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Abstract
Individual differences in mind and behavior are believed to reflect the functional variability of

the human brain. Due to the lack of a large-scale longitudinal dataset, the full landscape of

variability within and between individual functional connectomes is largely unknown. We

collected 300 resting-state functional magnetic resonance imaging (rfMRI) datasets from 30

healthy participants who were scanned every three days for one month. With these data,

both intra- and inter-individual variability of six common rfMRI metrics, as well as their test-

retest reliability, were estimated across multiple spatial scales. Global metrics were more

dynamic than local regional metrics. Cognitive components involving working memory, inhi-

bition, attention, language and related neural networks exhibited high intra-individual vari-

ability. In contrast, inter-individual variability demonstrated a more complex picture across

the multiple scales of metrics. Limbic, default, frontoparietal and visual networks and their

related cognitive components were more differentiable than somatomotor and attention net-

works across the participants. Analyzing both intra- and inter-individual variability revealed

a set of high-resolution maps on test-retest reliability of the multi-scale connectomic metrics.

These findings represent the first collection of individual differences in multi-scale and multi-

metric characterization of the human functional connectomes in-vivo, serving as normal ref-

erences for the field to guide the use of common functional metrics in rfMRI-based

applications.
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Introduction
Functional connectomics with resting-state functional magnetic resonance imaging (rfMRI)
is a widely used tool to map the intrinsic architecture in the human brain [1–4]. Different
computational methods have been developed to examine the functional changes associated
with development and disease processes [5, 6]. The rfMRI-derived metrics can be categorized
into three different types according to the spatial scale at which they characterize human
brain function, namely the local scale (brain areas/regions), meso-scale (subnetworks or
modules), and global brain. At each scale these metrics aim to characterize information seg-
regation and integration in functional connectomics. Functional connectivity between brain
areas can be defined in a relatively straightforward manner with temporal correlations [7, 8];
other measures of connectivity can be used, but may be difficult hard to interpret, partly
because there are many confounds [9] that can affect these metrics [10–13]. Fortunately, sev-
eral recent studies have made efforts on explore the potential neurobiological significance of
these metrics [14–16].

High test-retest reliability is a necessary requirement for developing a biomarker of func-
tional connectomics for clinical application [17]. The existing rfMRI-derived metrics have
demonstrated moderate to high test-retest reliabilities and are widely used to study different
aspects of the human brain’s intrinsic functional architecture or functional connectomics
[18], and systematically reviewed in [19]. Specifically, at local scales, the amplitude measures
exhibit moderate to substantial reliability [20] whereas the local functional homogeneity
metrics are highly reliable (substantial to almost perfect) [21]. At the scale of networks, com-
mon intrinsic connectivity networks show relatively high reliability while the seed-based
methods [22] are relatively less reliable than independent component analysis [23]. At scales
of the entire connectome, various centrality metrics exhibit only fair to moderate test-retest
reliability [2], although this can be affected by sampling rates, preprocessing and computa-
tional strategies [24–27]. Test-retest reliability of these metrics have been partly examined in
typically [28, 29] or atypically developing children [29] as well as normal [30–32] and abnor-
mal aging people [33].

Test-retest reliability is an integrative statistical measure of both intra-individual variability
(intraVar) and inter-individual variability (interVar) [34, 35], composing so-called individual
differences. Previous studies have presented significant individual differences in human brain
intrinsic function at both the group and individual level [1, 15, 36–38], although most focused
on seed-based functional connectivity. The distribution of individual differences to within- and
between-subject variability determines the degree of test-retest reliability of the functional mea-
sures. However, very few studies have explored details of both intraVar and interVar of com-
mon functional measurements due to lacking a richly-sampled datasets within and between
individuals. One representative work on interVar was recently conducted by Mueller and col-
leagues [39], shedding light on the role of intrinsic functional connectivity in brain evolution
and development by relating individual differences to interVar of cortical morphology, ana-
tomical distance and cognition. This dataset has been employed as normal reference in guiding
individual-level network parcellation of the human cortex [40]. Another seminal work investi-
gated the spatial structure of intraVar of whole-brain intrinsic connectivity within one-hour
rfMRI scans from 10 participants and concluded that this intraVar also reflected functionally
specialized and flexible configuration across the human brain cerebral cortex [41]. A recent
work on the MyConnectome project [42] by Poldrack and colleagues has yielded the most
detailed depiction of an individual brain’s function across one year (almost daily scanned) [43],
together with the work from Choe and colleagues on rfMRI-derived networks of an individual
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across a period of 3.5 years (weekly scanned) [44], further highlighting the value of mapping
intra-individual variability more accurately to probe the intrinsic function.

While the mapping of the individual differences are fundamentally important to understand
how the human brain organizes, changes dynamically, as well as how it is altered by disease
conditions [45, 46], a comprehensive study of both intraVar and interVar of the rfMRI mea-
sures in a single sample is still missing. The major challenge is to obtain a longitudinal dataset
with enough samples at both the group and individual levels. In the present research, we
scanned 30 healthy adults using rfMRI with a one-month longitudinal experiment design. This
allowed each participant to undergo an rfMRI scanning session every 2–3 days, resulting in ten
repeated measurements for each participant. This test-retest sample has been released (http://
dx.doi.org/10.15387/fcp_indi.corr.hnu1) as part of the Consortium for Reliability and Repro-
ducibility (CoRR) [47], which shares the data via the Neuroimaging Informatics Tools and
Resources Clearinghouse (NITRC). It is also available at FigShare (https://figshare.com/s/
7dac285e153e176d90e8) with a digital object identifier (10.6084/m9.figshare.2007483). Using
this dataset, we 1) implement surface-based computation of the common rfMRI metrics at
scales of local areas, subnetwork/module and global connectome; 2) delineate both intraVar
and interVar of the common rfMRI metrics at the three different spatial scales; 3) examine
test-retest reliability of these common brain connectomics metrics and generate their cortical
surfaces; 4) related these individual differences and the test-retest reliability to the brain net-
works and the cognitive components in the intrinsic functional architecture.

Methods and Analysis

Participants
Thirty participants aged 20 to 30 years old (15 females, mean age = 24, SD = 2.41) were
recruited and scanned ten times over approximately one month. None of participants had a
history of neurological or psychiatric disorders, substance abuse, or head injury with loss of
consciousness. The ethics committee of the Center for Cognition and Brain Disorders (CCBD)
at Hangzhou Normal University approved this study. Written informed consent was obtained
from each participant prior to data collection.

MRI Data Acquisition
MRI Imaging sessions were performed using a GE MR750 3.0 Tesla scanner (GE Medical Sys-
tems, Waukesha, WI) at CCBD, Hangzhou Normal University. Each participant underwent
ten imaging scans over one month with one scan every three days, during which two imaging
sequences were completed to measure individual brain structure and function. Specifically, a
T2-weighted echo-planar imaging (EPI: TR = 2000 ms, TE = 30 ms, flip angle = 90°, field of
view = 220 × 220 mm, matrix = 64 × 64, voxel size = 3.4 × 3.4 × 3.4 mm, 43 slices) sequence
was performed to obtain resting state fMRI images for 10 minutes. A T1-weighted Fast Spoiled
Gradient echo (FSPGR: TR = 8.1 ms, TE = 3.1 ms, TI = 450 ms, flip angle = 8°, field of
view = 256 × 256 mm, matrix = 256 × 256, voxel size = 1.0 × 1.0 × 1.0 mm, 176 sagittal slices)
was carried out to acquire a high-resolution anatomical image of the brain structure. To mini-
mize head movement, straps and foam pads were used to fix the head snugly during each scan.
The participants were instructed to relax and remain still with their eyes open, not to fall asleep,
and not to think about anything in particular. The screen presented a black fixation point ‘+’ in
the center of the gray background. After the scans, all the participants were interviewed, and
none of them reported to have fallen asleep in the scanner. The time of day of MRI acquisition
was controlled within participants.
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MRI Data Preprocessing
The Connectome Computation System (CCS: https://github.com/zuoxinian/CCS) was devel-
oped to provide a multimodal image analysis platform for the discovery science of human
brain function by integrating three main MRI data processing packages [48–50] with our
MATLAB implementations of various computational modules for image quality control, sur-
face-based rfMRI metrics, data mining algorithms, reliability and reproducibility assessments
and visualization. The primary CCS pipeline consists of both anatomical and functional pro-
cessing, which are documented in the CCS paper in details [51]. Here, we only provide an over-
all description of these steps.

The CCS anatomical pipeline first removed noise from individual MR T1 images by adopting
a spatially adaptive non-local means filter [52, 53]. For each participant, regarding that the focus
of the present analysis is changes of rfMRI metrics, we aligned and averaged the ten de-noised T1
images to produce a robust, high-resolution anatomical image with high contrast between gray
matter (GM) and white matter (WM) for generation of an individual cortical surface model as
anatomical reference. Using this image, the skull was then stripped and manually edited for a bet-
ter brain extraction, and the 3D extracted brain volume was segmented into different tissues such
as cerebrospinal fluid (CSF), WM, GM and further parcellation of the GM tissue. With such
information, individual pial (GM/CSF boundary) and white (GM/WM boundary) surfaces were
reconstructed and spatially normalized to match a group-level standard template surface in the
Montreal Neurological Institute (MNI) space via a sphere registration [49, 54, 55].

The subsequent CCS functional pipeline discarded the first 5 EPI volumes (10 seconds),
removed and interpolated temporal spikes (see instructions in [56, 57] regarding in-scanner
head motion), corrected acquisition timing among image slices and head motion among image
volumes and normalized the 4D global mean intensity to 10,000. White surfaces were then
employed by a boundary-based registration (BBR) algorithm to match spatial correspondences
between individual functional images to anatomical images [58]. To further eliminate the effect
of head motion and physiological noises during the rfMRI scanning session, we regressed out
the estimated Friston’s 24-parameter motion curves [37] and nuisance signals measured as
WM and CSF mean time series [59] from individual rfMRI time series. Linear and quadratic
trends were also regressed out from the rfMRI data by multiple linear regressions. Finally, the
data were projected onto the fsaverage surface grid (average inter-vertex distance = 1 mm) and
down-sampled to the fsaverge5 surface grid (average inter-vertex distance = 4 mm) for subse-
quent rfMRI computation.

Participant-level rfMRI Metrics Derivation
The overall analytic strategy is presented in Fig 1. The above CCS pipeline preprocessed all
individual rfMRI images (Fig 1A) and projected individual rfMRI time series onto a uniform
cortical surface grid (fsaverge5) based upon the brain tissue classification (Fig 1B and 1C). As a
proof of concept, an individual-level functional connectome can be modeled as a graph or net-
work with vertices as nodes and pair-nodes dependency as edges (Fig 1D). To achieve a system-
atic and comprehensive characterization of the brain graph, we proposed a set of metrics at
three different scales from a single vertex to the whole cortex (Fig 1E). Given an arbitrary vertex
vi(i = 1, � � �, V) on the surface where V is the number of all vertices of the fsaverge5 surface grid,
its time series measured with rfMRI is vi(tj)(j = 1, � � �, T) where T is the number of time points
of the rfMRI scan (assume an even number). All these metrics are summarized in this section
with computational details.

Scales of Local Area. To measure local-scale characteristics of the human brain function,
two amplitude metrics were employed, namely, the amplitude of low frequency fluctuation
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Fig 1. The overall analytic strategy implemented in the Connectome Computation System (CCS). All
individual rfMRI images (A) are first preprocessed through the CCS pipeline and then CCS projected
individual rfMRI time series onto a uniform cortical surface grid based upon the brain tissue classification (B/
C). As a proof of concept, an individual-level functional connectome can be modelled as a graph or network
with vertices as nodes and pair-nodes dependency as edges (D). To achieve a systematic and
comprehensive characterization of the brain graph, we proposed a set of metrics at three different scales
from a single vertex to the whole cortex for measuring the amplitude and homogeneity at local scales,
subnetworks or modules at meso-scales, and connectome centrality at the global scale (E). The connectome
graph is reproduced and modified from [15].

doi:10.1371/journal.pone.0144963.g001
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(ALFF) [10] and its fractional version (fALFF) [11]. Both ALFF and fALFF were derived from
spatially smoothed rfMRI data (6 mm full-width at half-maximum isotropic Gaussian kernel)
via the Fourier decomposition [20]. ALFF measures the strength or intensity of the low-fre-
quency O = [0.01,0.1] (Hz) oscillations whereas fALFF is the relative amplitude contribution of
the specific frequency to the whole detectable frequency range O0 = (0,1/(2Δt)] (Hz) where Δt
is the sampling rate Eq (1).

viðtÞ ¼
XT=2
l¼1

fal cos ðoltÞ þ bl sin ðoltÞg;ol ¼ 2pl=T

ALFFðvi;OÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l:ol2O

aðolÞ2l þ bðolÞ2l
T=2

s
; fALFFðviÞ ¼

ALFFðvi;OÞ
ALFFðvi;O0Þ

ð1Þ

With a relatively larger scale than the two amplitude measures, to measure local connectivity,
regional homogeneity (ReHo) was also employed to characterise the local functional homoge-
neity of each vertex across the cortical mantle [12, 14, 15, 21]. This surface-based ReHo was
derived from the non-smoothed but temporally band-pass filtered (the passing frequency band
O) rfMRI data. The Kendall’s coefficient of concordance of time series within a set of neighbor-

ing vertices quantifies the ReHo. Denote gji as the rank time series of vi(tj), and the Eq (2) for-
mulates ReHo computation where K is the number of neighbors of the vertex vi, N(vi). The

mean rank across its neighbors at the j-th time point is �g ji, and its overall mean rank across all
neighboring voxels and time points is �g i. Here, two neighbor-sizes used for computation of
homogeneity metrics, namely ReHo1 (K = 7) and ReHo2 (K = 20).

ReHoðvi;NðviÞÞ ¼

XT
j¼1

ðgjiÞ2 � Tð�g iÞ2

1

12
K2ðT3 � TÞ

¼ 12

XT
j¼1

ð�g jiÞ2

ðT3 � TÞ � 3
Tþ 1

T� 1
: ð2Þ

Scales of Subnetwork. Seed-based method can construct a subnetwork of the seed region.

Denote the representative time series of the seed as a vector s ¼ ðsjÞTj¼1, and the full brain

rfMRI time series as a matrixV ¼ ðvjiÞ ¼ ðviÞVi¼1. Pearson’s correlation coefficient between s
and vi is defined as ρ in the Eq (3) and further converted into Fisher-z value to quantify the
seed-based functional connectivity (SFC) between the seed and the vertex. This method can be
sensitive to the seed selection, and here we choose a small default network region from a highly
reproducible functional parcellation of the human brain [60], namely ‘17Networks_LH_De-
faultA_PCC’. Its representative time series was obtained by averaging all time series within the
seed area. Of note, this surface-based SFC was estimated using the same preprocessed rfMRI
data as ReHo but normalized (0 mean and 1 variance).

SFCðvi; sÞ ¼
1

2
ln

1þ rðvi; sÞ
1� rðvi; sÞ
� �

where rðvi; sÞ ¼ sv
0
i: ð3Þ

A fast MATLAB implementation can be achieved for the entire cortex correlation with the
seed region as in the Eq (4) [2, 51].

SFCðV; sÞ ¼ Vs0 ¼ ðv1s
0; � � � ;vVs

0Þ ð4Þ

To extract multiple networks simultaneously from individual rfMRI time series (not normal-
ized), a dual regression (DR) procedure was employed [23]. Specifically, spatial confidence maps

yð1Þ
i¼1;���;7 of the seven networks derived from 1,000 healthy adults [60] of the Brain Genomics
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Superstruct Project [61] were employed in the first regression on individual rfMRI images to con-

struct the characteristic time series xð1Þ
i¼1;���;7 of the seven networks at individual level in Eq (5).

These characteristic time series were further entered into the second regression on the individual

rfMRI time series to extract individual spatial maps of the seven networks yð2Þ
i¼1;���;7 in Eq (6).

DRð1ÞðV;y
ð1Þ
i¼1;���;7Þ : V0 ¼ ðyð1Þ

1 ; � � � ;yð1Þ
7 Þðxð1Þ

1 ; � � � ;xð1Þ
7 Þ0 þ Eð1Þ ð5Þ

DRð2ÞðV;xð1Þ
i¼1;���;7Þ : V ¼ ðxð1Þ

1 ; � � � ;xð1Þ
7 Þðyð2Þ

1 ; � � � ;yð2Þ
7 Þ0 þEð2Þ ð6Þ

Scales of Global Connectome. At this scale, an individual functional connectome was
reconstructed by computing the full cortical correlation matrix V V0. This surface-based com-
putation constructed weighted graphs for individual brains by quantifying the inter-vertex con-
nection as the Pearson’s correlation between their preprocessed rfMRI signals (not smoothed
but temporally band-pass filtered) [2]. All these cortical graphs were set to have the same edge
density (0.05) to make them comparable across participants and time. Denote the adjacency
matrix as in Eq (7).

A ¼ ðaijÞ ¼
1

2
ln

1þ rðvi; vjÞ
1� rðvi; vjÞ

 !
; i; j ¼ 1; � � � ;V ð7Þ

We applied degree centrality (DCw)[2, 62] and eigenvector centrality (ECw) [2, 63, 64] to
capture the feature of the information processing in the weighted functional connectomes.
DCw is the degree of the functional connectivity by measuring the sum of weighted connec-
tions for each node vertex Eq (8). ECw is the eigenvector corresponding to the maximal eigen-
value λ1 of the adjacency matrix Eq (8) and captures an aspect of centrality that extends to
global features of the weighted brain graph.

DCwðviÞ ¼
XV
j¼1

aij; ECwðviÞ ¼
1

l1

XV
j¼1

aijECwðvjÞ ð8Þ

Group-level Statistical Assessments
To examine the dynamic changes of human brain function for individual subjects and among
different subjects over one month, we applied the Linear Mixed Effects (LME) models to 300
samples of each functional metric. We also included various potential confounding factors in
LMMs such as the age, sex, mean frame-wise displacement (meanFD) of head motion, and
BBR minimum cost (mcBBR) at the participant-level.

At the whole-brain level, for each specific functional metric M 2 {ALFF, fALFF, ReHo1,
ReHo2, SFC, DR, DCw, ECw}, we employed the model as in Eq (9) to estimate both intraVar
and interVar. We denote gMij as the global mean metric of the i-th measurement of the j-th
participant (for i = 1� � �10 and j = 1� � �30).

gMij ¼ m00 þ g0j þ agej þ sexj þmotionij þ �ij ð9Þ

Interplays between each pair of the DR-derived networks were estimated as the temporal
correlation between each pair of their characteristic time series. This interplay correlational
matrix was converted to Fisher’s z-values. An LME model Eq (9) was then applied to each of
the interplay metric for estimation of their variance components.

At the vertex-level, Eq (9) was further refined by including the global mean metric as a
covariate to assess the network-specific variability of the metric within and between subjects.
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Such a strategy of post-hoc standardization in functional connectomics has been proposed
recently and is more efficient and reliable to detect individual differences [38]. Specifically, the
regression model, as shown in Eq (10), was applied to each vertex on the fsaverage5 surface and
yielded vertex-wise statistical assessments. To account for heterogeneous changes in regional
volume, the amount of regional volume change required to warp a subject into the standard
surface, fsaverage, is measured using the vertex-wise covariate derived from the Jacobian deter-
minant of the spherical transform in FreeSurfer.

MijðvÞ ¼ m00ðvÞ þ gMij þ g0jðvÞ þ agej þ sexj

þmotionij þmcBBRij þ JacobianjðvÞ þ �ijðvÞ
ð10Þ

LME models (9) and (10) contain parameters of both fixed and random effects, and the ran-
dom error term. The basic assumption of an LME is that the observed variable and error term
are normally distributed with mean 0 and variances. Here, the variance s2

b is the inter-individ-
ual or between-subject variance (interVar); in other words, the variation between participants
while s2

w is the intra-individual or within-subject variance representing the variation within
single subjects across one month (intraVar). In order to evaluate the test-retest reliability of the
functional metrics, the intra-class correlation (ICC) was calculated by according to its defini-
tion as ICC ¼ s2

w=ðs2
b þ s2

wÞ. All the estimation of the variances was implemented by CCS. To
avoid negative estimation of the ICC, the variance components in the LMMs were estimated
with the restricted maximum likelihood (ReML) approach with the covariance structure of
compound symmetrical matrix. From this reliability definition, it is clear that the test-retest
reliability integrates both intra-individual and inter-individual variability. Low intra-individual
variability or high inter-individual variability will lead to high test-retest reliability. The reli-
ability bounds the validity of various metrics used in clinical diagnoses and thus becomes an
essential requirement on developing a biomarker in applications [17].

Results
Our analyses produced a set of maps of the individual differences in intrinsic functional archi-
tecture by delineating intra-individual, inter-individual variability and test-retest reliability
across multiple metrics and multiple spatial scales of the human connectome. Specifically, we
computed eight different functional metrics to characterize the human brain connectome at
local, meso and global scales: ALFF, fALFF, ReHo1, ReHo2, SFC, DR, DCw and ECw to cap-
ture the feature of the information processing in the weighted functional connectomes [2]. Ver-
tex-wise maps of the individual variability and test-retest reliability depicted high-resolution
distributions of variability and stability of these functional connectomics. In reporting these
findings, we categorized the ICC into five common intervals [65]: 0< ICC� 0.2 (slight); 0.2<
ICC� 0.4 (fair); 0.4< ICC� 0.6 (moderate); 0.6< ICC� 0.8 (substantial); and 0.8<
ICC� 1.0 (almost perfect). Global mean measures of all these metrics (for DR, no global mean
calculated regarding its methodological consideration) only exhibited fair to moderate test-
retest reliability (Fig 2C), indicating their dynamic nature within subjects (Fig 2A) or limited
between-subject variability (Fig 2B).

To summarize these findings at multiple scales, together with presentation of these vertex-
wise maps, we documented our results in following subsections for the individual differences
according their distributions across the common brain networks and cognitive components.
The seven large-scale networks derived from 1,000 healthy resting-state brains [60] are ren-
dered in Fig 3: visual (Visual), somatomotor (SomMot), dorsal attention (DorsAttn), ventral
attention (VentAttn), limbic (Limbic), frontoparietal control (Control), default (Default) net-
work, and a cognitive ontology of the brain derived from a large data set of neuroimaging
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experiments (N = 10,449) that contains twelve (C1-Hand, C2-Mouth, C3-Auditory, C4-Visual,
C5-Language, C6-Attention, C7-Autonomic, C8-Inhibition, C9-Working Memory,
C10-Default, C11-Basal and C12-Reward) components of cognition [66]. Percentages of high
values (> = 0.4) and mean values are computed for all the networks and components. This
strategy helps to shape the following reports of these large amount findings into a hierarchically
organized framework.

Local Scales: Amplitude and Homogeneity
These four local metrics demonstrated moderate to almost perfect reliability across the cortex
(Fig 4). ALFF and ReHo1, ReHo2 were very similar regarding their spatial patterns of individ-
ual differences and reliability whereas fALFF was pretty different from them, showing largely

Fig 2. Quantification of variability of seven common rfMRI metrics across the whole cortical mantle.
A) Auantification measures of intra-individual variability strength are plotted in polar form for amplitude of low-
frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity with length-one (ReHo1) and
length-two (ReHo2) neighbors, seed-based connectivity analysis (SCA), weighted degree centrality (DCw)
and eigenvector centrality (ECw). B) Auantification measures of inter-individual variability strength are plotted
in polar form for the rfMRI metrics. C) Auantification measures of test-retest reliability strength are plotted in
polar form for the rfMRI metrics. Note that for the purpose of visualization, all the strengths are normalized
into a standard value between 0 and 1 by dividing the specific variance with the overall variance.

doi:10.1371/journal.pone.0144963.g002

Fig 3. Renders of canonical large-scale networks and cognitive components. A) The seven large-scale
networks derived from a large sample (N = 1,000) of healthy resting-state brains [60] including Visual
(Purple), Somatomotor (Blue), Dorsal Attention (Green), Ventral Attention (Violet), Limbic (Cream),
Frontoparietal Control (Orange), Default (Red). This render projects these networks onto the fsaverage
surface grid with its dorsal, ventral, lateral, medial, anterior and posterior views of the left hemisphere (LH)
and the right hemisphere (RH). Dark gray curves indicate the boundaries between the seven networks. B) A
surface render of the cognitive ontology of the brain derived from a large data set of neuroimaging
experiments (N = 10,449) that contains twelve (C1-Hand, C2-Mouth, C3-Auditory, C4-Visual, C5-Language,
C6-Attention, C7-Autonomic, C8-Inhibition, C9-Working Memory, C10-Default, C11-Basal and C12-Reward)
components of cognition [66]. This image is reproduced and modified from [66].

doi:10.1371/journal.pone.0144963.g003
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reduced reliability and inter-individual variability. Specifically, regions with the highest reli-
abilities were primarily located in Visual, DorsAttn, Control and Default networks where
intra-individual variability were small, and inter-individual variability were high (S1 Table).
An interesting observation is, across all the local metrics, the medial prefrontal cortex node of
the default network were the most temporally dynamic region, especially for fALFF. This met-
ric represents the most dynamic one among the four local measures with a focal site in the
insular cortex. These highly reliable regions were linked to multiple cognitive components
including working memory, attention, default, language, inhibition and visual processes (S2
Table). These high-level cognition processes exhibited low intra-individual variability and high
inter-individual variability regarding their local functional characteristics.

Meso Scales: Networks and Modules
The left PCC region showed substantial test-retest reliability of its seed-based functional con-
nectivity (Fig 5A) with a set of brain areas from both the Default network and Control network
(Fig 5B). These two networks covered more than 60% of the reliable PCC’s SFC (S3 Table).
Regarding the intra-individual variability, most dynamic SFC of the left PCC mainly connected
with the Limbic and the Visual network (Fig 5D). Most test-retest reliable SFC of the PCC were
associated with Default, Inhibition, Working Memory and Basal components of the human
cognition, indicating low-level within-subject and high-level between-subject variability (S4
Table).

Spatial patterns of the seven cortical functional modules and their temporal interplays as
well as their reliability and variability are presented in Fig 6. DR-derived visual network con-
nectivity reliably detectable within the Visual network and DorsAttn network while its inter-
plays with the SomMot network and the Limbic network were reliable (S3 Table). These

Fig 4. Vertex-wise statistical maps of four common rfMRI metrics at local scales.Maps of group-level
statistical significance strength (the first row), test-retest reliability (the second row), intra-individual variability
(the third row) and inter-individual variability (the forth row) are rendered onto the fsaverage surface grid with
its lateral and medial views for amplitude and homogeneity metrics including amplitude of low-frequency
fluctuations (ALFF, the first column), fractional ALFF (fALFF, the second column), regional homogeneity with
length-one neighbors (ReHo1, the third column) and regional homogeneity with length-two neighbors
(ReHo2, the forth column). Dark gray curves indicate the boundaries between the seven canonical neural
networks.

doi:10.1371/journal.pone.0144963.g004
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Fig 5. Vertex-wise statistical maps of the seed-based rfMRI connectivity.Maps of group-level statistical
significance strength (A), test-retest reliability (B), inter-individual variability (C) and inter-individual variability
(D) are rendered onto the fsaverage surface grid with its lateral and medial views. Dark gray curves indicate
the boundaries between the seven canonical neural networks.

doi:10.1371/journal.pone.0144963.g005

Fig 6. Vertex-wise statistical maps of large-scale commonmodular metrics at meso scales of
subnetworks.Maps of group-level significance strength (A), test-retest reliability (B), intra-individual
variability (C) and inter-individual variability (D) are rendered onto the fsaverage surface grid with its lateral
and medial views for within-network functional specialization (spatial patterns) and between-network
functional integration (temporal interactions or interplays) of the seven common large-scale neural networks:
Visual, SomMot, DorsAttn, VentAttn, Limbic, Control, Default. Dark gray curves indicate the boundaries
between the seven canonical neural networks. Each connection line is plotted with mixed colors of the two
networks it connects.

doi:10.1371/journal.pone.0144963.g006
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functional connectivity spatially distributed to Visual and Attention cognitive components (S4
Table). The reliable SomMot network connectivity existed within itself and the two attention
(DorsAttn and VentAttn) networks, and were involved in Hand and Mouth cognitive process.
Beyond with the Visual network, its interplays with both the DorsAttn and the Limbic net-
works were reliable. DR-derived connectivity of the Limbic network were not reliable in general
while it had reliable interplays with other networks including Visual, SomMot, DorsAttn, Ven-
tAttn and Default networks. No cognitive component contained test-retest reliable DR-derived
Limbic connectivity.

DR-derived connectivity of the DorsAttn network were reliably presented with itself and
the Control network while its temporal interactions with the VentAttn, Default, SomMot and
Limbic networks were reliable. Regarding the related cognition processes, these DR-derived
connectivity profiles were linked to Attention, Working Memory and Visual components (S4
Table). The within-network DR connectivity of the VentAttn network and its connectivity
with Control, DorsAttn, Default and SomMot networks were test-retest reliable. Dynamic
interactions between the VentAttn network and Default, Limbic and DorsAttn networks were
also reliably observed. Interestingly, this salience-related network showed reliable connectivity
across all the 12 cognitive components, among which Inhibition, Working Memory and Atten-
tion were the highest three. Beyond within-network connectivity, the Control network exhib-
ited highly reliable connectivity with the two attention and default networks while no reliable
between-network interplays were observed for such a highly flexible network. Working Mem-
ory, Inhibition, Language and Attention components all had reliable connectivity with this net-
work. Finally, the Default network DR connectivity were reliably distributed within Default,
Control and Attention networks whereas its interplays with the two attention networks and the
Limbic network were also test-retest reliable. This kind of reliable connectivity were reflected
in cognitive components of Working Memory, Inhibition, Default, Language, Basal and
Auditory.

Global Scales: Connectome
As a metric to measure the functionally local connection, DCw characterized the global-scale
feature of the human brain connectome. This metric, at vertex-wise level, were only moderately
test-retest reliable with very few nodes in parietal and temporal cortex, belonging to Control,
Visual and SomMot networks (Fig 7). In contrast, ECw is a functionally global metric and
failed in detecting test-retest reliable profiles across the whole cortex although there was a
small set of nodes with moderate reliability assignment within parietal areas of the SomMot
network (S5 Table). Low test-retest reliability was an indication of the high dynamics across
time or intra-individual variability. This high-level instability of the network centrality demon-
strated obvious regional specificity, e.g., the highest changes within the Default network. No
reliable assignment of the network centrality metrics to the 12 cognitive components was
detected (S6 Table).

Discussion
The functional connectomics field has increasingly appreciated individual differences due to its
wide use in both healthy and diseased populations to characterize aspects of brain organization
and dynamics. These differences reveal two components, including intra-individual variability
(i.e., differences within participants) and inter-individual variability (i.e., differences across
participants). An accurate estimation of the two variability sources has been very challenging
due to the difficulty of collecting a large neuroimaging sample longitudinally. In the present
work, we compute individual differences in common functional connectomics metrics based
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on large-scale longitudinal neuroimaging data (N = 300) via linear mixed models. For the first
time, we delineate a landscape of the individual variability by examining changes of these met-
rics within and across participants, as well as their test-retest reliability, over a one-month
duration. We detected remarkable changes in the variability landscape across different metrics
at multiple spatial scales (region, network and connectome). This landscape reveals that more
global metrics exhibited larger intra-individual variability across all scales, reflecting the poten-
tial inverse relationship between metric complexity and intra-individual variability. In contrast,
inter-individual variability demonstrated much more diverse profiles across different metrics,
echoing regional differences in functional connectomics at different scales and indicating orga-
nizational topology underlying the intrinsic functional architecture in the human brain. Our
findings not only depicted this variability landscape but also mapped test-retest reliability of
the common functional metrics across one month by integrating both intra-individual and
inter-individual variability, providing a resource as references on tests of these variability pro-
files in brain development and disease conditions.

Resting-state fMRI (rfMRI) represents the most popular tool to investigate functional con-
nectomics currently with a spatial scale of 2–4 millimeters and a temporal scale of 0.5–3 sec-
onds [67, 68]. Temporal dynamics is a hallmark of the human brain functional architecture
measured with rfMRI and have been demonstrated as a major contributor to the intra-

Fig 7. Vertex-wise statistical maps of two common rfMRI metrics at connectome scales.Maps of
group-level statistical significance strength (the first row), test-retest reliability (the second row), intra-
individual variability (the third row) and inter-individual variability (the forth row) are rendered onto the
fsaverage surface grid with its lateral and medial views for weighted degree centrality (DCw) and weighted
eigenvector centrality (ECw). Dark gray curves indicate the boundaries between the seven canonical neural
networks.

doi:10.1371/journal.pone.0144963.g007
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individual variability across different temporal scales [69–71]. Previous studies have demon-
strated that these intra-individual differences could be primarily dominated by the non-sta-
tionary components in the rfMRI signals [72]. The time-varying degrees of functional
connectivity were commonly thought of as a reflection of flexibility in the functional coordina-
tion between different neural systems [45, 73, 74]. Specifically, at the scale of minutes, high
intra-individual variability was mainly presented in homotopic functional connectivity as well
as non-homotopic between-network connectivity [41]. However, the spatial distribution of the
most variable functional connectivity has been a controversy [45, 75, 76]. Our results provide
evidence that local features or short-range metrics were more temporally stable than remote
features or long-range metrics at scales of days. These parallel to those recent observations at
scales of years (development or aging) [77, 78].

Regarding spatial locations, the somatomotor network was the most temporally stable net-
work, and this observation echoed the low intra-individual variability of sensory motor-related
cognitive components including hand, mouth and auditory. The limbic network seemed to be
most dynamic over the one month, although this might be an indication of the low signal-to-
noise ratio during the rfMRI scan within this network. Beyond the two networks, the default
network and dorsal attention network were also highly variable over a single month. These
findings enriched previous observations of the dynamic functional connectivity at single scales
by providing a full picture of its multi-scale spatial distribution (whole brain, networks and
voxels). One significant and novel addition from the present work to the existing literature is
the one-month temporal stability of 12 components of human cognition. Notably, working
memory, inhibition, attention, language and visual process are the five most variable cognitive
components in terms of their changes of the rfMRI metrics across different scales, whereas
hand, auditory, mouth, autonomic, reward, basal and default components remain relatively
stable over one month. Mapping intra-individual variability of various functional metrics
derived from rfMRI voxel-wise further offered a high-resolution landscape of temporal dynam-
ics in functional connectomes. This presents a resource for understanding how individual sta-
ble structural connectomes generate their vast functional repertoire [79, 80] and related
dynamics [81–83] in enabling action, perception and cognition [73], as well as their alterations,
under disease conditions [84].

Driving forces behind the inter-individual variability of brain structure and function are
related to both genetic and environmental factors [85]. Such variability of the high-order asso-
ciation cortex is less influenced by genetic factors with their neuroanatomical properties during
development, preserving room for environmental factors to exert impacts on the functional
variability [86]. With rfMRI, recent studies have increasingly shown inter-individual variability
in functional connectivity. One consistent finding is that the variability in the heteromodal
association cortex was significantly higher than that in unimodal cortex [39, 87]. Inter-individ-
ual variability in connectivity was significantly correlated with the degree of evolutionary corti-
cal expansion [39]. Of note, all previous studies employed seed-based correlation or
independent component analysis methods to examine connectivity profiles [88], leaving a lack
of inter-individual variability in other functional metrics across the cerebral cortex. Our find-
ings filled this void by assessing the inter-individual variability of six other functional metrics.
Specifically, at the global brain level, two network centrality metrics are less variable whereas
four other local metrics are relatively more variable across participants. The dorsal attention
network, ventral attention network and somatomotor network are more stable across partici-
pants whereas the limbic network, default network, frontoparietal control network and visual
network demonstrate high inter-individual variability of these functional metrics. Intriguingly,
hand, auditory, language, mouth, attention and autonomic components showed small inter-
individual variability. In contrast, visual, inhibition, default, basal and reward cognitive
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components are more variable across participants. Together with vertex-wise high-resolution
maps of this variability, the present work delineates a more completed picture of inter-individ-
ual variability in functional connectomes, indicating the complexity of different aspects of
information processing through connectomes and their individual differences reflected in the
human brain intrinsic architecture [1, 89].

By employing a set of canonical templates of the large-scale cortical functional networks [60],
the dual regression method offers us the opportunity of examining the brain dynamics in func-
tional connectomics across the one month. This depicts a relatively full picture of the functional
connectome regarding its temporal variability and individual differences. One interesting obser-
vation is that long-distance functional connectivity between networks or interplays/integrations
seemmore temporally dynamic than their changes across subjects (Fig 6C). In contrast, short-
distance connectivity within the networks or functional specialization remained temporally stable
than their between-subject variability (Fig 6D). These findings are consistent with the previous
reports at scales of years (brain development and aging across the lifespan) [90–96], which
recently have been linked to lifespan changes of behaviors across individuals [97].

Intra-individual and inter-individual variability are two important contributing factors to
the reliability of metrics in functional connectomics. Applications, especially in clinical diagno-
sis, favor metrics with high test-retest reliability, which optimizes a trade-off between the two
variability components with low intra-individual variability (more stable across different mea-
suring occasions) and high inter-individual variability (more differentiable across participants),
and serves as a necessary condition for high validity of a biomarker [17]. Previous studies have
demonstrated moderate to high test-retest reliability of common functional connectome met-
rics [19], although the sample sizes in these test-retest studies were limited. A recent Consor-
tium for Reliability and Reproducibility (CoRR) released more than 5,000 test-retest multi-
modal imaging datasets to the connectomics field [47], providing an open resource for large-
scale test-retest reliability exploration in functional connectomics. The present datasets are
part of the CoRR datasets. All the preprocessed data and CCS scripts in the present work will
be made public to the field soon after the final acceptance of the current work via a data-shar-
ing platform in the Institute of Psychology, Chinese Academy of Sciences. These findings rep-
resent the first collection of test-retest reliability for multi-scale and multi-metric
characterization of functional human connectomes. As demonstrated in a recent study on reli-
ability-based correction for functional connectivity [98], these test-retest reliability maps gen-
erated by the current work can serve as the essential resources for attenuation correction for
functional connectomics (i.e., these rfMRI-based metrics) [19] and thus are crucial for the field
to guide the use and correction of common functional metrics, as well as their explanation, in
applications.

Regional differences in signal-to-noise ratio [60, 61] have been reported, and their influ-
ences on test-retest reliability need further investigation in future. Methodological issues such
as smoothing, filtering and global signal regression could disturb individual variability [99,
100]. Although these confounding variables have been handled to some degree here, more
accurate and sophisticated solutions should be developed in future studies [15, 19, 51]. Based
upon a more richly-sampled test-retest samples, the current work provided consistent results
with those derived from our recent meta-summary on previous test-retest studies [19].
Although small potential differences existed between the two studies, generally speaking, we
would recommend the readers to use them as two complementary references for guiding the
use of rfMRI-derived metrics for human brain functional connectomics in application. One big
improvement we made in the present work is to compute all the metrics on the cortical surfaces
and thus leads to increases of the reliability of some metrics (e.g., seed-based functional con-
nectivity [22]).
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