

egmentation size and prime number just prior every geometric series. The sequence-derived feature

ectors were batch-normalized and activated by Rectified-linear-unit (ReLU) function [ 13 , 14 ]. Through

he concatenation layer and flatten layer, the feature map was fed to fully connected layers. All of the

ntermediate hidden layers were batch-normalized and performed dropout regularization ( p = 0.2)

15] . We activated intermediate hidden layers with the ReLU function and classification layer with

igmoid function. The characteristics of the models are shown in Table S1. 

atasets and model training 

For the evaluation purpose, we randomly extracted 5% of the total protein data before the training.

ext, we validated the model during the training by using five-fold cross validation. We randomly

llocated 20% of the remaining 95% protein data as a validation dataset and the 80% as a training

ataset. For a case study, we picked the specific target protein and set it as evaluation data. In our

odels, the deep learning system was trained with Adam optimizer at a learning rate of 0.001 [16] .

e used weighted binary cross entropy as a loss function to address imbalanced dataset issue of rare

rotein function prediction problem [17] . The weighted binary cross entropy loss L wBCE can be written

s 

L wBCE (y, ̂  y ) = −((1 − w ) y log ( ̂  y ) + w (1 − y ) log (1 − ˆ y )) (1)

here w is the ratio of number of labeled proteins to total trained proteins, y is the real label

nd ˆ y is the predicted value. This loss function is designed to give more weight to relatively rarely

abeled functions. The mini batch size was set to 128. To avoid overfitting, we trained deep learning

odels for varied epochs from 10 to 100 but less than 12 h and adopted early stopping strategy. The

haracteristics of used datasets are shown in Table S2. 

omparison methods 

To compare our models with others in predictive performance, we adopted CAFA baseline method,

LAST. BLAST model predicts protein function based on sequence identity. We made some minor

https://colab.research.google.com
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changes in this model to predict a specific protein function because CAFA challenge originally aims

to explore general functions of proteins. We made database with training dataset and found similar

sequences with queried target proteins using BLASTP software [18] . The BLAST results contained the

target training proteins after they were filtered by E-value of E-5. 

Performance evaluation 

We evaluated the predictive performance through average precision (AP), F1-score (F1), area 

under receiver operating characteristic curve (AUROC), area under precision-recall curve (AUPR) and 

Matthews correlation coefficient (MCC) [ 19–21 ]. The MCC, widely used confusion matrix describing

method, MC C t at threshold t can be computed directly from the confusion matrix using the following

formula: 

MC C t = 

(T P t · T N t ) − (F P t · F N t ) √ 

(T P t + F P t )(T P t + F N t )(T N t + F P t )(T N t + F N t ) 
(2) 

Where T P t is the number of true positives; T N t is the number of true negatives; F P t is the number of

false positives; F N t is the number of false negatives at threshold t . 

F1-score is harmonic average of the precision and the recall. The precision P r t and the recall R c t at

threshold t can be written as 

Pr 
t 

= 

T P t 

T P t + F P t 
(3) 

R c t = 

T P t 

T P t + F N t 
(4) 

Hence, F1-score F 1 , t can be calculated by the following formulas: 

F 1 ,t = 

2 

Pr t 
−1 + R c t −1 

= 2 · Pr t · R c t 

Pr t + R c t 
= 

2 · T P t 

2 · T P t + F P t + F N t 
(5) 

In this study, we presented the maximum evaluation value for all thresholds computed with a step

size 0.01 unless otherwise noted. The F1-score and the MCC score are visualized with the MCC-F1

curve to address the full range of all possible thresholds [22] . AP, AUROC, and AUPR are independent

of the threshold. The receiver operating characteristic (ROC) curve is a plot of true positive rate (recall)

versus false positive rate and precision-recall curve is a plot of precision versus recall. The AP is also

the method to summarize the precision-recall curve. The true positive rate TP R t and false positive rate

FP R t at threshold t can be written as 

T P R t = 

T P t 

T P t + F N t 
(6) 

F P R t = 

F P t 

T N t + F P t 
(7) 

Hence, AUROC, AUPR, AP can be calculated by the following formulas: 

AUROC = 

∫ −∞ 

∞ 

T P R t · F P R t 
′ dt (8) 

AUP R = 

∫ −∞ 

∞ 

Pr t · R c t 
′ dt (9) 

AP = 

∑ 

n 

(R c n − R c n −1 ) · Pr n (10) 

Where P r n and R c n are the precision and recall at the nth threshold. 
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Table 1 

The overall evaluation results for all tested sequence segmentation sizes. 

Model AP MCC F1 AUPR AUROC 

FUTUSA_FL 0.3089 0.3863 0.3421 0.3058 0.7525 

FUTUSA_16 0.4604 0.4764 0.4533 0.4576 0.8754 

FUTUSA_32 0.4661 0.4413 .0.4494 0.4631 0.8872 

FUTUSA_64 0.5158 0.5186 0.5319 0.5129 0.8835 

FUTUSA_128 0.4612 0.5406 0.5135 0.4592 0.7671 

Table 2 

The performance comparison of the competing models on the oxidoreductase activity (GO:0016491), acetyltransferase 

activity (GO:0016407) and demethylase activity (GO:0032451) datasets. 

Programs AP MCC F1 AUPR AUROC 

Oxidoreductase BLAST 0.1509 0.3386 0.3014 - - 

FUTUSA 0.4319 0.4508 0.4528 0.4272 0.8136 

Acetyltransferase BLAST 0.0649 0.1818 0.2374 - - 

FUTUSA 0.3212 0.4 4 4 4 0.5331 0.3166 0.7587 

Demethylase BLAST 0.1521 0.3529 0.3826 - - 

FUTUSA 0.3486 0.50 0 0 0.5145 0.3297 0.6906 

Calculation of area under ROC curve and PR curve does not assess the performance of binary predictor, BLAST model. 
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alidation and discussion 

equence segments-based training 

First, we tested whether the sequence segmentation method improves the predictive performance

f protein functions. We compared the segmentation model with the full-length model that uses

 zero-padding layer to fit the length of the protein sequences. The fully connected layers were

naltered in this model. We trained FUTUSA to predict oxidoreductase activity (GO:0016491) and its

escendants, which were 2371 terms. We used two different scoring methods to determine the score

f each protein. One used the average for the predictive scores of all segments from the protein, and

he other did the average for only the highest-scored segments in the top 10% to reduce the error from

he protein lengths and non-functional residues. Because the performances of the methods depend on

he context, we selected the better scoring method whenever the model training was completed. In all

ve metrics (AP, F1, AUROC, AUPR, and MCC), the sequence segmentation improved the classification

erformance regardless of the size of segmentation and CNN architecture. Fig. 1 . displays the MCC-

1 curve, ROC curve, and P-R curve for various segmentation sizes. All the sequence segmentations

ere found to be better than the full-length process. Of these segmentations, the 64 amino acid

egmentation was shown as the best setting. The overall results are summarized in Table 1 . The

esults revealed that the machine learning with sequence segments significantly improves the ability

f protein feature recognition. 

redictive performance comparison 

To verify our approach, we compared our model with the baseline method BLAST. We selected

xidoreductase activity (GO:0016491, 721 annotated proteins) as a representative case for the big-

ized dataset ( > 100 proteins), and the acetyltransferase activity (GO:0016407, 81 annotated proteins)

nd demethylase activity (GO:0032451, 28 annotated proteins) as the cases for the small-sized

atasets. We trained FUTUSA with 64 amino acid segmentation. Table 2 shows the predictive

erformances of various models on the three different datasets. In case of oxidoreductase, FUTUSA

btained AP = 0.4319, MCC = 0.4508, and F1 = 0.4528, which are higher than those in BLAST. We

ere adopted acetyltransferase and demethylase as the cases for small dataset size. FUTUSA showed

igher values of AUPR (0.3166 for acetyltransferase; 0.3297 for demethylase) than BLAST model.
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Fig. 1. The MCC-F1, ROC, P-R curves of all tested sequence segmentation sizes. The MCC-F1 (a), ROC (b), P-R (c) curves (FL: 

full-length model (blue); 16: segmentation size 16 model (green); 32: segmentation size 32 model (orange); 64: segmentation 

size 64 model (red); 128: segmentation size 128 model (black). 

 

 

 

 

 

 

Consequently, we propose FUTUSA as a powerful protein function-predicting program applicable to 

either big-sized or small-sized dataset. 

Prediction of the functional impacts of mutations in phenylalanine hydroxylase 

To explore a new application of FUTUSA, we investigated whether it could predict the functional

consequence of single amino acid variation. To evaluate the contribution of each amino acid to

functional property, we computed the average values of all segments in phenylalanine hydroxylase 

(PAH), which is responsible for an inherited metabolic disease PKU. PAH, which belongs to the

monooxygenase family, is a homo-tetrameric enzyme composed of an N-terminal regulatory domain, 

a central catalytic domain, and a C-terminal tetramerization domain [23] . Clinically, it is very

important to predict the functional consequences of the PAH mutations in patients’ specimens. Such 

an information may be one of guiding factors to decide how to care PKU patients. To predict PAH

activity, we trained FUTUSA with new dataset comprising 114 monooxygenases. The trained model 

successfully predicted the catalytic domain as a crucial region and assigned low scores to regulatory
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nd tetramerization domains ( Fig. 2 a). The N-terminus is classified as the ACT domain, which is widely

xpressed in enzymes of amino acid metabolism. Notably, this region obtained a low score even

hough there were several identical residues with other aromatic amino acid hydroxylases. It may be

nterpreted that this domain is not essential for monooxygenase activity. To visualize the prediction

esults, we highlighted the high score region in the 3D structure of human PAH protein using CAVER

nalyst 2.0 [ 24–26 ]. Previous studies reported that phenylalanine forms hydrophobic interactions with

270, T278, P279, F331, G346, G349, and S350. The thiophene ring of the substrate was stacked against

he imidazole ring of H285 [ 25 , 27 ]. The high score region of the model was close to the active site of

uman PAH. Fig. 2 b shows that they covered most of the substrate-binding residues and iron-binding

esidues. The low score regions do not contact the substrate and are located far from the active site.

n particular, the prediction result of FUTUSA covered the active site lid, Y138 [28] . 

Next, we computed the change in the predictive score after single amino acid deletion and

ubstitution. There are 100 or more PAH mutations (missense and frameshift) that can lead to

henylketonuria (PKU), as reported in the ClinVar database [29] . These mutations present a broad

ange of phenotypic variations depending on the residual enzymatic activities. Hence, we verified

he predictive performance of the full-length models and segmentation models with the mutated

equences. As a result, FUTUSA_FL (full-length) failed to predict the outcomes of single amino acid

hanges ( Fig. 3 a). However, the segmentation models composed of 16 ( Fig. 3 b) and 64 ( Fig. 3 c) amino

cids were able to compute remarkable score changes after mutation occurs. FUTUSA_16 showed

core drops only in several crucial regions, but FUTUSA_64 marked crucial regions more widely. The

egulatory and oligomerization domains showed trivial score changes in both segmentation models.

UTUSA_64 showed that many substitutions of amino acids in the catalytic domain decreased the

redictive score, but those in exons 4 and 11 did not substantially ( Fig. 3 c). Numbers of missense

ariants and exon deletions, related to loss of function and phenylketonuria, were detected in the

atalytic domain [ 30,31 ]. These results reveal that the functional sites predicted by FUTUSA are well

atched with the known functional domains. 

iscussion 

We here propose a deep learning-based protein function predictor, which is named FUTUSA. Since

t requires only the sequence information, FUTUSA is suitable for preliminary characterization of

ewly found proteins or uncharacterized variants. We also established a preprocessing method for

equence segmentation, which effectively extracts functional features from protein sequence data and

ugments the performance of function prediction. FUTUSA showed a better performance than the

aseline method, BLAST. Therefore, we propose FUTUSA as a new deep learning program predicting

he functions of uncharacterized proteins. Additionally, FUTUSA distinguished functionally essential

mino acids with nonessential ones, suggesting that FUTUSA could be used for predicting the clinical

mpact of point mutations or single amino acid polymorphisms. 

Generally, protein function prediction has a fundamental problem resulting from training with

mbalanced dataset. For instance, a number of oxidoreductase proteins is 719, which is only 3.4%

f total proteins trained in FUTUSA. It means that the machine was trained more with irrelevant

roteins (as negative controls) than with target proteins. Especially in the small-sized dataset such

s acetyltransferase and demethylase, this class imbalance in training raises the false-positive rate to

 greater extent. Reviewing the equations for AUPR and AUROC, AUROC is substantially affected by

he false-positivity, whereas AUPR does not [32] . In case of the small-sized dataset, therefore, AUPR

ay evaluate the efficiency of function prediction more accurately than AUROC. For this reason, we

mphasize the AUPR values ( Table 2 ). 

It should be noted that FUTUSA has some limitations in the data process. The sequence

egmentation process increases the input data size, thereby increasing the training time. Thus, the

egmentation should be optimized to achieve a good balance between the predictive performance

nd training time. Also, since FUTUSA is not a ready-to-use predictor, users should modify training

ataset, optimize preprocessing parameters, and train it according to their purposes. 

One of the reasons for the delay in the development of deep learning-based protein function

redictors is that the performance of deep learning models depends on the quality and quantity
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Fig. 2. The heatmap visualization of predicted functional contribution score of individual amino acids. The predicted scores of FUTUSA are also overlaid onto crystal structure of the 

full-length human PAH (residues 21–446; PDB:6N1K) and catalytic domain of human PAH (residues 117-428; PDB:1MMK). (a) The heatmap is mapping with green as low predictive score 

and red as high predictive score. (b) The iron ion (cyan) is highlighted in balls. The substrate analogue, beta-2-Thienylalanine (THA; yellow) and amino acid residues of binding pockets 

(gray and brown) are presented as sticks. The prediction was performed with Phenylalanine-4-hydroxylase for monooxygenase activity. 
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Fig. 3. The heatmap of the score changes by single amino acid mutations. Protein function changes by point mutations were 

predicted using FUTUSA_FL (a), FUTUSA_16 (b), FUTUSA_64 (c) The color indicates the score changes after mutation, blue as 

decreased score and red ad increased score. Each column represents the position of the amino acid and each row represents the 

changed amino acid after mutation. The first row, del, indicates the deletion of the amino acid. The prediction was performed 

with Phenylalanine-4-hydroxylase for monooxygenase activity. 
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f training data. Therefore, some researchers used diverse protein features, such as protein-protein

nteractions or protein motifs [ 8 , 9 , 33 ]. However, the features are available for extensively studied

roteins, but not for uncharacterized proteins. To solve such a problem, many researchers have tried to

evelop new protein function predictors requiring only amino acid sequences [ 10 , 34 , 35 ]. Despite many

fforts, the sequence-alone approaches have not been satisfactory to users. In this context, FUTUSA is

roposed as a new method to meet users’ needs. 

In a future work, we plan to modify the preprocessing process. In the present study, we assigned

he same weight to all segmented sequences, even if the sequences insignificantly contributed to

rotein function. It is expected that assigning different weights to each segment can minimize

rtificial biases. For that, we should add a step to re-evaluate how much each segment contributes



10 C.W. Ko, J. Huh and J.-W. Park / MethodsX 9 (2022) 101622 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to the whole function. In addition, the model should be changed to a multi-class classification model.

This version of the model was built as a single-class classification model to focus its predictive ability

in classifying the protein function. However, it is evident that the hierarchical structure of GO terms

and the corresponding annotated patterns also contain important information. Therefore, we will 

intend to find the GO terms grouping method to optimally predict a single GO term. 

All the source code and datasets are available at https://github.com/snuhl-crain/FUTUSA . 
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