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Cold atmospheric plasma has been widely applied in medical treatment clinically,
especially skin diseases. However, the mechanism of cold atmospheric plasma on the
treatment of skin diseases is still undefined. In this study, dinitrofluorobenzene-induced
atopic dermatitis mice model was constructed. Cold atmospheric plasma was able to
decrease skin cells apoptosis, relieve skin inflammation, ER stress and oxidative stress
caused by dinitrofluorobenzene stimulation, which was mediated by cold atmospheric
plasma-induced MANF expression. In terms of mechanism, hypoxia-inducible factor-1a
expression was increased intracellularly after cold atmospheric plasma treatment, which
further bound to the promoter region of manf gene and enhanced MANF transcriptional
expression. This study reveals that cold atmospheric plasma has a positive effect on
atopic dermatitis treatment, also demonstrates the regulatory mechanism of cold
atmospheric plasma on MANF expression via HIF-1a, which indicates the potential
medical application of cold atmospheric plasma for atopic dermatitis treatment.

Keywords: cold atmospheric plasma, mesencephalic astrocyte-derived neurotrophic factor, hypoxia-inducible
factor-1a, nuclear factor kappa-B, atopic dermatitis
INTRODUCTION

Atopic dermatitis (AD) is a chronic disease of skin with characteristics of relapse and skin
inflammation, which has a rising incidence worldwide (1). AD’s pathogenesis is very complex to
be barely defined currently. Multiple factors have been reported to be closely associated with the
occurrence and development of AD, including immune dysfunction, skin function failure and
environmental changes (2). It has been proven that Endoplasmic Reticulum Stress (ER stress) and
oxidative stress responses play a pivotal pathogenic role for AD (3, 4). At present, AD’s therapy is
mainly based on corticosteroid hormone for skin coating treatment, but the long-term use of
hormone therapy is greatly possible to trigger dyslipidemia, dysarteriotony and glucose
Abbreviations: AD, Atopic dermatitis; CAP, Cold atmospheric plasma; MANF, Mesencephalic astrocyte-derived
neurotrophic factor; HIF-1, Hypoxia-inducible factor-1; DNFB, dinitrofluorobenzene; TM, Tunicamycin; ROS, Reactive
oxygen species; NF-kB, Nuclear factor kappa-B.
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abnormality, also lead to the excessive loss of calcium (5, 6). It is
urgent to find a new and effective therapy for AD treatment with
less even no side effects.

Cold atmospheric plasma (CAP) is a sort of ionized gas at the
room temperature level that is composed of massive active
particles like ions, electrons, free radicals, reactive oxygen
species (ROS) and nitrogen species (7). CAP has been widely
involved in medical applications. CAP is able to promote acute
and chronic wound healing, improve oral cleaning and
disinfection, facilitate cancer treatment (8–10). It has been
demonstrated that CAP up-regulates the expression of hypoxia-
inducible factor-1 (HIF-1) in human dermal fibroblasts (11, 12).
HIF-1 is a heterodimer consisting of HIF-1a and HIF-1b
monomers, which has been found to be highly expressed in
skin injury, hypoxia and radiotherapy response (13, 14).

Mesencephalic astrocyte-derived neurotrophic factor
(MANF) is a member of neurotrophic factor family to exert
the protective effect on neurons and some non-neuronal cells
(15–18). Also, in response to ER stress, MANF expression is up-
regulated as one of ER stress-related proteins (19). Recently,
more research evidences have demonstrated that MANF plays an
anti-inflammatory role in some acute and chronic inflammatory
diseases (17, 18, 20), which is mediated by binding to NF-kB p65
for impeding p65 nuclear translocation, further negatively
affecting NF-kB signal activation (21). Although MANF’s
inflammation inhibitory effect has been clearly verified, there is
still no experimental finding to define the relationship between
MANF and skin inflammation.

In this study, dinitrofluorobenzene (DNFB)-induced ADmice
model was constructed to explore the effects of CAP and MANF
on AD progress. Moreover, using human immortal keratinocyte
line (HaCaT) in vitro, the transcriptional regulatory mechanism
of HIF-1a induced by CAP on MANF expression was studied.
These research results suggest the clinical application potential of
CAP on AD treatment and prevention, also preliminarily reveal
HIF-1a-mediated MANF transcriptional regulation.
METHOD DETAILS

DNFB-Induced AD Mice Model
6-8 weeks C57BL/6J mice were depilated on the skin of back
(Area: 3 cm2). 0.5% DNFB in the mixed solution of acetone and
olive oil (3:1) was used for coating mice’s depilated area every
three days for four times. For CAP treatment, DNFB-induced
AD mice were treated by CAP for 3 minutes. For hrMANF or
MANF antibody treatment, DNFB-induced AD mice were
injected subcutaneously by hrMANF protein (0.5 mg/kg) or
MANF antibody (600mg/kg). Mice breeding was operated in
SPF-class animal laboratory. All animal experiments were
performed according to protocols approved by the Animal
Ethics Committee of Anhui Medical University (Approval
number: LLSC20210791).

HaCaT Cell Culture and CAP Treatment
The human immortal keratinocyte HaCaT cell line was cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal
Frontiers in Immunology | www.frontiersin.org 2
bovine serum (FBS). The culture condition was 37°C and 5%
CO2. CAP was produced by an atmospheric pressure dielectric
barrier discharge jet plasma source mainly consisting of a quartz
tube (inner diameter 4 mm) and a cooper ring. The cooper ring
was powered by a high-voltage power supply generating a
sinusoidal voltage waveform with 8.25 kV peak value at a
frequency of 10 kHz. Helium (flow rate: 400 sccm) and oxygen
(flow rate: 4 sccm) were mixed to introduce into the quartz tube.
For mice skin treatment, the skin inflammation area was
involved in CAP treatment for 3 minutes. For HaCaT cell
treatment in vitro, HaCaT cell nutrient solution was firstly
treated by CAP for 30 seconds, which was next used to
cultivate HaCaT cells for overnight.

Antibodies and Reagents
Antibodies involved in this study contain: anti-Cleaved caspase3
(Abcam, ab32042); anti-HMGB1 (Abcam, ab79823); anti-TNF-
a (Abcam, ab183218); anti-IL-1b (Abcam, ab9722); anti-CCL2
(Abcam, ab25124); anti-Bip (Abcam, ab21685); anti-CHOP
(Abcam, ab11419); anti-HO-1 (Abcam, ab52947); anti-
MANF (Abcam, ab67271); anti-GAPDH (Abcam, ab3285);
anti-HIF-1a (Abcam, ab243860); Anti-CD163 (Abcam,
ab182422); Goat Anti-Rabbit IgG H&L (HRP) (Abcam,
ab6721); PE anti-CD11b (Abcam, ab25533); APC anti-Ly6C
(Abcam, ab93550); Alexa Flour 488 anti-Ly6G (Abcam,
ab283276). The involved reagents contain: DNFB (Sigma, St
Louis, MO, USA, 42085); hrMANF protein (Abcam, ab123227);
Goat Anti-Mouse/Rabbit Polymer Immunohistochemistry
Detection Kit (ZSGB-BIO, PV-6000); Lipofectamine™ 3000
(Thermo Fisher, L3000150).

Immunohistochemistry
Mice’s skin tissues (n=5) were used for Immunohistochemistry
according to the previous research (20). Skin tissues were fixed in
10% formaldehyde. Paraffin sections were produced after paraffin
embedding, then deparaffinization in dimethylbenzene.
Rehydration was performed in 100%, 90%, 80% and 70% ethanol
for 5 minutes respectively. Hematoxylin and eosin were used for
hematoxylin-eosin (HE) staining. After rinse, paraffin sections were
performed by tissue antigen recovery, followed by heating and
1×PBS rinse. Peroxidase blocking agent was used for incubation at
37°C for 30 minutes. After 1×PBS rinse, paraffin sections were
incubated with the goat serum at 37°C for 30 minutes. Then, the
corresponding antibodies were used for incubation at 4°C overnight.
After secondary antibody incubation at 37°C for 30 minutes and
1×PBS rinse, 3, 3′-diaminobenzidinetetrahydrochloride (DAB) and
hematoxylin staining were performed. For immumohistochemical
staining, paraffin sections were stained by antibodies of Cleaved
caspase3 (1/300), HMGB1 (1/300), TNF-a (1/400), IL-1b (1/400),
CCL2 (1/400), Bip (1/500), CHOP (1/300), HO-1 (1/1000), MANF
(1/200), CD163 (1/400) and HIF-1a (1/400). Images were obtained
by Olympus Microscope BX53.

Western Blot
The reduced sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE, 12%) was performed to separate
protein samples extracted from mice’s skin tissues (n=5) and
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sun et al. Plasma Irradiation Weakens Atopic Dermatitis
cells. Each protein sample was 10 mg. After SDS-PAGE, PVDF
membrane (0.45mm, 26.5 cm x 3.75 m) was used for protein
transfer, followed by 5% BSA, primary antibodies (anti-Cleaved
caspase3, 1/500; anti-HMGB1, 1/20000; anti-TNF-a, 1/1000;
anti-IL-1b, 1/1000; anti-CCL2, 1/1000; anti-Bip, 1/2000; anti-
CHOP, 1/800; anti-HO-1, 1/2000; anti-MANF, 1/1000; anti-
GAPDH, 1/5000; anti-HIF-1a, 1/1000; anti-CD163, 1/1000)
and second antibodies (1/4000) incubation. Images were
obtained by Chemiscope 6000 pro touch imaging system.

Real Time-Quantitative Polymerase
Chain Reaction
Total RNA extraction from mice’s skin tissues (n=5) was obtained
by Trizol reagent, and reverse transcription was performed by
PrimeScript RT reagent Kit (TaKaRa Bio, Dalian, China)
according to manufacturer’s instruction. The involved primers
contain: TNF-a, forward 5′-CAGGAGGGAGAACAGAA
ACTCCA-3′ and reverse 5′-CCTGGTTGGCTGCTTGCTT-3′;
HMGB1, forward 5′-GCTGACAAGGCTCGTTATGAA-3′ and
reverse 5′-CCTTTGATTTTGGGGCGG

TA-3′; IL-1b, forward 5′-GAAATGCCACCTTTTGACA
GTG-3′ and reverse 5′-TGGATGCTCTCATCAGGACAG-3′;
CCL2, forward 5′-TAAAAACCTGGATCG

GAACCAAA-3′ and reverse 5′- GCATTAGCTTCAGATTT
ACGGGT-3′ ; Bip, forward 5′-ACTTGGGGACCACCT
ATTCCT-3′ and reverse 5′-GTTGCCCTGATCG

TTGGCTA-3′; CHOP, forward 5′- AAGCCTGGTATGAG
GATCTGC-3′ and reverse 5′-TTCCTGGGGATGAGATAT
AGGTG-3′; HO-1, forward 5′-AGGTACACATCCAA

GCCGAGA-3′ and reverse 5′-CATCACCAGCTTAAAGC
CTTCT-3′; MANF, forward 5′-TCTGGGACGATTTTAC
CAGGA-3′ and reverse 5′-CTTGCTTCACGGC

AAAACTTT-3′; CD163, forward 5′-GGTGGACACA
GAATGGTTCTTC-3′ and reverse 5′-CCAGGAGCGTTA
GTGACAGC-3′; GAPDH, forward 5′-AGGTCGGTG

TGAACGGATTTG-3′ and reverse 5′-GGGGTCGTTGATG
GCAACA-3′. The 2^-ddCT calculation was used.

Enzyme-Linked Immunosorbent Assay
The serum from mice (n=8) was collected to examine the serum
levels of TNF-a, IL-1b and IL-10. The involved ELISA kits
contain: Mouse TNF-a in vitro SimpleStep ELISA Kit (Abcam,
ab208348); Mouse IL-1 beta in vitro SimpleStep ELISA Kit
(Abcam, ab100704); Mouse IL-10 in vitro SimpleStep ELISA
Kit (Abcam, ab255729). ELISA was performed according to
manufacturer’s instructions.

Terminal Deoxynucleotidyl Transferase
dUTP Nick end Labeling Assay
Paraffin-embedded mice skin tissues (n=5) were prepared for
TUNEL assay. In Situ Cell Death Detection Kit, Fluorescein
(Roche, Basel, Switzerland, 11684795910) was used according to
manufacturer’s instruction. The final results were acquired by
Olympus Microscope BX53/IX71.

ROS and NO Examination
The serum from mice (n=8) was collected to examine the serum
ROS and NO levels. Total Reactive Oxygen Species and Nitric
Frontiers in Immunology | www.frontiersin.org 3
Oxide Assay Kit (Nanjing Jiancheng Bioengineering Institute,
Nanjing, Jiangsu, China) was used for ROS and NO examination
according to manufacturer’s instruction.

Flow Cytometry
Peripheral blood samples from mice were used for flow
cytometry assay. Cells in peripheral blood were blocked by 1%
mouse serum, then antibody incubation was performed for 30
minutes. After PBS washing, CD11b+Ly6Chi and CD11b+Ly6G+

immune cells in peripheral blood were analyzed by BD
FACS Verse.

Chromatin Immunoprecipitation
HaCaT cells were processed according to previous protocol (22).
Anti-HIF-1a and normal IgG antibodies were separately added
into lysates. After CHIP assay, PCR was performed for HIF-1a-
MANF promoter binding analysis. Human MANF-pro-HIF-1a
primers: forward 5’-CAACGGTTCCCGCATCCTG-3’ and
reverse 5’-CTGAATCGTGGCTTGGTGG-3’.

Dual-Luciferase Reporter Assey
HaCaT cells were co-transfected with luciferase reporters of
pGL3-MANF promoter control or pGL3-MANF promoter
HIF-1a binding site mutation plasmid together with pcDNA-
control or pcDNA-HIF-1a mutation plasmid, followed by cell
culture for 24 hours. Cell lysate was extracted to examine the
luciferase activity by Dual-Luciferase Reporter Assay System
(Promega, USA). Renilla luciferase activity was used
for normalization.

Statistical Analysis
Data are presented as means ± SD. Two-way ANOVA was used
for statistical comparison. p value<0.05 indicates significant
difference. An asterisk (*), two asterisks (**) and three asterisks
(***) stand for p<0.05, p<0.01 and p<0.001 respectively. For mice
experiments, 8 mice per group (n=8) were used. All experiments
were performed independently at least three times.
RESULTS

CAP Treatment Weakened DNFB-Induced
Apoptosis to Relieve Skin Injury in Mice
To clarify the effect of CAP on AD, we constructed DNFB-
induced AD mice model according to the previous reports (23,
24). Figure 1A showed that DNFB was able to promote skin
thickening, induce hyperkeratosis and parakeratosis, increase the
skin tissue infiltration of inflammatory cells. Comparatively,
although CAP treatment alone could not induce skin injury
and cell apoptosis in mice (Figures S1A, B), CAP treatment
greatly weakened DNFB-induced skin injury in mice (Figure 1A).
Caspase 3 is one of the classic apoptosis-associated proteins (25).
IHC and WB results showed that cleaved caspase 3 was
remarkably up-regulated in DNFB-induced mice skin tissues.
After CAP treatment, the increase of cleaved caspase 3 induced
by DNFB was restrained (Figures 1A, B and S1C, D). Moreover,
TUNEL assay results in Figures 1A and S1C showed that CAP
treatment was able to decrease DNFB-induced skin cell apoptosis.
July 2022 | Volume 13 | Article 941219
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These evidences suggest CAP treatment relieves DNFB-induced
apoptosis in skin tissues of mice, finally decreasing DNFB-
induced skin injury.

CAP Treatment Attenuated DNFB-Induced
Skin Inflammation, ER Stress and
Oxidative Stress in Mice
The inflammatory response is often accompanied by ER stress
and oxidative stress responses (26). Accordingly, we examined the
commonly-used indicators of inflammation, ER stress and
oxidative stress, including Tumor Necrosis Factor-a (TNF-a),
Interleukin-1b (IL-1b) (27), High Mobility Group Box 1
(HMGB1) (28), Chemokine CCL2 (29), Glucose Regulated
Protein 78 (GRP78, also known as Bip), CCAAT/enhancer
binding protein homologous protein (CHOP) (30), Heme
Oxygenase-1 (HO-1) (31) and MANF. IHC, WB and RT-qPCR
results showed that DNFB stimulation could promote expressions
of pro-inflammatory cytokines TNF-a and IL-1b, Chemokine
CCL2, pro-inflammatory HMGB1, ER stress-related proteins Bip
and CHOP, oxidative stress-related protein HO-1 in skin tissues
of mice, indicating DNFB-induced AD mice had the greater
inflammation, ER stress and oxidative stress responses
compared with untreated mice; also, CAP treatment partly
alleviated DNFB-induced skin inflammation, ER stress and
oxidative stress (Figures 2A–C and S2A, B). Consistently,
DNFB-induced AD mice had the higher serum levels of TNF-a,
IL-1b, ROS and NO, but the lower serum anti-inflammatory IL-
10. CAP treatment significantly inhibited the serum TNF-a, IL-
1b, ROS and NO, also promoted the serum IL-10 (Figure 2D). In
the AD process, it has been found that pro-inflammatory immune
Frontiers in Immunology | www.frontiersin.org 4
cells were increased in peripheral blood (32, 33). As shown in
Figure 2E, after DNFB stimulation, the proportions of
CD11b+Ly6Chi monocytes and CD11b+Ly6G+ neutrophils in
peripheral blood of mice were greatly increased, which were
inversely lowered by CAP treatment. By M2-type macrophage
marker CD163 detection in Figure S2C and D, the skin M2
macrophage differentiation was greatly promoted by CAP
treatment in DNFB-induced AD mice. Moreover, we found that
DNFB slightly stimulated MANF transcription and expression in
skin tissues of mice, which was further greatly promoted by CAP
treatment (Figures 2A–C and S2A, B). The above data suggest
that DNFB-induced skin inflammation, ER stress and oxidative
stress are weakened by CAP treatment that largely up-regulates
MANF expression.

CAP Treatment Enhanced MANF
Expression to Reduce DNFB-Induced Skin
Inflammatory Injury, ER Stress and
Oxidative Stress in Mice
Next, we studied whether CAP treatment suppressed AD
occurrence and development via MANF up-regulation. The
exogenous human recombinant MANF (hrMANF) protein and
MANF antibody were used to treat DNFB-induced ADmice. The
treatment of CAP, hrMANF and MANF antibody alone did not
significantly affect skin integrity, inflammation, ER stress and
oxidative stress of mice (Figures S3A–C). As shown in
Figures 3A–D and S4A, B, hrMANF treatment significantly
relieved DNFB-induced skin inflammation, ER stress and
oxidative stress, which was consistent with the effect of CAP
treatment. However, inhibiting MANF protein via MANF
B

A

FIGURE 1 | CAP alleviated DNFB-induced skin injury via attenuating apoptosis. DNFB-induced AD mice model was constructed, followed by CAP treatment, n=8.
Skin tissues (n=5) were used for HE, immunohistochemical staining of cleaved caspase 3 and TUNEL assay (A), as well as western blot of cleaved caspase 3 (B).
Epidermal thickness was evaluated. GAPDH serves as control for normalization. Data are expressed as mean ± SEM. ***p < 0.001.
July 2022 | Volume 13 | Article 941219
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antibody could partly resist the protective effect of MANF against
DNFB-induced skin inflammation injury, ER stress and oxidative
stress in mice, indicating the protective effect of CAP against
DNFB-induced skin inflammation injury was mediated by CAP-
induced MANF up-regulation. Therefore, MANF expression
induced by CAP treatment plays an important role in CAP-
mediated inhibitory effect on DNFB-induced skin inflammation,
ER stress and oxidative stress responses.

CAP treatment Induced MANF
Transcriptional Expression via
Increasing HIF-1a Level
Furthermore, we explored the specific mechanism on CAP-
mediated MANF transcriptional regulation. It has been reported
that CAP is able to increase HIF-1a expression (11). We also
found that CAP treatment alone could slightly increase HIF-1a
and MANF levels in skin tissues of mice (Figures S5A, B). We
have previously found that there is a potential HIF-1a binding site
in the promoter region of humanmanf gene (From +357 to +365),
suggesting the possibility of HIF-1a-mediated direct
transcriptional regulation for MANF expression. IHC results in
Figure 4A showed that DNFB stimulated HIF-1a expression, and
Frontiers in Immunology | www.frontiersin.org 5
CAP treatment further increased HIF-1a level in skin tissues of
mice. In Figure 4B and Figure S5C, CAP treatment could
significantly promote HIF-1a and MANF expressions in skin
tissues of mice in a time-dependent way. To clarify the interplay
among CAP, HIF-1a and MANF expression, we performed a
series of experiments in vitro by using HaCaT cells. We conducted
HIF-1a gene silencing by two different HIF-1a siRNA sequences
in HaCaT cells. After HIF-1a expression was down-regulated, the
intracellular MANF level was decreased consequently (Figure 5A
and Figure S5D). Also, HIF-1a mutant protein expression
plasmid (pcDNA-HIF-1a Mut) was constructed to restrain
HIF-1a degradation. As shown in Figure 5B and Figure S5E,
after HIF-1a mutant protein was over-expressed in HaCaT cells,
MANF expression was greatly promoted. These data indicate
there is a positive correlation between HIF-1a and MANF
expression in both mice skin tissues and HaCaT cells. CHIP
result in Figure 5C showed that HIF-1a could bind to manf gene
promoter region after CAP treatment. Over-expression of HIF-1a
mutant protein was able to markedly enhance manf promoter’s
activity, but HIF-1a binding site mutation in manf promoter
eliminated HIF-1a-mediated MANF transcriptional activation
(Figure 5D). Altogether, CAP treatment induces the expression
B C

D

E

A

FIGURE 2 | CAP reduced DNFB-induced skin inflammation, ER stress and oxidative stress in mice. DNFB-induced AD mice model was constructed, followed by
CAP treatment, n=8. Skin tissues (n=5) were used for immunohistochemical staining of HMGB1, TNF-a, IL-1b, CCL2, Bip, CHOP, HO-1 and MANF (A), as well as
western blot (B) and RT-qPCR (C) of the indicated proteins. GAPDH serves as control for normalization. (D) Serum samples (n=8) were used for ELISA of TNF-a, IL-
1b, IL-10, NO and ROS. (E) CD11b+Ly6Chi and CD11b+Ly6G+ cells were examined by flow cytometry. Data are expressed as mean ± SEM. *p < 0.05, **p < 0.01,
*** p < 0.001.
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of HIF-1a that directly binds tomanf promoter region for MANF
transcriptional activation.
DISCUSSION

Atopic dermatitis is a sort of common skin disease with the
characteristic of chronic inflammation to show the systemic
disorder, further progressing to asthma, allergic rhinitis and
other diseases (34). DNFB is a commonly-used chemical reagent
to induce AD-like skin inflammation and injury (35). There are
some previous reports and researches that use DNFB-induced
mouse skin inflammation as allergic contact dermatitis and atopic
dermatitis models (36–39). In this study, we used DNFB-induced
AD mice model to reveal the effect of CAP on the pathological
process of AD. Our findings indicate that CAP exerts an inhibitory
effect on DNFB-induced AD-like skin inflammatory injury, ER
stress and oxidative stress responses inmice. Currently, the clinical
therapy for AD is mainly based on corticosteroid hormone, which
gives rise to some side effects (6). In light of CAP’s negative effect
on AD, it is potential to involve CAP in the clinical treatment of
AD without significant side effects. In our previous research (40),
Frontiers in Immunology | www.frontiersin.org 6
we have found that CAP is able to decrease the human non-small
cell lung carcinoma A549 cell inflammation and oxidant stress
induced by Tunicamycin. The transitory and low-intensity CAP
treatment only induces a degree of ROS increase, not the
overwhelming ROS production. Consistently, we speculate that
the slight ROS production induced by CAP in our study may exert
the anti-inflammatory and antioxidative effect via amplifying the
correlated signaling pathways.

For the mechanism on how CAP restrains DNFB-induced
skin inflammation and injury, our study suggests CAP-induced
MANF expression in skin tissues plays a key role to mediate
CAP’s protective effect against DNFB-induced AD in mice.
Without CAP treatment, DNFB stimulation purely is able to
slightly increase MANF level in skin tissues. Interestingly, MANF
transcriptional expression is significantly promoted by CAP
treatment. MANF has been proven to exert the anti-
inflammatory effect in multiple inflammation-linked diseases,
like acute kidney injury (17), bacterial myocarditis (18) and
antigen-induced arthritis (21). This study further expands
MANF’s anti-inflammatory role in atopic dermatitis, possibly
other skin inflammatory diseases. In addition, there are some
researches demonstrating MANF’s moderating effects on
B

C

D

A

FIGURE 3 | CAP relieved DNFB-induced skin inflammatory injury, ER stress and oxidative stress via promoting MANF expression. DNFB-induced AD mice model
was constructed, followed by CAP treatment, hrMANF treatment and MANF antibody treatment, n=8. Skin tissues (n=5) were used for HE and immunohistochemical
staining of HMGB1, TNF-a, IL-1b, CCL2, Bip, CHOP and HO-1 (A), as well as western blot (B) and RT-qPCR (C) of the indicated proteins. GAPDH serves as
control for normalization. (D) Serum samples (n=8) were used for ELISA of TNF-a, IL-1b, IL-10, NO and ROS. Data are expressed as mean ± SEM. *p < 0.05,
**p < 0.01, *** p < 0.001.
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functional differentiation of macrophages (41). Overall,
macrophages are mainly divided into two different functional
subtypes: pro-inflammatory M1 macrophages and anti-
inflammatory M2 macrophages (42). Joana Neves et al. have
found that MANF is able to induce YM+Arg+ M2 anti-
inflammatory macrophage polarization in an autocrine way for
Frontiers in Immunology | www.frontiersin.org 7
retinal damage repair (41). Also, mono-macrophage-specific
MANF deficiency significantly affects M1/M2 differentiation of
splenic macrophages in the hepatic fibrosis process (20). We
examined pro-inflammatory immune cells in peripheral blood of
mice, then found that CAP treatment could partly suppress the
increased proportion of pro-inflammatory CD11b+Ly6Chi
B

A

FIGURE 4 | CAP treatment significantly enhanced DNFB-induced HIF-1a expression in skin tissues. DNFB-induced AD mice model was constructed, followed by
CAP treatment, n=8. (A) Skin tissues (n=5) were used for immunohistochemical staining of HIF-1a. The average optical density was analyzed. (B) At 0, 12, 24, 48
and 72 hours after CAP treatment, skin tissues (n=5) were used for western blot of HIF-1a and MANF. GAPDH serves as control for normalization. Data are
expressed as mean ± SEM. ***p < 0.001.
B

C D

A

FIGURE 5 | CAP induced MANF transcription and expression by HIF-1a-mediated transcriptional regulation. (A) HaCaT cells transfected by siRNA control, HIF-
1a siRNA 1 and HIF-1a siRNA 2 respectively were treated by CAP, followed by western blot of HIF-1a and MANF. (B) HaCaT cells transfected by pcDNA-
control, pcDNA-HIF-1a and pcDNA-HIF-1a mutation plasmid respectively were treated by CAP, followed by western blot of HIF-1a and MANF. GAPDH serves
as control for normalization. (C) HaCaT cells treated by CAP were used for Chromatin Immunoprecipitation assay. HIF-1a antibody was used for HIF-1a protein
immunoprecipitation. IgG antibody serves as negative control. VEGF-A was involved as a positive control for HIF-1a binding. (D) HaCaT cells transfected by
pcDNA-control and pcDNA-HIF-1a mutation plasmid respectively were used for dual-luciferase reporter assay of pGL3-MANF promoter control or pGL3-MANF
promoter HIF-1a binding site mutation plasmid. The relative luciferase activity was analyzed. All experiments were performed independently at least three times.
Data are expressed as mean ± SEM. ***p < 0.001.
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monocytes and CD11b+Ly6G+ neutrophils in peripheral blood
induced by DNFB stimulation, as well as promote M2 anti-
inflammatory macrophage differentiation via CD163 detection.
In the future, we plan to analyze the change of macrophages’M1/
M2 differentiation in skin tissues and peripheral blood of mice
after CAP treatment. Besides MANF, there are many other target
genes transcriptionally regulated by HIF-1a, including some
anti-apoptosis genes (43), which may mediate CAP’s protective
effect on DNFB-induced AD.

As an ER stress-related protein, MANF has been demonstrated
to be up-regulated via the direct binding of XBP1s to ER stress
response elements in MANF promoter region (44). In this study,
we found that HIF-1a had a direct transcriptional regulation on
MANF expression, and there was a verified HIF-1a binding site
in MANF promoter. The previous researches have reported that
MANF expression in glial cells is enhanced under the condition of
focal cerebral ischemia (45); also, ischemia in heart is able to
induce MANF expression as well (46). These evidences indicate
that the ischemic and hypoxic environment contributes to MANF
up-regulation, which may be attributed to ER stress response
induced by ischemia-hypoxia (45–47). Therefore, two different
pathways are involved in hypoxia-caused MANF up-regulation.
Unfolded protein response (UPR) is often intensified by hypoxia
to indirectly enhance MANF expression. Moreover, hypoxia
improves HIF-1a protein stability via inhibition of HIF-1a
degradation to increase the intracellular HIF-1a level (48),
further promote HIF-1a-mediated MANF transcriptional
expression. Besides hypoxia, our data showed that CAP
treatment could raise HIF-1a level in the non-hypoxic
condition. It has been found that mitochondrial-derived ROS is
a non-hypoxic factor for HIF-1a stabilization and HIF-1
activation (49, 50). It is possible that ROS generated by CAP
irradiation leads to the increase of HIF-1a in the non-
hypoxic environment.
CONCLUSION

In this study, CAP treatment is able to protect against DNFB-
induced skin inflammation, ER stress and oxidative stress of
mice, further alleviate DNFB-induced mice skin injury. The
protective effect of CAP on DNFB-induced AD mice model is
mediated by CAP-induced MANF up-regulation. CAP promotes
Frontiers in Immunology | www.frontiersin.org 8
the increase of HIF-1a that binds to MANF promoter region for
MANF transcriptional activation and expression.
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