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Hypothermia promotes synaptic plasticity and 
protective effects in neurological diseases
Hypothermia has been recommended for neurological 
treatment since the ancient world.[1] The Greek physician 
Hippocrates noticed that infants exposed in the open 
survived longer in the winter months than in the 
summer.[1] Several centuries later, the physiologists 
Claude Bernard and William Edwards noticed that 
asphyxiated newborn kittens gasped for a longer time 
period when actively cooled.[2] During the 1950s and 
1960s, uncontrolled studies were performed on infants 
with severe hypoxia, who were unable to breath 5 min 
after birth.[3] The infants were immersed in cold water 
until they were able to begin respiration and outcomes 
were reported better than controls.[4] However, case 
reports indicated that cooling caused subcutaneous 
fat necrosis with calcification[5] and there were higher 
oxygen requirements and greater mortality rates among 
premature newborns that were kept hypothermic after 
birth.[6] This approach was eventually overtaken by the 
development of active resuscitation techniques, leading 
to a pause in investigations for therapeutic hypothermia 
on asphyxiated neonates.[1] However, there has been a 
resurgence in research on hypothermia’s potential for 
effective treatment on mild perinatal asphyxia.[1]

Perinatal asphyxia is a major cause of death and 
neurological impairment in newborn infants, with an 
estimated incidence of 1/1,000 live births in resource‑rich 
countries.[7] Hypothermia has shown evidence as a 
possible neuroprotective treatment. Gunn et al. indicated 
that hypothermia causes neuroprotection on near‑term 
fetal sheep with cerebral ischemia by preventing 
cytotoxic edema and, thus, reducing neural loss.[8] 
Another study by Lei et al. demonstrated that canines 
that underwent hypothermia after CA‑induced ischemia 
and resuscitation inhibited both the peroxidation of 
membrane lipids and the production of free radicals in 
the brain tissue, proving that the treatment prevented 
ROS damage.[9] Edwards et al. uncovered that newborn 
piglets who experienced transient cerebral ischemia 
and postinsult hypothermia reduced the amount of 
apoptotic cells in the cingulate sulcus, signifying that 
hypothermia inhibits the apoptotic pathway.[10] In 
addition, a study by Thoresen et al. noted that newborn 
piglets who underwent transient brain ischemia and 
postischemic hypothermia reduced the typical increase 
in excitatory amino acids (EAA) and NO in the cerebral 
cortex.[11] This indicated that hypothermia protected 
mitochondrial oxidative phosphorylation from the EAAs 

and also attenuated inflammation due to the lowered 
NO levels.[11] Haaland et al. provided evidence that mild 
hypothermia can reduce the severity of brain damage 
that results from moderate hypoxic‑ischemic insults in 
newborn piglets.[12] Although hypothermia has proven 
to have neuroprotective benefits on perinatal asphyxia, 
it also presents with its limits as well.

Hypothermia has also been observed to have limitations 
when treating perinatal asphyxia. For cooling to be 
effective, it must be given under certain parameters: 
begun within 6 h of age, infant cooled to 33.5°C for 
72 h, and then rewarmed for at least 4 h.[13] Cooling 
deeper to 32°C and/or cooling longer to 5 days has not 
shown to be more beneficial.[13] Furthermore, treatment 
was nonresponsive to the more severe forms of 
hypoxia‑ischemic insults.[13] It is not known if therapeutic 
hypothermia can be harmful to nonencephalopathic 
infants or those with severe infections.[13] Cooling has 
been noted to worsen outcomes of neonates that are 
also experiencing ongoing hemorrhage.[13] It has also 
been shown to possibly worsen asphyxia‑associated 
coagulopathy and cause pulmonary hypertension.[14] 
Hypothermia is known to prolong the QT interval, which 
can potentially induce an arrhythmia.[14] Sinus bradycardia 
is the most common symptom observed in infants 
treated with moderate cooling.[14] The interval between 
the end of the hypoxia‑ischemic exposure and the 
beginning of the hypothermic therapy influences the 
treatment’s neuroprotective ability, where infants 
cooled after 6 h from birth begin to have diminished 
benefit.[15] Although moderate cooling proves to be 
effective against transient asphyxia in term infants, 
preterm infants oddly experience an increase in mortality 
even when the cooling is mild.[15] Davidson et al. noted 
that hypothermia following temporary asphyxia in 
preterm fetal sheep caused a prolonged increase in the 
cortisol response while not affecting the increase in 
adrenocorticotropic hormone levels. As high cortisol 
levels have been correlated with neonatal hypotension, it 
is hypothesized that this could contribute to the marked 
increase in mortality.[15] Reflecting on this response to 
mild neonatal asphyxia, the impact of hypothermia has 
also been investigated in its potential to restore synapses 
and promote neuroprotection in neurological diseases.

During mammalian hibernation, it has been observed that 
neural synapses dismantle when the body temperature 
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is cooled, and synapses regenerate when normal 
body temperature is regained.[16] This hypothermic 
period induces the production of cold‑shock proteins, 
particularly ribonucleic acid (RNA)‑binding motif 
protein 3 (RBM3).[17] To generate RBM3, cooling 
causes neuronal release of brain‑derived neurotrophic 
factor (BDNF), which activates tropomyosin receptor 
kinase B (TrkB).[18] Consequently, TrkB activates the 
phospholipase Cγ1(PLCγ1) protein, which activates the  
cAMP Response Element‑Binding (CREB) protein protein 
that inhibits the phosphorylated extracellular signal‑
regulated kinase (p‑ERK) protein, causing increased 
expression of RBM3.[18] RBM3 has been observed to 
function in neuroprotection during hypothermic 
conditions by preventing neural cell death and improving 
synaptic plasticity.[19] This protein does so by increasing 
local protein synthesis at dendrites[20] and global protein 
synthesis through binding ribosomal subunits and/or by 
micro RNA biogenesis.[21] Specifically, RBM3 is shown 
to bind the messenger RNA of the cold‑shock protein 
reticulon 3 (RTN3) and upregulate its expression.[22] RTN3 
functions in a neuroprotective role as it is involved in 
promoting synapse formation and synaptic plasticity.[23] 
Synaptic plasticity is defined as the ability to modify 
the strength or efficacy of synaptic communication 
between preexisting synapses in response to their use 
or disuse, which is often compromised in neurological 
diseases.[23] Hypothermia has thus been used as a 
treatment to help alleviate the symptoms of deleterious 
neurological conditions such as neurodegenerative 
disease,[24] traumatic brain injury (TBI),[24] and cardiac 
arrest (CA)‑induced ischemic stroke.[25] This commentary 
will examine the effects of hypothermia on synaptic 
plasticity on these various neurological conditions.

Neurodegenerative diseases, such as Alzheimer’s 
disease and prion disease, lead to a progressive loss of 
synapses and neurons, causing a decline in cognitive 
ability.[24] Peretti et al. performed an experiment to 
determine whether increasing RBM3 expression 
would restore the failed synaptic plasticity in mice 
with Alzheimer’s disease or prion disease.[19] The 
utilization of hypothermia to increase RBM3 expression 
in mice with prion disease was shown to prevent loss 
of synapses, improve synaptic communication, and 
thwart behavior deficits.[19] In addition, prion‑infected 
mice that were exposed to hypothermic conditions 
were observed to have a prolonged lifespan compared 
to the ones that were not.[19] RBM3 knockdown through 
lentiviral‑mediated RNAi eliminated the neuroprotective 
effects of hypothermia on prion disease in mice.[19] To 
confirm RBM3 role in neuroprotection, RBM3 was either 
overexpressed through lentivirus LV‑RBM3 or reduced 
through the lentivirus LV‑shRNA‑RMB3, without 
the influence of hypothermic conditions.[19] LV‑RBM3 
treatment promoted neuroprotection in prion‑infected 

mice and in mice with Alzheimer’s disease, causing an 
increase in their lifespan.[19] LV‑shRNA‑RBM3 treatment 
caused an earlier onset of synaptic degeneration, loss 
of neurons, and behavioral deficits in mice of both 
neurodegenerative diseases, causing a decrease in their 
lifespan.[19] Along with neurodegenerative diseases, the 
effects of neurological cooling were also investigated 
in TBIs.

TBI is the leading cause of death and disability for 
individuals under the age of 45.[26] TBIs cause brain 
dysfunction due to a vast degeneration of dendrites 
and spines and a significant reduction in synapses.
[27] Symptoms of TBI include psychiatric/behavioral, 
neurological, and physical disturbances.[28] Liu et al. 
performed a study to determine whether hypothermic 
pretreatment can improve the cognitive impairment 
caused by TBI in mice.[29] Mice that underwent a 
hypothermic pretreatment were observed to restore 
the learning and memory impairment caused by a TBI 
compared to mice with normothermic pretreatment.[29] In 
addition, mice that underwent hypothermic pretreatment 
to TBI recovered the reduction in dendritic spines and 
synaptic plasticity unlike in normothermic controls.
[29] Precooled mice, with both sham and TBI treatment, 
showed an increase in the postsynaptic proteins PSD93, 
PSD95, and NR2B compared to normothermic pretreated 
mice.[29] These synaptic proteins are known to promote 
synaptic plasticity, learning, and memory.[29] In addition 
to TBI, hypothermia was also investigated in alleviating 
the symptoms of CA‑induced ischemia.

CA is a tragic event that has a high morbidity rate.[30] This 
event causes global ischemia and neurological injury in 
those who survive, leading to a lifetime of dependency.
[30] Hypothermia is the only known treatment that can 
improve neurological outcomes and survival in neonates 
and adults that have experienced CA.[25] However, it is 
unclear why hypothermia does not increase survival for 
children with this same condition.[25] Dietz et al. conducted 
a study to uncover how hypothermia affects juvenile 
mice that have experienced CA‑induced ischemia and 
cardiopulmonary resuscitation (CPR) (CA/CPR).[25] As 
neurons have the innate ability to undergo synaptic 
plasticity (long‑term potentiation), this was measured to 
evaluate neural function.[25] Hippocampal slices of CA/
CPR‑operated mice were observed to have decreased 
long‑term potentiation compared to sham‑operated 
mice.[25] This indicates that global ischemia impairs 
synaptic plasticity in juvenile mice.[25] Hippocampal 
slices also indicated that hypothermia prevented the 
reduction in long‑term potentiation following CA/
CPR‑induced ischemia.[25] Interestingly, mice showed 
sexual dimorphism in their ability to protect against 
ischemia‑induced impairment of synaptic plasticity.[25] 
Hypothermia at 32°C protected long‑term potentiation 
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more effectively in female mice compared to male mice.
[25] Male mice required a deeper level of hypothermia at 
30°C for equal protection.[25] Likewise, this is the first 
study to demonstrate that hypothermia can preserve 
synaptic plasticity following global ischemia.[25]

In conclusion, hypothermia has been consistently 
shown to improve synaptic plasticity and promote 
neuroprotection in neurological diseases. Lui et al. 
articulated that there is another dimension when 
utilizing hypothermia as it could be an effective 
treatment not only post‑TBI but also pre‑TBI.[29] This 
provides a novel consideration to where subjects 
at risk of neurological harm could reduce their 
damage if pretreated with hypothermia. The effects of 
hypothermia also prove to be complex as Dietz et al. 
indicated that hypothermia is able to improve synaptic 
plasticity following ischemic stroke in juvenile mice 
when it is not observed to do so in children, while also 
observing a sexual dimorphic response to treatment.
[25] It is clear that more studies will be needed to have a 
better mechanistic understanding of why hypothermia 
affects juvenile mice differently than in children and to 
why male and female mice have different responses. 
Moreover, as Peretti et al. demonstrated that the 
significance of hypothermia treatment is based on the 
production of the RBM3 protein,[19] this provides a 
new direction to where inducing RBM3 expression can 
suffice to improve synaptic plasticity without needing 
to cool the subject. This will promote neuroprotection 
without the negative side effects that come along with 
cooling, which could lead to expanding the limited 
circumstances of when neonates could receive treatment 
for neonatal asphyxia. The potential of hypothermia to 
treat neurological diseases in humans is promising and 
should be further examined.
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