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Abstract Emerging evidence supports the hypothesis that pathogenic protein aggregates

associated with neurodegenerative diseases spread from cell to cell through the brain in a manner

akin to infectious prions. Here, we show that mutant huntingtin (mHtt) aggregates associated with

Huntington disease transfer anterogradely from presynaptic to postsynaptic neurons in the adult

Drosophila olfactory system. Trans-synaptic transmission of mHtt aggregates is inversely correlated

with neuronal activity and blocked by inhibiting caspases in presynaptic neurons, implicating

synaptic dysfunction and cell death in aggregate spreading. Remarkably, mHtt aggregate

transmission across synapses requires the glial scavenger receptor Draper and involves a transient

visit to the glial cytoplasm, indicating that phagocytic glia act as obligatory intermediates in

aggregate spreading between synaptically-connected neurons. These findings expand our

understanding of phagocytic glia as double-edged players in neurodegeneration—by clearing

neurotoxic protein aggregates, but also providing an opportunity for prion-like seeds to evade

phagolysosomal degradation and propagate further in the brain.

Introduction
Neurodegenerative diseases have emerged as one of the greatest healthcare challenges in our

aging society, and thus a better understanding of the underlying pathological mechanisms is critical

for development of more effective treatments or cures for these fatal disorders. A common molecu-

lar feature of many neurodegenerative diseases [e.g., Alzheimer disease (AD), frontotemporal

dementias (FTD), Parkinson disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington disease

(HD)] is the misfolding of certain proteins, driving their accumulation into insoluble, amyloid aggre-

gates (Knowles et al., 2014). Appearance of proteinaceous deposits in patient brains correlates

closely with neuronal loss and clinical progression, and strategies to lower production or enhance

clearance of pathological proteins in the degenerating brain have shown therapeutic promise in ani-

mal models and clinical trials (Boland et al., 2018; Li et al., 2019; Tabrizi et al., 2019).

Post-mortem histopathological analyses (Braak and Braak, 1991; Braak et al., 2003;

Brettschneider et al., 2013) and in vivo imaging studies (Deng et al., 2004; Poudel et al., 2019)

indicate that proteopathic lesions associated with neurodegeneration appear in highly-reproducible

and disease-specific spatiotemporal patterns through the brain. Interestingly, these patterns largely

follow neuroanatomical tracts (Ahmed et al., 2014; Mezias et al., 2017), suggesting a central role

for synaptic connectivity in pathological aggregate spreading. Accumulating evidence supports the
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idea that intracellular aggregates formed by tau, a-synuclein, TDP-43, SOD1, and mutant huntingtin

(mHtt) transfer from cell to cell and self-replicate by recruiting natively-folded versions of the same

protein, analogous to how infectious prion protein (PrPSc) templates the conformational change of

soluble PrPC in prion diseases (Vaquer-Alicea and Diamond, 2019). Numerous studies have pointed

to roles for endocytosis and exocytosis (Asai et al., 2015; Babcock and Ganetzky, 2015;

Chen et al., 2019; Holmes et al., 2013; Lee et al., 2010; Zeineddine et al., 2015), membrane per-

meabilization (Chen et al., 2019; Falcon et al., 2018; Flavin et al., 2017; Zeineddine et al., 2015),

tunneling nanotubes (Costanzo et al., 2013; Sharma and Subramaniam, 2019), and neuronal activ-

ity (Wu et al., 2016) in entry and/or exit of pathogenic protein assemblies from cells, but the exact

mechanisms by which amyloid aggregates or on-pathway intermediates cross one or more biological

membranes in the highly complex central nervous system (CNS) remain an enigma.

Glia are resident immune cells of the CNS and constantly survey the brain to maintain homeosta-

sis and respond rapidly to tissue damage or trauma. Reactive astrocytes and microglia provide a first

line of defense in neurodegeneration by infiltrating sites of neuronal injury, upregulating immune-

responsive genes, and phagocytosing dying neurons and other debris, including protein aggregates

(Asai et al., 2015; Grathwohl et al., 2009; Wyss-Coray et al., 2003). Prolonged activation of these

glial responses results in chronic inflammation, exacerbating synaptic dysfunction and neuronal loss

(Hammond et al., 2018). We and others have previously shown that Draper, a Drosophila scavenger

receptor that recognizes and phagocytoses cellular debris (Freeman, 2015), regulates the load of

mHtt (Pearce et al., 2015) and Ab1-42 (Ray et al., 2017) aggregate pathology in the fly CNS.

Remarkably, we also found that a portion of phagocytosed neuronal mHtt aggregates gain entry

into the glial cytoplasm and once there, nucleate the aggregation of normally-soluble wild-type Htt

(wtHtt) proteins, suggesting that glial phagocytosis provides a path for spreading of prion-like

aggregates in intact brains. Consistent with these findings, microglial ablation suppresses pathologi-

cal tau transmission between synaptically-connected regions of the mouse brain (Asai et al., 2015),

and PrPSc transfers from infected astrocytes to co-cultured neurons (Victoria et al., 2016). Thus,

phagocytic glia may play double-edged roles in neurodegeneration, with normally neuroprotective

clearance mechanisms also driving dissemination of prion-like aggregates through the brain.

A plethora of studies from the last decade have strengthened the prion-like hypothesis for neuro-

degenerative diseases, but we still lack a clear understanding of how pathogenic protein aggregates

spread between cells in an intact CNS. In this study, we adapted our previously-described Drosoph-

ila HD model to investigate roles for synaptic connectivity and phagocytic glia in prion-like mHtt

aggregate transmission in adult fly brains. HD is an autosomal dominant disorder caused by expan-

sion of a CAG repeat region in exon 1 of the Htt gene, resulting in production of highly aggrega-

tion-prone mHtt proteins containing abnormally expanded polyglutamine (polyQ�37) tracts

(Bates et al., 2015; MacDonald et al., 1993). By contrast, wtHtt proteins containing polyQ�36

tracts only aggregate upon nucleation by pre-formed Htt aggregate ‘seeds’ (Chen et al., 2001;

Preisinger et al., 1999). A growing body of evidence from cell culture (Chen et al., 2001;

Costanzo et al., 2013; Holmes et al., 2013; Ren et al., 2009; Sharma and Subramaniam, 2019;

Trevino et al., 2012) and in vivo (Ast et al., 2018; Babcock and Ganetzky, 2015; Jeon et al.,

2016; Masnata et al., 2019; Pearce et al., 2015; Pecho-Vrieseling et al., 2014) models of HD sup-

ports the idea that pathogenic mHtt aggregates have prion-like properties—they transfer from cell

to cell and self-replicate by nucleating the aggregation of soluble wtHtt proteins. Here, we report

that mHtt aggregates formed in presynaptic olfactory receptor neuron (ORN) axons effect prion-like

conversion of wtHtt proteins expressed in the cytoplasm of postsynaptic partner projection neurons

(PNs) in the adult fly olfactory system. Remarkably, transfer of mHtt aggregates from presynaptic

ORNs to postsynaptic PNs was abolished in Draper-deficient animals and required passage of the

prion-like aggregate seeds through the cytoplasm of phagocytic glial cells. Together, these findings

support the conclusion that phagocytic glia are obligatory intermediates in prion-like transmission of

mHtt aggregates between synaptically-connected neurons in vivo, providing new insight into key

roles for glia in HD pathogenesis.
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Results

Prion-like transfer of mHtt aggregates between synaptically-connected
neurons in the adult fly olfactory system
Aggregates formed by N-terminal fragments of mHtt generated by aberrant splicing (e.g., exon 1;

‘Httex1’) (Sathasivam et al., 2013) or caspase cleavage (e.g., exon 1–12; ‘Httex1-12’) (Graham et al.,

2006; Figure 1A) accumulate in HD patient brains, are highly cytotoxic, and spread between cells in

culture and in vivo (Babcock and Ganetzky, 2015; Costanzo et al., 2013; Pearce et al., 2015;

Pecho-Vrieseling et al., 2014; Ren et al., 2009). We have previously established transgenic Dro-

sophila that employ binary expression systems [e.g., Gal4-UAS, QF-QUAS, or LexA-LexAop

(Riabinina and Potter, 2016)] to express fluorescent protein (FP) fusions of Httex1 in non-overlap-

ping cell populations to monitor cell-to-cell transfer of mHttex1 aggregates in intact brains

(Donnelly and Pearce, 2018; Pearce et al., 2015). Our experimental approach (Figure 1B) exploits

the previously-reported finding that wtHttex1 proteins aggregate upon physically encountering

mHttex1 aggregate seeds (Chen et al., 2001; Preisinger et al., 1999), such that transfer of mHttex1
aggregates from ‘donor’ cells is reported by conversion of cytoplasmic wtHttex1 from its normally

soluble, diffuse state to a punctate, aggregated state in ‘acceptor’ cells (Figure 1B-inset). To confirm

that mHttex1 nucleates the aggregation of wtHttex1 in fly neurons, we co-expressed FP-fusions of

these two proteins using pan-neuronal elav[C155]-Gal4. In flies expressing only mCherry-tagged

mHttex1 (Httex1Q91-mCherry) pan-neuronally, aggregates were visible as discrete mCherry+ puncta

throughout adult fly brains, with enrichment in neuropil regions (Figure 1—figure supplement 1A).

By contrast, GFP-tagged wtHttex1 (Httex1Q25-GFP) was expressed diffusely in the same regions of

age-matched adult brains (Figure 1—figure supplement 1B). Upon co-expression with Httex1Q91-

mCherry, Httex1Q25-GFP was converted to a punctate expression pattern that almost entirely over-

lapped with Httex1Q91-mCherry signal (Figure 1—figure supplement 1C and F), whereas expres-

sion patterns of neither membrane-targeted GFP (mCD8-GFP) nor soluble GFP lacking a polyQ

sequence were affected by the presence of Httex1Q91-mCherry aggregates in neurons (Figure 1—

figure supplement 1D–F). Thus, in the fly CNS, Httex1Q91 aggregates induce prion-like conversion

of normally-soluble Httex1Q25 via a homotypic nucleation reaction that requires the Httex1 sequence.

To examine trans-synaptic prion-like transfer of mHttex1 aggregates, we coupled QF-driven

expression of Httex1Q91-mCherry with Gal4-driven expression of Httex1Q25-GFP in neuronal cell

populations that make well-defined synaptic connections in the adult fly olfactory system

(Figure 1B–D). Httex1Q91-mCherry was expressed using Or67d-QF in ~40 presynaptic ORNs (‘DA1

ORNs’) that project axons from the antenna into the central brain, where they form synaptic connec-

tions with dendrites of ~7 partner PNs (‘DA1 PNs’) in the DA1 glomerulus of the antennal lobe

(Figure 1B-inset, C and D; Jefferis et al., 2001). In these same animals, Httex1Q25-GFP was

expressed in ~60% of PNs using GH146-Gal4, which labels lateral and ventral DA1 PNs in addition

to other PN types (Figure 1C and D; Marin et al., 2002). We did not detect expression of

Httex1Q91-mCherry in DA1 ORNs until ~24 hr before eclosion, consistent with activation of adult

olfactory receptor gene expression during late pupal development (Clyne et al., 1999), whereas

Httex1Q25-GFP was expressed in PNs via GH146-Gal4 earlier in development (Stocker et al., 1997).

This genetic approach therefore enables us to monitor prion-like transfer of mHtt aggregates

between post-mitotic, synaptically-connected DA1 ORNs and PNs in the adult fly brain.

Formation and prion-like transfer of mHttex1 aggregates across DA1 ORN-PN synapses was

examined by monitoring the solubility of Httex1Q91-mCherry and Httex1Q25-GFP proteins in or near

the DA1 glomerulus (Figure 1B-inset and E-G). Whereas Httex1Q25-mCherry was expressed diffusely

in DA1 ORN axons (Figure 1C), aggregated Httex1Q91-mCherry was visible as discrete puncta

almost entirely restricted to DA1 axons and axon termini in the DA1 region of the antennal lobe

(Figure 1D and E1–G1). We used semi-automated 3D segmentation and reconstruction of high-

magnification confocal z-stacks (Figure 1—figure supplement 2A1 and Video 1) to quantify

Httex1Q91 aggregate formation in the DA1 glomerulus over time. Httex1Q91 aggregates first

appeared in pharate adults and increased in number as the flies aged (Figure 1E1’-G1’ and J). Num-

bers of Httex1Q91 aggregates in males exceeded those in females at each time point (Figure 1J),

consistent with known sexual dimorphism in DA1 glomerular volume (Stockinger et al., 2005). In

these same brains, Httex1Q25-GFP was expressed diffusely throughout GH146+ PN cell bodies and

processes in young adults (Figure 1D and E2), but bright Httex1Q25-GFP puncta began to appear
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and accumulate in the DA1 glomerulus as the flies aged (Figure 1F2 and G2, arrows). Because these

puncta could be difficult to distinguish from surrounding non-aggregated Httex1Q25-GFP signal, and

GFP+ puncta representing normal dendritic architecture and/or intracellular vesicles in the secretory

pathway were visible in GH146+ PNs expressing mCD8-GFP (Figure 1—figure supplement 2B2

and Figure 1—figure supplement 3B), we defined Httex1Q25 aggregates as GFP+ puncta that colo-

calized with Httex1Q91 aggregates (Figure 1—figure supplement 2A1 and C1-7, and Video 1). This

approach reported similar results to manual quantification of the same data in 2D confocal slices

(Figure 1—figure supplement 2C1-7 and D), and identical data were obtained when Httex1Q25-

GFP+ segmented surfaces were filtered for colocalization with Httex1Q91-mCherry+ puncta (Fig-

ure 1—figure supplement 2A2 and D). By contrast, Httex1Q91 aggregates in DA1 ORNs did not

colocalize with mCD8-GFP expressed in GH146+ PNs in control animals regardless of whether

mCherry+ or GFP+ surfaces were initially segmented (Figure 1—figure supplement 2B1-2). Thus,

our semi-automated approach to identify ‘Httex1Q91+Httex1Q25’ aggregates specifically reports

non-cell autonomous conversion of postsynaptic wtHttex1 by presynaptic mHttex1 seeds (Figure 1B-

inset).

Numbers of Httex1Q91+Httex1Q25 aggregates increased as flies expressing Httex1Q91-mCherry in

DA1 ORNs and Httex1Q25-GFP in GH146+ PNs aged from 1 to 21 days old (Figure 1E2’-G2’ and

1J). Httex1Q91 aggregates outnumbered Httex1Q91+Httex1Q25 aggregates at each time point

tested (Figure 1J and K), likely reflecting a higher rate of aggregate formation in ‘donor’ ORNs

expressing polyQ-expanded mHttex1 than in ‘acceptor’ PNs, where wtHttex1 proteins must be nucle-

ated by mHttex1 seeds originating in other cells. In control experiments, soluble Httex1Q25-mCherry

expressed in DA1 ORNs did not colocalize with Httex1Q25-GFP expressed in PNs (Figure 1—figure

supplement 3A,E and F), and Httex1Q91 aggregates in DA1 ORNs did not nucleate membrane-

bound mCD8-GFP in PNs (Figure 1—figure supplement 3B,E and F). Httex1Q91+Httex1Q25

Figure 1. mHttex1 or mHttex1-12 aggregates formed in presynaptic ORNs induce the aggregation of wtHttex1 expressed in postsynaptic PNs. (A) Primary

structure of full-length human Htt (3144 amino acids), including HEAT repeats (HR, gray regions) and the N-terminal variable-length polyQ region

(green/red box), with the pathogenic threshold (~Q37) indicated by a white dotted line. C-termini of two N-terminal mHtt fragments used in this study

(Httex1 and Httex1-12) are indicated. (B) Overall experimental approach. In the fly olfactory system, ORNs synapse with PNs in discrete regions of the

antennal lobe known as glomeruli (gray circles). PNs send axons into higher brain centers (i.e., mushroom body and/or lateral horn). Draper-expressing

glial cells project processes in the antennal lobe, where they ensheath individual glomeruli. To monitor spreading of mHtt aggregates between

synaptically-connected ORNs and PNs, we generated transgenic flies that express mHttex1 or mHttex1-12 fragments in DA1 ORNs and wtHttex1 in DA1

PNs. Inset: Transfer of mHttex1 or mHttex1-12 aggregates between ORNs and PNs was assessed by monitoring the solubility and colocalization of mHtt

and wtHtt fluorescent signals. (C and D) Maximum intensity z-projections of antennal lobes from 7 day-old adult males expressing either Httex1Q25-

mCherry (C) or Httex1Q91-mCherry (D) in DA1 ORNs using Or67d-QF and Httex1Q25-GFP in GH146+ PNs using GH146-Gal4. Raw data are shown in

grayscale for individual channels and pseudocolored in merged images. Merged images include Bruchpilot immunofluorescence in blue to mark

neuropil, which was used to approximate the boundaries of the DA1 glomerulus (white dotted lines). Scale bars = 20 mm. (E–G) High-magnification

confocal z-stacks of DA1 glomeruli from 1 day-old (E), 14 day-old (F), and 21 day-old (G) adult males expressing Httex1Q91-mCherry in DA1 ORNs and

Httex1Q25-GFP in GH146+ PNs. Boxed regions in (F and G) are shown at higher magnification in insets. Raw data are shown in grayscale in individual

channels (Httex1Q91: E1, F1, G1; Httex1Q25: E2, F2, G2) and pseudocolored in merged images (E3, F3, G3). mCherry+ ‘Httex1Q91 surfaces’ (E1’, F1’,

G1’) and ‘Httex1Q91+Httex1Q25 surfaces’ (E2’, F2’, G2’) identified by semi-automated image segmentation are shown adjacent to raw data and

pseudocolored red and yellow, respectively, in the ‘merged surfaces’ images (E3’, F3’, G3’). Arrows (yellow on grayscale images, white on merged

images) indicate Httex1Q91+Httex1Q25 surfaces. Scale bars = 10 mm. (H and I) Confocal z-stacks from 1 day-old (H) and 21 day-old (I) adult females

expressing RFP-Httex1-12Q138 in DA1 ORNs and Httex1Q25-GFP in GH146+ PNs. Boxed region in (I) is shown at higher magnification in insets. RFP+

surfaces identified by semi-automated image segmentation are shown in the last column, with Httex1-12Q138-only surfaces in red and Httex1-12Q138

+Httex1Q25 surfaces in yellow. Scale bars = 10 mm. (J and K) Numbers of Httex1Q91 or Httex1-12Q138 (‘mHtt’) surfaces (J) and Httex1Q91+Httex1Q25 or

Httex1-12Q138+Httex1Q25 (‘mHtt+wtHtt’) surfaces (K) identified in adult males (open bars) or females (solid bars) expressing Httex1Q91-mCherry in DA1

ORNs or adult females expressing RFP-Httex1-12Q138 in DA1 ORNs (striped bars) at the indicated ages. Data are shown as mean ± SEM; *p<0.05,

**p<0.01, ***p<0.001, or ****p<0.0001 by two-way ANOVA followed by Tukey’s multiple comparisons tests. ‘*’s indicate statistical significance

comparing flies of the same genotype and sex at different ages (black ‘*’s compare males or females expressing Httex1Q91, and gray ‘*’s compare

females expressing Httex1-12Q138 over time). ‘#’s indicate statistical significance comparing different genotypes at the same age (black ‘#’s compare

males vs females expressing Httex1Q91, and gray ‘#’s compare females expressing Httex1Q91 vs females expressing Httex1-12Q138).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. mHttex1 nucleates prion-like conversion of wtHttex1 in fly neurons.

Figure supplement 2. Semi-automatic quantification of seeded wtHttex1 aggregates.

Figure supplement 3. Controls for prion-like transmission of mHttex1 aggregates from presynaptic DA1 ORNs to postsynaptic PNs.

Figure supplement 4. mHttex1 aggregates do not transfer retrogradely from PN dendrites to ORN axons.
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aggregates still formed when the Gal4 inhibitor

Gal80 was expressed in ORNs (Figure 1—figure

supplement 3C,E and F) or when the QF repres-

sor QS was expressed in PNs (Figure 1—figure

supplement 3D–F), arguing strongly against co-

expression of Httex1Q91-mCherry and Httex1Q25-

GFP using the highly-specific Or67d-QF and

GH146-Gal4 drivers. Together, these findings

indicate that mHttex1 aggregates formed in pre-

synaptic ORNs induce non-cell autonomous,

homotypic aggregation of wtHttex1 expressed in

the cytoplasm of postsynaptic PNs.

Httex1Q91+Httex1Q25 aggregates were not

detected in non-synaptically-connected GH146+

PNs, including in glomeruli directly adjacent to

where DA1 ORNs terminate, suggesting that

prion-like conversion of Httex1Q25 in PNs by

Httex1Q91 aggregates in ORNs requires synaptic

connectivity. To examine whether Httex1Q91

aggregates can also spread retrogradely across

ORN-PN synapses, we expressed Httex1Q91-

mCherry in PNs using GH146-QF and Httex1Q25-

GFP in all ORNs using pebbled-Gal4. While many

Httex1Q91 aggregates were visible in PN soma,

dendrites, and axons in adult brains (Figure 1—

figure supplement 4A–C), we did not observe

colocalization of Httex1Q25-GFP and Httex1Q91-

mCherry puncta within the antennal lobe neuropil

in 1, 7, and 14 day-old adults (Figure 1—figure

supplement 4A,B and D), suggesting that

Httex1Q91 aggregate spreading across ORN-PN

synapses is restricted to or much more efficient in

the anterograde direction. We also found that

aggregates formed by mHttex1-12 caspase-6

cleavage products (RFP-Httex1-12Q138)

(Figure 1A; Graham et al., 2006), which have

previously been shown to spread from ORN

axons to more distant (non-PN) neurons in the fly

CNS (Babcock and Ganetzky, 2015), also trans-

fer anterogradely across DA1 ORN-PN synapses

(Figure 1H and I). Together, these findings indi-

cate that multiple pathogenic N-terminal mHtt

fragments share the ability to spread trans-synap-

tically in Drosophila brains, and the sequences required for prion-like conversion of wtHtt reside

within Httex1.

wtHttex1 aggregates in PNs are seeded by smaller mHttex1 aggregates
originating in ORNs
Higher magnification examination of DA1 glomeruli in flies expressing Httex1Q91-mCherry

(Figure 2A and B) or RFP-Httex1-12Q138 (Figure 2C and D) in DA1 ORNs and Httex1Q25-GFP in

GH146+ PNs revealed that most (>85%) Httex1Q25-GFP puncta in DA1 PNs colocalized with

Httex1Q91-mCherry aggregates. Segmentation in both the red (Figure 2A1’-D1’) and green

(Figure 2A2’-D2’) channels demonstrated that GFP+ surfaces entirely surrounded associated

mCherry+ or RFP+ surfaces in these colocalized aggregates (Figure 2A3’-D3’). These data suggest

that aggregated Httex1Q91 or Httex1-12Q138 proteins form the ‘core’ of induced Httex1Q25 aggre-

gates and supports our hypothesis that wtHttex1 solubility in PNs is altered upon direct physical

Video 1. Semi-automated quantification of mHttex1
and seeded wtHttex1 aggregates in the DA1

glomerulus. Animation illustrating semi-automated

approach for quantifying mHttex1 and wtHttex1
aggregates in brains expressing Httex1Q91-mCherry in

DA1 ORNs and Httex1Q25-GFP in GH146+ PNs. Data

shown in video are the same as in Figure 1—figure

supplement 2A1-2 and C1-7. Segmentation of raw

high-magnification 3D confocal data (0:00) in the red

channel (0:07) identified distinct Httex1Q91-mCherry

surfaces (0:09), which were filtered for those that co-

localize with high-intensity GFP signal to isolate the

subpopulation associated with Httex1Q25-GFP puncta

(0:13). Volumetric surfaces representing Httex1Q91 (red)

and Httex1Q91+Httex1Q25 (yellow) aggregates (0:18) are

shown for each data set analyzed by this method. The

animation also illustrates segmentation of raw data in

the green channel (0:28) to identify the brightest

Httex1Q25-GFP objects in each data set (0:29). Overlap

of mCherry+ and GFP+ surfaces, with GFP+ surfaces

set at 50% transparency (0:30), highlights co-localization

of smaller Httex1Q91 ‘seeds’ surrounded by Httex1Q25

signal in these aggregates.

https://elifesciences.org/articles/58499#video1
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Figure 2. wtHttex1 aggregates in postsynaptic PNs are nucleated by mHttex1 or mHttex1-12 aggregates from presynaptic ORNs. (A–D) High-

magnification confocal z-stacks of DA1 glomeruli from adult flies expressing Httex1Q91-mCherry (A and B) or RFP-Httex1-12Q138 (C and D) in DA1 ORNs

and Httex1Q25-GFP in GH146+ PNs. Raw data (A1-3, B1-3, C1-3, D1-3) are shown adjacent to surfaces identified by 3D segmentation of the red (A1’,

B1’, C1’, D1’) or green (A2’, B2’, C2’, D2’) channels. Httex1Q25-GFP surfaces are shown at 50% transparency in ‘merged surfaces’ images (A3’, B3’, C3’,

Figure 2 continued on next page
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interaction with pre-formed mHtt seeds. To further examine molecular interactions between

Httex1Q91 and Httex1Q25 proteins, we measured fluorescence resonance energy transfer (FRET) in

colocalized aggregates. Remarkably, positive FRET signal was detected for all Httex1Q91+Httex1Q25

aggregates analyzed by this method (Figure 2E), indicating that the FP tags fused to each of these

proteins were in close molecular proximity (<10 nm apart), consistent with direct physical contact.

Comparison of volumes for all segmented Httex1Q91, Httex1-12Q138, Httex1Q91+Httex1Q25, and

Httex1-12Q138+Httex1Q25 aggregates revealed that Httex1Q91 and Httex1-12Q138 aggregates

increased in size as the flies aged, most substantially during the first week of adulthood (Figure 2F).

Interestingly, the mean volume of Httex1Q91 or Httex1-12Q138 surfaces that colocalized with

Httex1Q25 aggregates (herein referred to as ‘seeding-competent’ mHtt aggregates) was less than

the mean volume of all Httex1Q91 or Httex1-12Q138 surfaces, and these differences were statistically

significant in older animals. When aggregate volumes were analyzed across all time points, it

became apparent that seeding-competent Httex1Q91 or Httex1-12Q138 aggregates clustered in a

subpopulation whose mean was significantly smaller than the mean volume for all Httex1Q91 or

Httex1-12Q138 aggregates (mean Httex1Q91+Httex1Q25 aggregate volume = 1.845 ± 0.068 mm3,

mean Httex1Q91 aggregate volume = 2.19 ± 0.024 mm3, p=0.0005; mean Httex1-12Q138+Httex1Q25

aggregate volume = 1.293 ± 0.071 mm3, mean Httex1-12Q138 aggregate volume = 2.40 ± 0.048 mm3,

p<0.0001) (Figure 2G and H). We previously reported that Httex1Q25 aggregates seeded in the

cytoplasm of glial cells colocalized with a similarly smaller-sized subpopulation of seeding-competent

Httex1Q91 aggregates from DA1 ORNs (Pearce et al., 2015), and smaller mHttex1 aggregates were

associated with increased seeding-propensity and neurotoxicity in other HD models (Ast et al.,

2018; Chen et al., 2001). Taken together, these findings strongly suggest that mHttex1 or mHttex1-12
aggregates formed in presynaptic ORNs effect prion-like conversion of wtHttex1 in the cytoplasm of

postsynaptic PNs, and that mHtt aggregate transmissibility in the fly CNS is correlated with smaller

aggregate size.

mHttex1 aggregate transfer is enhanced across silenced DA1 ORN-PN
synapses
Endocytosis, exocytosis, and neuronal activity have been previously implicated in neuron-to-neuron

spreading of mHtt and other pathogenic aggregates (Babcock and Ganetzky, 2015; Pecho-

Vrieseling et al., 2014; Wu et al., 2016), but it is not known how these processes contribute to

aggregate transfer across endogenous synapses in vivo. To examine a role for synaptic activity in

DA1 ORN-to-PN transfer of mHttex1 aggregates, we used well-established fly genetic tools that

block fission or fusion of synaptic vesicles at the presynaptic membrane to impair neurotransmission.

First, we used shibirets1 (shits1) (Kosaka and Ikeda, 1983), a temperature-sensitive mutant of the

GTPase Shibire/dynamin that blocks endocytic recycling of synaptic vesicles in flies raised at the

restrictive temperature. Co-expression of shits1 with Httex1Q91-mCherry in DA1 ORNs in flies shifted

from the permissive temperature (18˚C) to the restrictive temperature (31˚C) in adulthood had no

effect or slightly decreased numbers of Httex1Q91 aggregates in the DA1 glomerulus (Figure 3A–C),

but, surprisingly, strongly enhanced formation of seeded Httex1Q25 aggregates in DA1 PN dendrites

Figure 2 continued

D3’) for visibility of co-localized Httex1Q91-mCherry or RFP-Httex1-12Q138 surfaces. Scale bars = 1 mm. (E1-4) A single confocal slice through the center

of a Httex1Q91+Httex1Q25 aggregate before (E1, E2) and after (E1’, E2’) mCherry acceptor photobleaching. Data are shown as a heat map to highlight

changes in fluorescence intensities after photobleaching. Scale bar = 1 mm. FRET efficiency (FRETeff) for this aggregate is shown in (E4), and average

FRETeff values for all Httex1Q91+Httex1Q25 aggregates tested are shown in (E3). (F) Volumes of Httex1Q91 (solid red boxes), Httex1Q91+Httex1Q25 (solid

green boxes), Httex1-12Q138 (striped red boxes), and Httex1-12Q138+Httex1Q25 (striped green boxes) aggregates identified in the DA1 glomerulus at the

indicated ages. Box widths indicate interquartile ranges, vertical lines inside each box indicate medians, whiskers indicate minimums/maximums, and

‘+’s indicate means for each data set. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by one-way ANOVA followed by Tukey’s multiple comparisons test.

Statistical significance is indicated by ‘*’s when comparing the same aggregate sub-population at different ages (Httex1Q91 surfaces in black and Httex1-

12Q138 surfaces in gray), by ‘#’s when comparing Httex1Q91 vs Httex1Q91+Httex1Q25 (black) or Httex1-12Q138 vs Httex1-12Q138+Httex1Q25 (gray)

aggregates at the same ages, and by ‘ ’̂s when comparing Httex1Q91 vs Httex1-12Q138 aggregates at the same ages. (G and H) Distribution of volumes

for (G) Httex1Q91 (light gray bars) and Httex1Q91+Httex1Q25 (dark gray bars) or (H) Httex1-12Q138 (light gray bars) and Httex1-12Q138+Httex1Q25 (dark

gray bars) aggregates, combined from 7, 14, and 21 day-old flies. Mean volume of Httex1Q91 or Httex1-12Q138 aggregates and Httex1Q91+Httex1Q25 or

Httex1-12Q138+Httex1Q25 aggregates are indicated by black and white dotted lines, respectively, on each histogram.
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Figure 3. mHttex1 aggregate transfer from ORNs to synaptically-connected PNs is inversely correlated with presynaptic activity. (A, B, E, F, I, and J)

Confocal z-stacks of DA1 glomeruli from 10 day-old males (A-B, and E-F) or 7 day-old females (I-J) co-expressing Httex1Q91-mCherry with either LacZ

(A, E, and I), shits1 (B), TeTxLC (F), or dTrpA (J) in DA1 ORNs and Httex1Q25-GFP in GH146+ PNs. In (A–B), flies were raised at the permissive

temperature (18˚C) and shifted to the restrictive temperature (31˚C) upon eclosion, and in (I–J), flies were raised at room temperature (~21˚C) and

shifted to 31˚C upon eclosion. mCherry+ surfaces identified by semi-automated image segmentation are shown in the last panels, with Httex1Q91-only

surfaces in red and Httex1Q91+Httex1Q25 surfaces in yellow. Scale bars = 10 mm. (C-D, G-H, and K-L) Quantification of Httex1Q91 (C, G, and K) and

Httex1Q91+Httex1Q25 (D, H, and L) aggregates identified in DA1 glomeruli from adult males of the indicated ages co-expressing Httex1Q91-mCherry

with LacZ or shits1 using two independent QUAS-shits1 lines in DA1 ORNs and Httex1Q25-GFP in GH146+ PNs (C-D), adult males of the indicated ages

co-expressing Httex1Q91-mCherry with LacZ or TeTxLC using two independent QUAS-TeTxLC lines in DA1 ORNs and Httex1Q25-GFP in GH146+ PNs

(G-H), and 7 day-old females expressing Httex1Q91-mCherry with either LacZ or dTrpA using three independent QUAS-dTrpA lines in DA1 ORNs and

Figure 3 continued on next page
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compared with control flies expressing LacZ (Figure 3A,B and D). Likewise, co-expression of

Httex1Q91-mCherry with tetanus toxin light chain (TeTxLC), which inhibits SNARE-mediated fusion of

synaptic vesicles with presynaptic membranes (Sweeney et al., 1995), strongly increased numbers

of seeded Httex1Q25 aggregates in the DA1 glomerulus (Figure 3E,F and H). At some time points,

TeTxLC co-expression led to increased numbers of Httex1Q91 aggregates compared with control

animals (Figure 3E–G); however, there appeared to be no correlation between numbers of

Httex1Q91 and Httex1Q91+Httex1Q25 aggregates in the DA1 glomerulus over time, so the increased

numbers of seeded Httex1Q25 aggregates were unlikely to be simply due to abundance of presynap-

tic Httex1Q91 seeds. To manipulate neuronal activity by an alternative approach, we co-expressed

the heat-activated Drosophila transient-receptor potential A (dTrpA) channel (Hamada et al., 2008)

with Httex1Q91-mCherry to thermogenetically stimulate DA1 ORNs. In adult flies shifted from ~21˚C

to 31˚C upon eclosion, dTrpA-mediated activation of Httex1Q91-mCherry-expressing DA1 ORNs

slightly increased Httex1Q91 aggregate numbers, but decreased formation of seeded Httex1Q25

aggregates in the DA1 glomerulus compared with control flies expressing LacZ (Figure 3I–L).

Together, these results indicate that prion-like transmission of Httex1Q91 aggregates from ORNs to

PNs is inversely correlated with presynaptic ORN activity. These findings suggest that aggregate

transfer could be enhanced across dysfunctional synapses, which are an early pathological finding in

HD and other neurodegenerative diseases.

Our results using shits1 and TeTxLC to block DA1 ORN activity contrast with previous reports

showing that spreading of Httex1-12Q138 aggregates was inhibited from endocytosis- or exocytosis-

impaired ORNs to non-synaptically-connected neurons (Babcock and Ganetzky, 2015) or that botu-

linum toxin inhibited spreading of mHttex1 from R6/2 mouse brain slices to functionally-connected

human neurons (Pecho-Vrieseling et al., 2014). This discrepancy could be due to construct- or cell

type-specific effects or possibly different mechanisms regulating synaptic or non-synaptic aggregate

transmission in the brain. Thus, we wondered whether blocking Shibire-mediated endocytosis in

ORNs might create a more favorable environment for aggregate transfer across endogenous synap-

ses in our HD model. To test this, we first quantified Httex1Q91-mCherry-expressing DA1 ORN axo-

nal surfaces using mCD8-GFP, a tool widely used to label neuronal cell bodies and processes

(Lee and Luo, 1999; Mosca and Luo, 2014) and to quantify neuron or neurite abundance

(Burr et al., 2014; MacDonald et al., 2006) in fly brains. Segmentation and 3D reconstruction of

mCD8-GFP+ DA1 ORN surfaces revealed that fluorescence intensity of and volume occupied by

DA1 ORN axons were increased ~2 fold in shits1-expressing flies at the restrictive temperature com-

pared with controls expressing LacZ (Figure 4A–C). This effect appeared to be specific since

Httex1Q91 aggregate abundance in DA1 ORNs was not increased by shits co-expression (Figure 3C),

and may reflect a homeostatic compensatory response to endocytic blockade (Davis, 2013;

Dickman et al., 2006) that could create additional exit sites for Httex1Q91 aggregates.

To test whether inhibition of Shibire-mediated endocytosis in ORNs has similar effects on ORN-

to-glia transfer of Httex1Q91 aggregates (Pearce et al., 2015), we co-expressed shits1 with

Httex1Q91-mCherry in DA1 ORNs and monitored formation of seeded Httex1Q25 aggregates in the

glial cytoplasm. Similar to effects of shits1 on trans-synaptic Httex1Q91 aggregate transfer, blocking

Shibire-mediated endocytosis in DA1 ORNs increased seeded Httex1Q25 aggregate formation in

glia without affecting Httex1Q91 aggregate numbers (Figure 4D–G). Together, these findings sug-

gest that shits-mediated silencing of Httex1Q91-mCherry-expressing DA1 ORNs alters axonal surface

area and enhances prion-like transfer of Httex1Q91 aggregates from presynaptic ORN axons to the

cytoplasm of both glia and postsynaptic PNs.

Glial Draper is required for ORN-to-PN transfer and alters morphology
of neuronal mHttex1 aggregates
The parallel effects of shits1-mediated endocytic blockade on transfer of Httex1Q91 aggregates from

DA1 ORNs to DA1 PNs and to glia suggest that mHttex1 aggregate spreading between these

Figure 3 continued

Httex1Q25-GFP in GH146+ PNs (K-L). Data are shown as mean ± SEM; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ’n.s.’ = not significant by one- or

two-way ANOVA with Tukey’s multiple comparisons test comparing shits1-, TeTxLC-, or dTrpA-expressing flies to their respective controls expressing

LacZ.
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different cell types is coordinated. Our prior work showed that ORN-to-glia transfer of mHttex1
aggregates is strictly dependent on Draper (Pearce et al., 2015), a scavenger receptor responsible

for phagocytic engulfment and clearance of neuronal debris in the fly CNS and other tissues

(Etchegaray et al., 2016.; Han et al., 2014; Hoopfer et al., 2006; MacDonald et al., 2006). There-

fore, we sought to determine whether Draper-expressing phagocytic glia might play a role in trans-

ferring mHttex1 aggregates from ORNs to PNs. To test this, we quantified numbers of Httex1Q91

and seeded Httex1Q25 aggregates in DA1 ORN axons and PN dendrites, respectively, in animals

heterozygous or homozygous for the draper(drpr)D5 null mutation (Freeman et al., 2003). We previ-

ously reported that drpr knockout (KO) increased steady-state numbers of Httex1Q91 aggregates in
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Figure 4. Inhibiting Shibire-mediated endocytosis increases mHttex1-expressing ORN axon volume and enhances transfer of mHttex1 aggregates from

DA1 ORN axons to glia. (A and B) Confocal z-stacks of DA1 glomeruli from 10 day-old females co-expressing Httex1Q91-mCherry, mCD8-GFP, and

either LacZ (A) or shits1 (B) in DA1 ORNs. Flies were shifted from the permissive temperature (18˚C) to the restrictive temperature (31˚C) upon eclosion.

Raw data are shown in grayscale, and 3D segmented surfaces are shown in red for Httex1Q91 and as a heat map for mCD8-GFP to highlight differences

in intensity between the genotypes. Scale bars = 10 mm. (C) Quantification of mCD8-GFP intensity (left y-axis, green) and volume (right y-axis, black) of

DA1 glomeruli from 10 day-old adult females co-expressing LacZ or shits1 with Httex1Q91-mCherry and mCD8-GFP in DA1 ORNs. a.u. = arbitrary units.

Data are shown as mean ± SEM; ****p<0.0001 by Student’s t-test. (D and E) Confocal z-stacks of DA1 glomeruli from 5 to 6 day-old males expressing

Httex1Q91-mCherry with either LacZ (D) or shits1 (E) in DA1 ORNs and Httex1Q25-YFP in repo+ glia. Adult flies were shifted from 18˚C to 31˚C upon

eclosion. mCherry+ surfaces identified by semi-automated image segmentation are shown in the last panels, with Httex1Q91-only surfaces in red and

Httex1Q91+Httex1Q25 surfaces in yellow. Scale bars = 10 mm. (F and G) Quantification of Httex1Q91 (F) and Httex1Q91+Httex1Q25 (G) aggregates in DA1

glomeruli of 5–6 day-old males expressing LacZ or shits1 using two independent QUAS-shits1 lines. Data are shown as mean ± SEM; *p<0.05,

****p<0.0001 by one-way ANOVA with Tukey’s multiple comparisons test comparing shits1-expressing flies to control flies expressing LacZ.
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Figure 5. Draper mediates mHttex1 aggregate transfer from presynaptic DA1 ORNs to postsynaptic PNs and regulates neuronal mHttex1 aggregate

size. (A and B) Confocal z-stacks of DA1 glomeruli from 13 day-old adult females expressing Httex1Q91-mCherry in DA1 ORNs and Httex1Q25-GFP in

GH146+ PNs, either heterozygous (A; drpr +/-) or homozygous (B; drpr -/-) for the drprD5 null allele. mCherry+ surfaces identified by semi-automated

image segmentation are shown in the last row, with Httex1Q91-only surfaces in red and Httex1Q91+Httex1Q25 surfaces in yellow. Scale bars = 10 mm. (C

and D) Quantification of Httex1Q91 (C) and Httex1Q91+Httex1Q25 (D) aggregates in DA1 glomeruli from female or male drpr +/- or drpr -/- flies at the

indicated ages. Data are shown as mean ± SEM; *p<0.05, **p<0.01, ****p<0.0001 by two-way ANOVA with Tukey’s multiple comparisons test for drpr
+/- vs drpr -/- flies at the same ages. ‘n.d.’=not determined; 13 day-old drpr -/- males were not viable. (E and F) Httex1Q91 surfaces identified in DA1

glomeruli from 7 day-old drpr +/- or drpr -/- females expressing Httex1Q91-mCherry in DA1 ORNs. mCherry+ surfaces are color-coded according to the

following volume ranges: cyan = 0–1.0 mm3; gray = 1.01–2.49 mm3; magenta = 2.5–9.0 mm3. Gray and magenta surfaces were set to 70% transparency to

improve visibility of smaller cyan surfaces. Scale bars = 10 mm. (G) Relative frequency of volumes for all Httex1Q91 aggregates identified in 7 day-old

drpr +/+ (solid line) or drpr -/- (dotted line; gray shading) males and females. The inset graph shows mean Httex1Q91 aggregate volume ± SEM for the

two genotypes. ****p<0.0001 by unpaired Student’s t-test.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Draper is required for enhanced transfer of mHttex1 from shits1-expressing DA1 ORNs to GH146+ PNs.

Figure supplement 2. Gal80-mediated repression of Gal4 in glia or RNAi knockdown of drpr in PNs do not alter ORN-to-PN prion-like transfer of

mHttex1 aggregates.

Figure supplement 3. mHttex1 aggregates generated in ORNs do not co-localize with markers of lysosomes or autophagosomes in glia.
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DA1 ORN axons (Pearce et al., 2015); however, this effect was not found to be statistically signifi-

cant between drprD5 heterozygotes and homozygotes in this study (Figure 5A–C). We suspect this is

for two reasons: (a) our image segmentation parameters improved identification of very small aggre-

gates, which we show are more abundant when drpr is expressed at normal levels (Figure 5E–G),

and (b) the Httex1Q91-mCherry transgene used here expressed at lower levels than the transgene

used in our previous study. Thus, Httex1Q91 aggregates initially form more slowly in DA1 ORN axons

(compare numbers of Httex1Q91 aggregates in young females in Figure 1J vs Figure 7I; the latter

experiment used the same higher-expressing Httex1Q91-mCherry transgene as in our prior study)

and may be less affected by Draper depletion. Strikingly though, drpr KO completely blocked forma-

tion of Httex1Q91+Httex1Q25 aggregates in postsynaptic PNs (Figure 5A,B and D), suggesting that

Draper mediates trans-synaptic transfer of mHttex1 aggregates. This surprising effect of drpr KO on

seeded Httex1Q25 aggregate formation was also observed when shits1 was co-expressed with

Httex1Q91-mCherry in ORNs (Figure 5—figure supplement 1), confirming that enhanced transfer of

Httex1Q91 aggregates from shits1-expressing ORNs occurs via the same Draper-dependent mecha-

nism. To rule out the possibility that GH146-Gal4 drives expression of Httex1Q25-GFP in Draper+

glia, we used repo-Gal80 to inhibit Gal4 in all glia and saw no effect on Httex1Q91 or Httex1Q91

+Httex1Q25 aggregate numbers (Figure 5—figure supplement 2A,B,E and F). Moreover, expres-

sion of drpr-specific siRNAs in PNs did not affect formation of either Httex1Q91 or Httex1Q91

+Httex1Q25 aggregates (Figure 5—figure supplement 2C–F), consistent with glia as the sole source

of drpr expression in the fly CNS. We also did not observe significant colocalization between ORN-

derived Httex1Q91 aggregates and GFP-fusions of Atg8a (Juha�sz et al., 2008) or Lamp1

(Pulipparacharuvil et al., 2005) in glia (Figure 5—figure supplement 3), suggesting that neuronal

Httex1Q91 aggregates do not seed Httex1Q25 in glial lysosomes or autophagosomes.

These results point to an unexpected but central role for glial Draper in Httex1Q91 aggregate

transfer between multiple cell types in the fly CNS, but how phagocytic glia could mediate spreading

of Httex1Q91 aggregates across neuronal synapses was not immediately clear. Intriguingly, mean vol-

ume of Httex1Q91 aggregates in DA1 ORN axons was significantly increased in drpr KO animals

compared to wild-type controls (Figure 5E,F and G-inset), and the relative frequency of two aggre-

gate subpopulations shifted between these genotypes: in the absence of drpr, the abundance of a

smaller-sized subpopulation (~0.1–1 mm3) decreased while a larger-sized subpopulation (~2.5–4.0

mm3) increased in abundance (Figure 5E–G). Intriguingly, the smaller aggregate subpopulation cor-

related well with the size of Httex1Q91 aggregates associated with converted Httex1Q25 in PNs

(Figure 2G) or glia (Pearce et al., 2015), suggesting that phagocytic glia could at least in part medi-

ate formation of smaller seeding-competent Httex1 aggregates. However, molecular features other

than size must regulate the seeding capacity of mHttex1 aggregates, since smaller-sized aggregates

did not completely disappear in drpr KO animals (Figure 5G). Taken together, these results indicate

that Draper-expressing phagocytic glia mediate transfer of Httex1Q91 aggregates across DA1 ORN-

PN synapses, perhaps in part by altering morphological features of neuronal mHttex1 aggregates.

Caspase activation in ORNs is required for trans-synaptic transfer of
mHttex1 aggregates
Phagocytic glia engulf injured or degenerating neuronal processes and apoptotic cell corpses by rec-

ognizing ‘eat me’ signals exposed on these debris (Wilton et al., 2019), and mHtt expression indu-

ces caspase-dependent apoptosis in fly and mammalian models of HD (Ahmed et al., 2014). Thus,

we asked whether Httex1Q91-mCherry-expressing DA1 ORNs activate pathways that could stimulate

Draper-dependent transfer of aggregates to DA1 PNs. In drprD5 heterozygotes, expression of

Httex1Q91-GFP in all ORNs did not significantly increase cleavage of Drosophila caspase-1 (Dcp-1)

compared to flies expressing Httex1Q25-GFP (Figure 6A,B and E); however, Dcp-1 cleavage was sig-

nificantly increased in Httex1Q91- vs Httex1Q25-expressing ORNs when drpr was knocked out

(Figure 6C–E). These data suggest that glia efficiently clear Httex1Q91-expressing ORN axons dis-

playing Dcp-1-dependent ‘eat me’ signals via Draper-dependent phagocytosis. In addition, co-

expression of the viral effector caspase inhibitor p35 (Hay et al., 1994) with Httex1Q91-mCherry in

DA1 ORNs inhibited formation of Httex1Q91+Httex1Q25 aggregates in DA1 PNs (Figure 6F,G,J and

K, squares), indicating that inhibition of apoptotic caspases in presynaptic ORNs phenocopies

effects of drpr KO on Httex1Q91 aggregate transfer from ORNs to PNs. By contrast, co-expression

of p35 with Httex1Q25-GFP in PNs did not affect numbers of Httex1Q91+Httex1Q25 aggregates in
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Figure 6. Caspase activation in ORNs mediates mHttex1 aggregate transfer from ORNs to PNs. (A–D) Maximum-intensity projections of antennal lobes

from 8 day-old adult males expressing Httex1Q25-GFP (A and C) or Httex1Q91-GFP (B and D) in most ORNs using Or83b-Gal4 in drprD5 heterozygotes

(drpr +/-; A and B) or homozygotes (drpr -/-; C and D). Brains were immunostained for GFP (left panels) or cleaved Dcp-1 (right panels). Scale bars = 20

mm. (E) Quantification of cDcp-1 immunofluorescence from 8 day-old adult males with the same genotypes as in (A–D). Data are shown as mean ± SEM;

**p<0.01, ***p<0.001, ’n.s.’ = not significant by one-way ANOVA with Tukey’s multiple comparisons test. (F–I) Confocal z-stacks of DA1 glomeruli from

14 day-old males expressing Httex1Q91-mCherry with LacZ (F) or p35 (G) in DA1 ORNs and Httex1Q25-GFP in GH146+ PNs, or Httex1Q91-mCherry in

Figure 6 continued on next page
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the DA1 glomerulus (Figure 6H–K, circles), suggesting that caspase-dependent signaling in PNs is

not required for Httex1Q91 aggregate spreading across ORN-PN synapses. Together, these results

suggest that signals mediated by apoptotic caspase activation in DA1 ORNs, and not DA1 PNs, pro-

mote engulfment and trans-synaptic transfer of Httex1Q91 aggregates via phagocytic glia.

mHttex1 aggregates transfer from ORNs to PNs via the glial cytoplasm
The strict requirement for glial Draper in prion-like transfer of Httex1Q91 aggregates across ORN-PN

synapses can be explained by two non-mutually exclusive models. In one model (Figure 7A, route

1), mHttex1 aggregates spread from presynaptic ORNs to postsynaptic PNs via a glial cytoplasmic

intermediate. This model is consistent with our previous finding that phagocytosed neuronal mHttex1
aggregates gain entry to the glial cytoplasm to effect prion-like conversion of Httex1Q25

(Pearce et al., 2015). Alternatively (Figure 7A, route 2), phagocytic glia could sculpt the synaptic

environment in a way that promotes transfer of mHttex1 aggregates directly from ORN axons to PN

dendrites. To distinguish between these models, we generated transgenic flies that use three binary

expression systems (i.e., QF-QUAS, Gal4-UAS, and LexA-LexAop) to independently express a

uniquely-tagged Httex1 transgene in each of three cell populations: Httex1Q91-mCherry in DA1

ORNs, Httex1Q25-3xHA in repo+ glia, and Httex1Q25-YFP in GH146+ PNs (Figure 7A). If Httex1Q91-

mCherry aggregates formed in presynaptic ORNs transfer to postsynaptic PNs via the glial cyto-

plasm, Httex1Q91-mCherry aggregate seeds should template the aggregation first of Httex1Q25-

3xHA in glia and then Httex1Q25-YFP in PNs, resulting in appearance of triple-labeled mCherry+/

3xHA+/YFP+ puncta in the DA1 glomerulus (Figure 7A, route 1). A transient double-labeled

mCherry+/3xHA+ aggregate subpopulation that have accessed the glial cytoplasm but not yet

reached PNs might also be observed in this scenario. Alternatively, if Httex1Q91-mCherry aggregates

do not access the glial cytoplasm en route to PNs, only double-labeled mCherry+/3xHA+ and

mCherry+/YFP+ aggregates would appear in the DA1 glomerulus (Figure 7A, route 2).

Brains from transgenic flies expressing these differentially-tagged Httex1 transgenes in ORNs,

glia, and PNs were analyzed, and expression patterns consistent with known morphologies of these

cell types in the antennal lobe were observed by confocal microscopy (Figure 7B and C, and Fig-

ure 7—figure supplement 1). In contrast to data in other figures, these samples required immunos-

taining to detect expression of Httex1Q25-3xHA and Httex1Q25-YFP expression in glia and PNs,

respectively. We found that immunolabeled aggregate subtypes were not amenable to volumetric

segmentation, and so we instead manually quantified single-, double-, and triple-labeled Httex1
aggregates in confocal slices and used line scan intensity profiling to confirm colocalization.

Httex1Q91-mCherry expression in DA1 ORNs was partially diffuse and partially punctate in young (0–

1 day-old) adult flies (Figure 7B,D,E and I), but became more punctate as the flies aged (Figure 7C,

F,G and I). mCherry+/3xHA+ puncta representing Httex1Q91 aggregates that transferred from

ORNs to glia first appeared in 2 day-old adults and increased in number over the next ~24 hr

(Figure 7E,F and J, blue bars). Remarkably, mCherry+/3xHA+/YFP+ puncta also began to appear in

2 day-old adults and increased in abundance until the flies were ~4 days old (Figure 7F,G and J,

striped bars). The timing of appearance of these different aggregate subtypes supports our hypoth-

esis that Httex1Q91 seeds originating in DA1 ORN axons transit through the glial cytoplasm before

reaching the cytoplasm of DA1 PN dendrites (Figure 7A, route 1). mCherry+/YFP+ puncta repre-

senting aggregates that had transferred from DA1 ORNs to DA1 PNs without accessing the glial

cytoplasm were not detected in these brains, arguing against direct transfer of Httex1Q91-mCherry

aggregates from ORNs to PNs (Figure 7A, route 2). Control animals expressing Httex1Q25 proteins

in paired combinations of ORNs, glia, or PNs (Figure 7—figure supplement 1) confirmed that

Httex1Q25 aggregates in glia or PNs were only detected when Httex1Q91 was expressed in ORNs.

Remarkably, when we used RNAi to specifically knockdown drpr in glia, numbers of Httex1Q91-

Figure 6 continued

DA1 ORNs and Httex1Q25-GFP with LacZ (H) or p35 (I) in GH146+ PNs. mCherry+ surfaces identified by 3D segmentation are shown in the last panels,

with Httex1Q91-only surfaces in red and Httex1Q91+Httex1Q25 surfaces in yellow. Scale bars = 10 mm. (J and K) Quantification of Httex1Q91 (J) or

Httex1Q91+Httex1Q25 (K) aggregates in DA1 glomeruli of flies with the same genotypes in (F and G) (squares) or (H and I) (circles). Numbers of

aggregates in flies expressing LacZ or p35 are indicated by solid or open shapes, respectively. Data are shown as mean ± SEM; *p<0.05, ’n.s.’ = not

significant by one-way ANOVA with Tukey’s multiple comparisons test.
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Figure 7. mHttex1 aggregates transfer from presynaptic ORNs to postsynaptic PNs via the cytoplasm of phagocytic glia. (A) Diagram illustrating our

experimental approach for examining a role for Draper-expressing glia in mHttex1 aggregate transfer from DA1 ORNs to DA1 PNs. Flies that combined

Or67d-QF-, repo-Gal4-, and GH146-LexA:GAD-driven expression of Httex1Q91-mCherry in DA1 ORNs (red), Httex1Q25-3xHA in all glia (blue), and

Httex1Q25-YFP in ~60% of PNs (green), respectively, were generated and analyzed by confocal microscopy of immunostained brains. If Httex1Q91-

Figure 7 continued on next page
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mCherry aggregates increased (Figure 7H and I), while mCherry+/3xHA+ and mCherry+/3xHA+/

YFP+ aggregates significantly decreased or were absent in 7 day-old adults (Figure 7H and J).

These data confirm that glial Draper mediates Httex1Q91 aggregate transmission from ORN axons

to glia and across ORN-PN synapses. Taken together, these findings suggest that phagocytic glia

act as obligatory intermediates in unidirectional prion-like spreading of mHttex1 aggregates from

presynaptic ORNs to postsynaptic PNs in Drosophila brains.

Discussion
The hypothesis that prion-like spreading contributes to progression of protein aggregate pathology

in HD and other neurodegenerative diseases is gaining considerable support, and yet we still under-

stand very little about the mechanisms that underlie cell-to-cell spreading in vivo, the influences of

cell- and tissue-specific vulnerability, and the relevance of aggregate transmission to disease pro-

gression. In this study, we report that mHttex1 aggregates transfer anterogradely from presynaptic

ORNs to postsynaptic PNs via an obligatory path through phagocytic glia in Drosophila brains.

ORN-to-PN transmission of mHttex1 aggregates was enhanced by blocking endocytosis and exocyto-

sis and slowed by thermogenetically stimulating presynaptic ORNs, suggesting an inverse relation-

ship between presynaptic activity and mHttex1 aggregate spreading. mHttex1 aggregate transfer

across synapses was inhibited by blocking apoptosis in presynaptic neurons and required the Draper

scavenger receptor, which we have previously reported to mediate phagocytic engulfment of

mHttex1 aggregates from ORN axons and prion-like conversion of wtHttex1 in the glial cytoplasm

(Pearce et al., 2015). Here, we expand our understanding of the role that glia play in prion-like dis-

eases by showing that phagocytosed neuronal mHttex1 aggregates transit through the cytoplasm of

glia before reaching postsynaptic PNs. To the best of our knowledge, these findings are the first to

uncover a role for a well-conserved phagocytic pathway in prion-like spreading of pathogenic aggre-

gates between neurons in vivo.

The increased propensity of mHtt to aggregate as a result of polyQ expansion is held in check by

the proteostasis network, and intrinsic differences in proteostatic capacity of neuronal subpopula-

tions could underlie regional selectivity to inclusion body formation in HD brains (Margulis and Fink-

beiner, 2014). However, accumulating evidence that mHtt aggregates have prion-like properties

suggests that aggregate spreading could also contribute to HD pathogenesis by propagating mHtt

pathology through networks of synaptically-connected but selectively-vulnerable neurons. We find

that mHttex1 aggregate transmission across ORN-PN synapses occurs selectively in the anterograde

direction and is inversely correlated with synaptic activity. Some of the earliest changes seen in HD

patient brains involve loss of presynaptic cortical inputs to the striatum, where more prominent

Figure 7 continued

mCherry aggregates travel to PNs via the glial cytoplasm (route 1), triple-labeled (mCherry+/3xHA+/YFP+) aggregates should be observed. By contrast,

if Httex1Q91-mCherry aggregates transfer directly to PNs without accessing the glial cytoplasm (route 2), then only double-labeled (mCherry+/3xHA+

and mCherry+/YFP+) aggregates would be detected. (B–C) Confocal z-stacks of DA1 glomeruli from adult females of the indicated ages expressing

Httex1Q91-mCherry in DA1 ORNs (red), Httex1Q25-3xHA in glia (blue), and Httex1Q25-YFP in PNs (green) at the indicated ages. Brains were

immunostained with antibodies against the mCherry, 3xHA, and YFP tags unique to each Htt protein. Scale bars = 10 mm. (D–H) Single 0.35 mm

confocal z-slices from females of the indicated ages with (D–G) the same genotype as in (B and C) or (H) also expressing dsRNAs targeting drpr

in glia (‘+DrprRNAi’). Colocalizing mCherry+/3xHA+ or mCherry+/3xHA+/YFP+ aggregates are indicated by open arrowheads or arrows, respectively,

shown in yellow on grayscale and white on merged images for increased visibility. Scale bars = 5 mm. Httex1Q91-mCherry (red), Httex1Q25-3xHA (blue),

and Httex1Q25-YFP (green) fluorescence intensity profiles for lines ‘a’ and ‘b’ are shown to the right of each merged image. Lines were scanned from

leftmost to rightmost point. Arrowheads and arrows on graphs indicate peak mCherry fluorescence in colocalized mCherry+/3xHA+ and mCherry+/

3xHA+/YFP+ aggregates, respectively. (I and J) Quantification of (I) mCherry-only or (J) mCherry+/3xHA+ and mCherry+/3xHA+/YFP+ aggregates

identified in control (solid bars) or DrprRNAi-expressing (open bars) animals over time. +DrprRNAi animals were only analyzed at 7 days-old. Data are

shown as mean ± SEM; *p<0.05, **p<0.01, ***p<0.001, or ****p<0.0001 by one- or two-way ANOVA followed by Tukey’s multiple comparisons test. ‘*’s

indicate statistical significance comparing control flies at different ages [black ‘*’s compare mCherry-only aggregates in (I) and mCherry+/3xHA+/YFP+

aggregates in (J), and blue ‘*’s compare mCherry+/3xHA+ aggregates in J], and ‘#’s indicate statistical significance comparing mCherry+/3xHA+ and

mCherry+/3xHA+/YFP+ aggregates, respectively, in control vs DrprRNAi-expressing flies at the same age.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Controls for monitoring transmission of mHttex1 aggregates from presynaptic DA1 ORNs to postsynaptic PNs via a glial

intermediate.
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pathological findings (e.g., mHtt aggregate accumulation and massive loss of medium spiny neurons)

appear in later stages of disease (Reiner and Deng, 2018). In addition, selective silencing of mHtt in

both the cortex and striatum of BACHD mice inhibited striatal degeneration and motor phenotypes

to a greater extent that silencing in just the striatum (Wang et al., 2014), suggesting that mHtt-

induced toxicity in presynaptic cortical regions could play an important role in early HD develop-

ment. Thus, presynaptic dysfunction may be a driving force for mHtt aggregate spreading between

synaptically-connected regions of the brain. While our findings do not directly address secondary

consequences of mHttex1 aggregate spreading across synapses, we identify a novel mechanism

whereby glial responses to pathological changes in synapses mediate spreading of toxic aggregates

between neurons. How aggregate spreading via glia impacts neuronal viability and functioning at

the synaptic and/or circuit level are important questions for future studies.

Glia survey the brain to maintain homeostasis and can rapidly switch between supportive and

reactive states in response to perturbations in CNS microenvironments. Upon sensing neuronal insult

or injury, reactive microglia and astrocytes undergo dramatic morphological, metabolic, and tran-

scriptional changes and promote neuronal survival by releasing trophic factors and phagocytosing

debris (Hammond et al., 2018). Central roles for phagocytic glia in neurodegeneration are becom-

ing increasingly recognized as genome-wide association studies and transcriptomic analyses identify

glial genes associated with increased disease risk. For example, rare variants in the microglial phago-

cytic receptor gene TREM2 are associated with increased risk of AD, FTD, and PD, and loss of

TREM2 function exacerbates Ab-, tau-, and a-synuclein-associated neurotoxicity (Griciuc et al.,

2019; Guo et al., 2019; Leyns et al., 2019; Zhao et al., 2018). Disruptions in key glial phagocytic

functions leads to accumulation of potentially toxic aggregates in the brain (Asai et al., 2015;

Hong et al., 2016; Pearce et al., 2015; Ray et al., 2017; Wilton et al., 2019), and administration of

antibodies targeting pathological Ab, tau, or a-synuclein proteins inhibits aggregate accumulation

and spreading in vivo (Funk et al., 2015; Masliah et al., 2005; Tran et al., 2014;

Yanamandra et al., 2013). However, chronically-active or otherwise dysfunctional glia induce neuro-

inflammation and exacerbate neuronal damage. For example, hyperactivate microglia excessively

engulf synapses in pre-plaque AD mouse brains (Hong et al., 2016) and signal for formation of neu-

rotoxic A1 astrocytes, which accumulate in several neurodegenerative diseases (Liddelow et al.,

2017; Yun et al., 2018) and during aging (Clarke et al., 2018). Our findings thus add new insights

to recognizing glia as double-edged players in neurodegeneration and suggest that rebalancing the

protective and harmful effects of glial phagocytosis could be an effective new therapeutic strategy.

We provide several lines of evidence to support a model in which glia engulf mHttex1 aggregates,

or perhaps portions of mHttex1 aggregate-containing axons, from ORNs without internalizing ele-

ments of PNs: (i) mHttex1 aggregate transmission occurred exclusively in the anterograde direction

across ORN-PN synapses, (ii) neuronal mHttex1 aggregates did not colocalize with markers of lyso-

somes or autophagosomes in glia, and (iii) caspase inhibition in ORNs and not in PNs inhibited

aggregate transfer. Our data suggest that glia selectively target presynaptic ORNs by recognizing

apoptotic ‘eat me’ signals induced by mHttex1 aggregate accumulation, and this process drives

aggregate transfer to postsynaptic PNs. In developing mouse brains, pruned presynaptic structures

are engulfed by microglia largely in the absence of postsynaptic markers (Schafer et al., 2012;

Weinhard et al., 2018), suggesting that mammalian glia have the ability to selectively ‘nibble’ pre-

synaptic components (a fine-tuned phagocytic process known as trogocytosis). In addition, astro-

cytes internalize dystrophic presynaptic terminals that accumulate near amyloid plaques in

transgenic mouse and human AD brains (Gomez-Arboledas et al., 2018). Intriguingly, astrocytes

expressing the mammalian Draper homolog MEGF10 and complement-dependent microglia prefer-

entially engulf ‘weaker’ synapses to refine neural circuits in developing and adult mouse brains

(Chung et al., 2013; Schafer et al., 2012), and aberrant activation of these pathways could contrib-

ute to early synaptic loss in neurodegenerative disease (Hong et al., 2016). We find that cell-to-cell

mHttex1 aggregate transfer is accelerated from silenced ORN axons, suggesting that activity-

impaired synapses are engulfed by nearby glia, enhancing spread along the ORN-to-glia-to-PN

track. Thus, while the primary objective of phagocytic glia may be to eliminate toxic neuronal debris

from the CNS, aberrant and/or excessive activation of phagocytic pathways could paradoxically pro-

mote disease. Premature elimination of live synapses could also drive network dysfunction, suggest-

ing that attenuating glial responses could be an effective early intervention to preserve neurological

functions in neurodegenerative disease patients (Carpanini et al., 2019).
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The most exciting yet unexpected finding we report here is that prion-like mHttex1 aggregates do

not directly transfer from ORNs to PNs, but instead make an obligatory detour through the phago-

cytic glial cytoplasm. This circuitous route could explain why relatively small numbers of seeded

wtHttex1 aggregates form in glia or PNs, since seeding-competent mHttex1 must escape from multi-

ple degradative systems and from the membrane-bound phagolysosomal compartment in order to

access cytoplasmic wtHttex1. Though transfer through glia is compulsory across ORN-PN synapses,

our data cannot exclude the possibility that mHttex1 aggregates transfer directly between neurons in

other regions of the brain or at later stages of disease, when neuron-glia communication and cell

integrity could be severely compromised. Our findings suggest that phagocytic glia drive aggregate

transfer across ORN-PN synapses by altering the transmissibility of mHttex1 aggregates formed in

presynaptic ORN axons. We previously proposed that Draper-dependent phagocytosis could pro-

vide a temporary conduit for engulfed mHttex1 aggregates to escape into the glial cytoplasm

(Pearce et al., 2015). This idea is supported by work from others showing that a-synuclein, tau, and

mHttex1 aggregates rupture cell surface or endolysosomal membranes to access the cytoplasmic

compartment (Chen et al., 2019; Falcon et al., 2018; Flavin et al., 2017; Ren et al., 2009;

Zeineddine et al., 2015). It is possible that Draper-dependent phagocytosis could modify mHttex1
aggregates to increase their capacity to cross biological membranes, for example by altering molec-

ular features such as rigidity, frangibility, or size. Indeed, we report here that seeding-competent

mHttex1 aggregates belong to a smaller-sized aggregate subpopulation whose abundance is regu-

lated by Draper, and other groups have observed that the seeding propensity of mHttex1 (Ast et al.,

2018; Chen et al., 2001) or tau (Wu et al., 2013) aggregates is strongly associated with smaller

size. This raises the intriguing possibility that membrane fission or fusion events that occur during

dynamin-mediated engulfment or phagosome maturation could directly fragment or allow for

escape of partially-digested neuronal mHttex1 aggregates that fall below an upper size limit for entry

into the cytoplasm. Indeed, aggregate fragmentation and secondary nucleation events are thought

to be key components of prion-like propagation in many neurodegenerative diseases

(Knowles et al., 2014).

An outstanding question raised by our study is how ORN-derived mHttex1 aggregates physically

transfer from glia to PN cytoplasms. This could be accomplished by a number of mechanisms already

proposed for cell-to-cell spreading of prion-like aggregates, such as transport through extracellular

vesicles or tunneling nanotubes (Costanzo et al., 2013; Sharma and Subramaniam, 2019), endocy-

tosis/exocytosis (Asai et al., 2015; Babcock and Ganetzky, 2015; Chen et al., 2019; Holmes et al.,

2013; Lee et al., 2010; Zeineddine et al., 2015), secretion or passive release of aggregates from

dying cells, and direct penetration of lipid bilayers (Brundin et al., 2010; Davis et al., 2018;

Vaquer-Alicea and Diamond, 2019). In a mouse model of tauopathy, pathological tau is transported

between anatomically-connected regions of the brain via exosomes secreted by microglia

(Asai et al., 2015), suggesting that phagocytosed neuronal aggregates may never encounter the

extracellular space during transfer. It is also possible that dysfunction caused by continuous aggre-

gate internalization, genetic mutations, and/or normal aging could decrease the efficiency by which

glia clear aggregates, promoting their spread. In support of this, extracellular Ab or a-synuclein

fibrils accumulate inside microglia (Chung et al., 1999; Frackowiak et al., 1992), and the ability of

microglia to effectively degrade phagocytosed material declines with age (Bliederhaeuser et al.,

2016; Tremblay et al., 2012). We therefore favor a mechanism whereby phagocytosed aggregates

resistant to degradation overwhelm the glial phagolysosomal system and promote aggregate

release, either through active secretion (e.g., in an act of self-preservation [Baron et al., 2017]) or

during glial cell death. While we did not observe mHttex1 aggregate transmission to non-partner

PNs in flies up to 3 weeks old, suggesting that aggregate transfer at these ages is restricted to syn-

aptic regions ensheathed by only 1–2 glial cells (MacDonald et al., 2006; Wu et al., 2017), impor-

tant remaining questions are whether aggregates that have invaded the glial cytoplasm can transfer

to other cells in or near the DA1 glomerulus (e.g., other glia or local interneurons) or to downstream

neurons in the olfactory circuit.

In summary, our data demonstrate that phagocytic glia are active participants in the spread of

prion-like protein aggregates between synaptically-connected neurons in vivo. Since microglial pro-

cesses are highly motile (Hammond et al., 2018), these findings raise the intriguing possibility that

phagocytic glia could mediate not only trans-synaptic, but also long-range spreading of neuronal

aggregate pathology in the mammalian CNS. Our findings have important implications for
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understanding complex relationships between aggregate-induced cytotoxicity and neuron-glia com-

munication in health and disease. Deciphering the mechanisms that regulate helpful vs harmful

effects of phagocytic glia in the brain will help to reveal the therapeutic potential of targeting key

glial functions in HD and other neurodegenerative diseases.

Materials and methods

Fly husbandry
All fly stocks and crosses were raised on standard cornmeal/molasses media at 25˚C, ~50% relative

humidity, and on a 12 hr light/12 hr dark cycle, unless otherwise noted. The following drivers were

used to genetically access different cell populations in the fly CNS: elav[C155]-Gal4 (RRID:BDSC_

458; Lin and Goodman, 1994), Or67d-QF (Liang et al., 2013), GH146-Gal4 (RRID:BDSC_30026;

Stocker et al., 1997), pebbled-Gal4 (RRID:BDSC_80570), GH146-QF (Potter et al., 2010), and

GH146-LexA::GAD (Lai et al., 2008; a kind gift from Tzumin Lee, Janelia Farms), repo-Gal4 (RRID:

BDSC_7415; Sepp et al., 2001), and Or83b-Gal4 (Kreher et al., 2005). Transgenic flies previously

described by our lab include QUAS-Httex1Q91-mCherry, QUAS-Httex1Q25-mCherry, UAS-Httex1Q91-

mCherry, UAS-Httex1Q25-GFP, UAS-Httex1Q25-YFP, and UAS-GFP transgenes inserted at the attP3

(1st chromosome; RRID:BDSC_32230) and/or attP24 (2nd chromosome) jC31 integration sites

(Pearce et al., 2015). Other transgenic flies not generated in this study include: UAS-mCD8-GFP

(RRID:BDSC_5137), QUAS-nucLacZ lines #7 and 44 (RRID:BDSC_30006 and RRID:BDSC_30007),

QUAS-shits1 lines #2, 5, and 7 (RRID:BDSC_30010, RRID:BDSC_30012; kind gifts from C. Potter,

Johns Hopkins School of Medicine), QUAS-TeTxLC lines #4c and 9c and QUAS-dTrpA lines #5, 6,

and 7 (kind gifts from O. Riabinina and C. Potter, Johns Hopkins), QUAS-mCD8-GFP line #5J (RRID:

BDSC_30002), QUAS-p35 (a kind gift from H. Steller, Rockefeller University), UAS-LacZ (RRID:BDSC_

8529), UAS-p35 (RRID:BDSC_5072), QUAS-Gal80 (RRID:BDSC_51948), UAS-QS (RRID:BDSC_30033),

repo-Gal80 (a kind gift from T. Clandinin, Stanford University), UAS-FFLuc.VALIUM1 (RRID:BDSC_

35789), UAS-GFP-Lamp1 (RRID:BDSC_42714), UAS-Atg8a-GFP (RRID:BDSC_52005), and UAS-Drap-

erRNAi and drprD5 (RRID:BDSC_67033) flies (kind gifts from M. Freeman, Vollum Institute). Genotypes

for all flies used in this study are listed in Supplementary file 1.

Cloning and transgenesis pUASTattB(Httex1Q25-GFP) and pUASTattB(Httex1Q25-3xHA) plasmids

were generated by PCR amplification of tagged Httex1 cDNAs from the pcDNA3 vector backbone

and cloned into pUASTattB via XhoI and XbaI restriction sites. cDNA for mRFP-Httex1-12Q138

(Weiss et al., 2012; a kind gift from T. Littleton, MIT) was subcloned into the pQUASTattB plasmid

(Riabinina et al., 2015 ) using EcoRI and XbaI restriction sites. Httex1Q25-YFP cDNA was amplified

by PCR from the pUASTattB(Httex1Q25-YFP) plasmid (Pearce et al., 2015) and subcloned into the

EcoRI site in pLOT downstream of LexA-responsive LexAop DNA sequences. Plasmids were microin-

jected into embryos containing the attP3 X chromosome (for UAS-Httex1Q25-GFP), attP3B or attP8

X chromosome (for QUAS-mRFP-Httex1-12Q138), or attP24 2nd chromosome (for UAS-Httex1Q25-

3xHA or LexAop-Httex1Q25-YFP) jC31 integration sites either in-house or at BestGene, Inc (Chino

Hills, CA).

Drosophila brain dissection and sample preparation
Adult fly brains were dissected, fixed, and stained and/or imaged as previously described

(Pearce et al., 2015). Briefly, brains were dissected in ice-cold phosphate-buffered saline containing

either 0.03% Triton X-100 (PBS/0.03T, when intrinsic fluorescence of FP-fusions was imaged) or 0.3%

Triton X-100 (PBS/0.3T, when indirect immunofluorescence was used to detect protein expression).

Where possible, we imaged using intrinsic GFP/YFP/mCherry fluorescence when Htt-FP fusions

expression levels were high enough to detect on the confocal. Dissected brains were transferred to

microfuge tubes containing PBS/T + 4% paraformaldehyde fixative solution on ice and then fixed in

the dark at room temperature (RT) for 5 min (when imaging intrinsic fluorescence) or 20 min (when

using immunofluorescence). For direct fluorescence imaging, brains were washed in PBS/0.03T

buffer several times before incubation in Slowfade Gold Antifade Mountant (Invitrogen, Carlsbad,

CA) for at least 1 hr at 4˚C in the dark. For immunostaining, brains were washed several times in

PBS/0.3T, and then blocked in PBS/0.3T containing 5% normal goat serum (Lampire Biological Labo-

ratories, Pipersville, PA) for 30 min at RT, followed by incubation in primary antibodies diluted in
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blocking solution and incubation for 24–72 hr at 4˚C in the dark. Brains were then washed in PBS/

0.3T several times at RT and incubated in secondary antibodies diluted in blocking solution for 20–

24 hr at 4˚C in the dark. Following another set of washes in PBS/0.3T at RT, the brains were incu-

bated in Slowfade mountant for at least 16 hr at 4˚C in the dark. Brains were then bridge-mounted

in Slowfade mountant on glass microscopy slides overlayed with #1.5 coverglass (22 � 22 mm), and

edges were sealed using clear nail polish.

Primary antibodies used in this study include rabbit anti-DsRed (RRID:AB_10013483; 1:2000;

Takara Bio USA, Inc, Mountain View, CA), rabbit anti-mCherry (RRID:AB_2552323; 1:500; Invitrogen,

Carlsbad, CA), chicken anti-GFP (RRID:AB_10000240; 1:500; Aves Labs, Tigard, OR), chicken anti-

GFP (RRID:AB_300798; 1:1000; Abcam, Cambridge, UK), chicken anti-GFP (RRID:AB_2534023;

1:500; Invitrogen, Carlsbad, CA), rat anti-HA (clone 3F10; RRID:AB_390918; 1:100; Roche, Basel,

Switzerland), rabbit anti-cleaved Dcp-1 (RRID:AB_2721060; 1:100; Cell Signaling Technology, Dan-

vers, MA), and mouse anti-Bruchpilot (clone nc82; RRID:AB_2314866; 1:100; Developmental Studies

Hybridoma Bank, Iowa City, IA). Secondary antibodies used include FITC-conjugated donkey anti-

chicken (RRID:AB_2340356; 1:200; Jackson Immuno Research Labs, West Grove, PA) and AlexaFluor

488 goat anti-chicken (RRID:AB_2534096), AlexaFluor 568 goat anti-rabbit (RRID:AB_143157), Alexa-

Fluor 647 goat anti-mouse (RRID:AB_2535804), and AlexaFluor 647 goat anti-rat (RRID:AB_141778)

IgGs (1:250 each; Invitrogen, Carlsbad, CA).

Image acquisition
All data were collected on a Leica SP8 laser-scanning confocal system equipped with 405 nm, 488

nm, 561 nm, and 633 nm lasers and 40 � 1.3 NA or 63 � 1.4 NA oil objective lenses. Leica LAS X

software was used to establish optimal settings during each microscopy session and to collect opti-

cal z-slices of whole-mounted brain samples with Nyquist sampling criteria. Optical zoom was used

to further magnify and establish regions of interest in each sample. For most images, confocal data

were collected from ~60�60 x 25 mm (xyz) stacks centered on a single DA1 glomerulus, which was

located using fluorescent signal from Httex1 protein expressed in DA1 ORN terminals. Exceptions to

this are shown in Figure 1—figure supplement 1A–E [250 � 250 x~60 mm (xyz) stacks capturing

fluorescence signal in the anterior central brain] and Figure 1C–D, Figure 1—figure supplement

4A–B, and Figure 6A–D [~150�150 x 30 mm (xyz) stacks of the anterior portion of a single antennal

lobe].

Post-imaging analysis
Raw confocal data were analyzed in 2D using ImageJ/FIJI (RRID:SCR_002285; NIH, Bethesda, MD)

or in 3D using Imaris (RRID:SCR_007370; Bitplane, Zürich, Switzerland), and all quantitative data

were analyzed independently by two researchers blinded to the experimental conditions. For semi-

automated quantification of aggregates in DA1 glomeruli, raw confocal data were deconvolved to

reduce blur, rendered in 3D, and cropped if necessary to establish the region of interest for further

analysis. mHtt fluorescence was segmented in 3D stacks using the ‘Surfaces’ algorithm (surface detail

set to 0.25 mm and background subtraction at 0.75 mm), with the ‘split touching objects’ option

selected, and seed point diameter was set to 0.85 mm. Background thresholding and seed point clas-

sification were adjusted manually for each image to optimize segmentation of heterogeneously-sized

Httex1Q91-mCherry puncta (‘aggregates’) and minimize capturing of diffuse signal. These settings

differed <5–10% among individual samples in the same experiment. In rare cases (<5% of aggre-

gates in each image), some larger aggregates were aberrantly split or smaller aggregates in close

proximity were incorrectly merged; in these cases, the objects were manually unified or split using

the software program. To quantify seeded wtHttex1 aggregates, red mHtt surfaces that colocalized

with Httex1Q25-GFP were identified by applying a filter for mean intensity in the green channel.

Colocalizing aggregates were selected by adjusting the threshold to capture discrete Httex1Q25

puncta with high contrast compared to surrounding diffuse signal. Segmentation of Httex1Q25 fluo-

rescence in Figure 1—figure supplement 2, Figure 2A–D, and Video 1 was carried out using the

same settings described above in the green channel. To measure DA1 ORN axon volume and inten-

sity in Figure 4A–C, mCD8-GFP fluorescence was segmented using the ‘Surfaces’ function in Imaris,

with surface detail set to 0.2 mm and background subtraction at 3 mm. Detailed surface measure-

ments (e.g. volume or intensity) were calculated in Imaris, and the data were exported to Excel
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(RRID:SCR_016137; Microsoft Corporation, Redmond, WA) or Prism (RRID:SCR_002798; GraphPad

Software, San Diego, CA) for further analysis.

For data shown in Figure 7 and Figure 7—figure supplement 1, indirect immunofluorescence

was used to detect Httex1Q25-3xHA expression in glia and amplify low Httex1Q25-YFP signal in PNs.

We found that semi-automated image segmentation as described above reported fewer than half of

immunolabeled colocalized aggregates identified by manual counting, likely because of poor anti-

body penetration into the aggregate core and Httex1Q25-YFP aggregates with low contrast that

made these data less amenable to 3D segmentation. Instead, we manually counted aggregates in

these samples by scanning individual z-slices and scoring discrete puncta with increased signal rela-

tive to adjacent diffuse signal in one, two, or all three channels. Line scans confirmed colocalization

of signals from the different Httex1 proteins, as shown in Figure 7D–H.

FRET analysis
Httex1Q25+Httex1Q91 colocalized aggregates were analyzed for FRET using the acceptor photo-

bleaching method as previously described (Pearce et al., 2015). Briefly, 28 individual aggregates

were analyzed by photobleaching the mCherry acceptor appended to Httex1Q91 using a 561 nm

laser set at 100% intensity and scanning until fluorescence was no longer detectable. Donor fluores-

cence dequenching was measured by exciting GFP fused to Httex1Q25 using a 488 nm laser set at

1% intensity before and after acceptor photobleaching. mCherry fluorescence was also excited

before and after photobleaching with a 561 nm laser set at 1% intensity. Fluorescence emission was

collected between 500 and 550 nm for GFP and 610 and 700 nm for mCherry to generate before

and after images as shown in Figure 2E. FRET efficiencies (FRETeff) were calculated after back-

ground correction using the equation (GFPafter-GFPbefore)/(GFPafter) x 100 and represented by a

pixel-by-pixel FRETeff image generated using the FRETcalc plugin (Stepensky, 2007) in FIJI/ImageJ.

Statistical analyses
All quantified data were organized and analyzed in Excel or Prism 8. Quantifications in graphical

form are shown as mean ± SEM, except for frequency analyses, which are displayed in histograms.

Results of all statistical analyses are described in each Figure Legend. Sample size (n) for each figure

is indicated in Supplementary file 2 and was selected to yield sufficient statistical power (� 5 bio-

logical replicates from � 3 brains for each condition; a single DA1 glomerulus represents one biolog-

ical replicate). Multiple statistical comparisons were performed using the following tests and post-

hoc corrections where appropriate: Student’s t-tests for pairwise comparisons, or one-way or two-

way ANOVA followed by Tukey’s multiple comparison tests for experiments involving �3 genotypes.

Results of these statistical tests are shown in Supplementary file 2 and on each graph, and symbols

used to indicate statistical significance are defined in the Figure Legends.
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