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Abstract
Excitable cells and cell membranes are often modeled by the simple yet elegant parallel re-

sistor-capacitor circuit. However, studies have shown that the passive properties of mem-

branes may be more appropriately modeled with a non-ideal capacitor, in which the current-

voltage relationship is given by a fractional-order derivative. Fractional-order membrane po-

tential dynamics introduce capacitive memory effects, i.e., dynamics are influenced by a

weighted sum of the membrane potential prior history. However, it is not clear to what extent

fractional-order dynamics may alter the properties of active excitable cells. In this study, we

investigate the spiking properties of the neuronal membrane patch, nerve axon, and neural

networks described by the fractional-order Hodgkin-Huxley neuron model. We find that in

the membrane patch model, as fractional-order decreases, i.e., a greater influence of mem-

brane potential memory, peak sodium and potassium currents are altered, and spike fre-

quency and amplitude are generally reduced. In the nerve axon, the velocity of spike

propagation increases as fractional-order decreases, while in a neural network, electrical

activity is more likely to cease for smaller fractional-order. Importantly, we demonstrate that

the modulation of the peak ionic currents that occurs for reduced fractional-order alone fails

to reproduce many of the key alterations in spiking properties, suggesting that membrane

capacitive memory and fractional-order membrane potential dynamics are important and

necessary to reproduce neuronal electrical activity.

Introduction
The properties of excitable cells and cell membranes have been studied for over a century, dat-
ing back to the studies of Weiss [1], Lapicque [2], and Nernst [3] in the early 1900s. These early
studies established the now well-known inverse relationship between the strength of a stimulus
necessary to elicit a spike (action potential) and the stimulus duration. Theoretical models
were developed to explain the empirically-derived strength-duration curves: Representing the
passive cell membrane as a parallel resistor-capacitor circuit, assuming ideal capacitive
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behavior, the membrane voltage Vm dynamics are given by

Cm

dVm

dt
þ Vm

Rm

¼ IappðtÞ; ð1Þ

where Cm is membrane capacitance, Rm is membrane resistance, and Iapp represents the applied
stimulus current. This simple yet elegant membrane representation is the foundation for essen-
tially all excitable cell models, originating with the Hodgkin-Huxley model [4], in which ionic
currents are represented by time- and voltage-dependent conductances, in parallel with the
membrane capacitance. Although minimal, the passive membrane model can predict a wide
range of sub-threshold and threshold behavior. For example, if the applied current is a current
step at time t = 0, i.e., Iapp(t) = Im u(t) (where u(t) is the standard Heaviside function), then the
solution of this ordinary differential equation,

VmðtÞ ¼ ImRmð1�exp ð�t=tÞÞ; ð2Þ

where membrane time constant τ = Rm Cm and the membrane is assumed to be initially un-
charged (Vm(0) = 0), can be rearranged to solve for the threshold current It necessary to elicit a
spike for a stimulus of duration d, i.e., the strength-duration relationship,

It ¼
Irheo

1�exp ð�d=tÞ ; ð3Þ

where rheobase current Irheo = Vt/Rm is the current threshold for an infinite duration stimulus
and Vt is the membrane potential threshold. Eq 3 accurately reproduces the asymptotic behav-
ior for long duration stimuli in the strength-duration curve observed in experiments. However,
for short duration stimuli (d� τ), Eq 3 is, to first-order, equivalent to an inverse scaling,

It ¼ Irheotd
�1; ð4Þ

and early studies showed that experimental data did not well-fit this simple inverse scaling, d−1.
Rather, a general power law relation, d−α, was more appropriate, with α ranging from 0.5 to 1
[5]. This was shown as early as 1933, when Cole notes Lapicque’s experimental data fits an av-
erage value of α = 0.656, while Ruston’s data fit values of α = 0.76 and 0.86 for warm and cold
frog sciatic nerve, respectively [5].

Westerlund and Ekstram showed that Jacques Curie’s 1889 empirical law for current
through capacitors and dielectrics [6] can be used to derive the capacitive current-voltage rela-
tionship for a non-ideal capacitor [7],

Iac ¼ Ca
m

daVc

dta
; ð5Þ

where 0< α< 1, Ca
m is a fractional-order capacitance with units (amp/volt)�secα, and, for now,

the exact definition of the fractional-order derivative dα Vc/dt
α will be left ambiguous but will

be clarified shortly.
Magin showed that incorporating this non-ideal capacitor into a fractional-order membrane

model can reproduce the scaling of the strength-duration curve at both short and long dura-
tions [8]. Specifically, the fractional passive membrane dynamics are given by the fractional-
order differential equation (cf. Eq 1)

Ca
m

daVm

dta
þ Vm

Rm

¼ ImuðtÞ: ð6Þ

To our knowledge, the physiological source of such non-ideal capacitive behavior is not
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known, but we speculate may arise due to heterogeneities in the dielectric properties of the
membrane, or more generally what is termed “capacitance dispersion” in electroanalytical
chemistry [9]. As shown in S1 Text, Eq 6 can be solved via the Laplace transformation, with an
analytical solution given by (cf. Eq 2)

VmðtÞ ¼ RmIm½1� Ea;1ð�ðt=tÞaÞ�; ð7Þ

where ta ¼ RmC
a
m, Eα,β is the two-parameter Mittag-Leffler function, which generalizes the ex-

ponential function, given by

Ea;bðzÞ ¼
X1
k¼0

zk

Gðakþ bÞ ; ð8Þ

and Γ(x) is the gamma function. Note that for α = 1, E1,1(z) = exp(z), and Eqs 2 and 7 are
equivalent, as expected. Eq 7 can be rearranged, as before (cf. Eq 3),

It ¼
Irheo

1� Ea;1ð�ðd=tÞaÞ ; ð9Þ

and, importantly, yield a strength-duration relation that follows a general power law for short
duration stimuli and asymptotic behavior for long duration stimuli (Fig 1A).

Fig 1. Properties of the fractional-order passive membrane. (A) Strength-duration curves, derived from the fractional passive membrane, are shown as a
function of fractional-order α (Eq 9). (B) The magnitude jZtot(jω)j (top) and phase ffZtot(jω) (bottom) of the complex impedance of the fractional-order passive
membrane are shown as a function of the normalized frequencyωτ, for different values of α. (C) The normalized membrane potential Vm/(Im Rm) response
following a current step is shown as a function of normalized time t/τ on a linear (top) and logarithmic (bottom scale), for different values of α.

doi:10.1371/journal.pone.0126629.g001
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Despite these early studies which suggest that a non-ideal (or fractional-order) capacitive el-
ement may be more appropriate to represent passive membrane dynamics, essentially all excit-
able cell models assume an ideal capacitor, i.e., α = 1. In recent years, fractional-order
dynamics have been shown to provide an improved description of many biological phenome-
na, including mechanical properties of viscoelastic tissue [10], the tissue-electrode interface
[11], pharmacokinetics of drug delivery and absorption [12–14], and anomalous calcium sub-
diffusion in microdomains [15]. While it is clear that fractional-order membrane potential Vm

dynamics will alter the passive response to sub-threshold stimuli, it is not obvious if fractional-
order dynamics will alter the properties of the active neuron and response to super-threshold
stimuli, given the bi-directional coupling between Vm and ionic currents. In this study, we will
investigate fractional-order Vm dynamics in the classical Hodgkin-Huxley model [4] and test
the hypothesis that fractional-order Vm dynamics influence the properties of the active neuron
across multiple spatial scales. In this study, we provide a brief background on the mathematics
of fractional calculus and elaborate on and illustrate some properties of the fractional-order
passive membrane, introduce the fractional-order Hodgkin-Huxley model, and characterize
properties of neuronal spikes. We study the properties of sub-threshold and spike propagation
in a nerve axon, characterizing the passive and active cable, respectively. Finally, we study the
dynamical properties of a network of fractional-order neurons. We conclude with a discussion
of our results.

Background on fractional calculus

Definitions of the fractional-order derivative
Our brief background on fractional calculus presented here is by no means complete. For fur-
ther details, methods, and applications of fractional derivatives and differential equations, we
suggest the monographs by Podlubny [16] and Magin [17]. The definition of a fractional-order
derivative is not immediately obvious, and indeed, multiple definitions exist. The classical defi-
nition of the fractional derivative of order α, known as the Riemann-Liouville fractional deriva-
tive, denoted 0D

a
t and given by

0D
a
t yðtÞ ¼

1

Gðm� aÞ
dm

dtm

Z t

0

yðtÞ
ðt � tÞaþ1�m dt

" #
; ð10Þ

wherem−1< α<m (i.e.,m is the first positive integer larger than α), follows from the defini-
tion of the fractional integral.

Note that the subscripts 0 and t on 0D
a
t indicate limits for the fractional integral and high-

light the fact that, in contrast with integer-order derivatives, the fractional-order derivative de-
pends on the previous history of the function and is not strictly a local property. An alternative
definition was given by Caputo as

C
0D

a
t yðtÞ ¼

1

Gðm� aÞ
Z t

0

yðmÞðtÞ
ðt � tÞaþ1�m dt; ð11Þ

where y(m)(t) is themth-order derivative with respect to time. Note that both definitions involve
fractional-order integration and integer-order differentiation, with the order of the two opera-
tions different. However, these definitions are not equivalent, except in the case that all initial
conditions are equal to 0. This is analogous to the integer-order operators, integration and dif-
ferentiation, not being commutative and differing by a constant. In this case, the difference is a
function of time. The appropriate choice of representation will depend on the situation being
modeled. However, the Caputo definition is often preferable for modeling physical processes,
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since initial conditions of fractional differential equations using the Caputo definition are spec-
ified in terms of integer-order derivatives. In contrast, fractional differential equations using
the Riemann-Liouville definition requires initial conditions specified in terms of fractional-
order derivatives, which typically have vague physical interpretation.

Numerical methods
We consider one more definition for the fractional-order derivative, the Grunwald-Letnikov
fractional derivative, which will lead to a simple numerical method for integrating a fractional
differential equation [18]. Consider the well-known definition of the first-order derivative:

y0ðtÞ ¼ lim
Dt!0

yðtÞ � yðt � DtÞ
Dt

: ð12aÞ

Applying this definition again gives us the second-order derivative,

y00ðtÞ ¼ lim
Dt!0

yðtÞ � 2yðt � DtÞ þ yðt � 2DtÞ
ðDtÞ2 ð12bÞ

and, again, the third derivative,

y000ðtÞ ¼ lim
Dt!0

yðtÞ � 3yðt � DtÞ þ 3yðt � 2DtÞ � yðt � 3DtÞ
ðDtÞ3 : ð12cÞ

By induction, the general nth-derivative is given by

yðnÞðtÞ ¼ lim
Dt!0

1

ðDtÞn
Xn
k¼0

ð�1Þk
n

k

 !
yðt � kDtÞ

¼ lim
Dt!0

1

ðDtÞn
Xn
k¼0

ð�1Þk Gðnþ 1Þ
Gðkþ 1ÞGðn� kþ 1Þ yðt � kDtÞ;

ð12dÞ

where
n

k

 !
¼ n!=ðk!ðn� kÞ!Þ is the usual notation for the binomial coefficients, and the sec-

ond equality follows from the gamma function relation Γ(n) = (n−1)!. The use of the gamma
function allows one to extend the derivative definition from integer-order values of n to arbi-
trary fractional-order.

It can be shown that the Grunwald-Letnikov definition is equivalent to the Riemann-Liou-
ville definition [16]. In this study, we will consider the fractional-order Hodgkin-Huxley model
initially at rest (Vm(0) = 0), and thus all three definitions are equivalent. To illustrate the nu-
merical integration scheme, consider a generic fractional differential equation with zero-initial
conditions

0D
a
t yðtÞ ¼ f ðt; yÞ: ð13Þ

Applying a finite-difference scheme to Eq 13 using Eq 12d, we have

1

ðDtÞa ynþ1 �
Xnþ1

k¼1

cakynþ1�k

 !
¼ f ðtn; ynÞ; ð14aÞ

where

cak ¼ ð�1Þk�1 Gðaþ 1Þ
Gðkþ 1ÞGða� kþ 1Þ ð14bÞ
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Rearranging Eq 14a, an explicit numerical scheme is given by

ynþ1 ¼
Xnþ1

k¼1

cakynþ1�k þ ðDtÞaf ðtn; ynÞ; ð15aÞ

where the cak terms can be computed recursively using

cak ¼ 1� 1þ a
k

� �
cak�1 ð15bÞ

and ca1 ¼ a. Thus, the cak terms represent a “weighting” of previous history or memory on the
current state of the system, a consequence of the non-locality of the fractional derivative. Val-
ues of cak are shown in S1 Text for different values of α (Fig. A in S1 Text). For α = 1, all cak
terms beyond k = 1 are equal to 0, and Eq 15 is equivalent to the forward Euler method. Impor-
tantly, cak decreases as k decreases, as the current value in the numerical integration depends in-
creasingly less on earlier system states. However, as α decreases, cak decreases more slowly, i.e.,
there is a larger dependence on the system history. Note that discretization of the Grunwald-
Letnikov definition can be used to solve systems with non-zero initial conditions by including
an additional term in the numerical scheme above [18].

Fractional-order neuron model

Fractional-order passive membrane properties
Before investigating the influence of fractional-order α on the properties of the active neuron,
it is instructive to consider the response of the fractional-order passive membrane. We first
consider the passive response to a sinusoidal current input of varying frequencies, which allows
for standard circuit analysis using complex impedances. For the standard passive membrane
patch, the resistor complex impedance is strictly real, Zr = Rm. An ideal capacitor complex im-
pedance is strictly imaginary, Zc ¼ 1=ðjoCmÞ ¼ 1=ðoCmÞexpð�p

2
jÞ, while a non-ideal capaci-

tor complex impedance is given by Za
c ¼ 1=ðjoCmÞa ¼ 1=ðoCmÞaexpð�p

2
ajÞ, where α = 1 refers

to an ideal capacitor and α = 0 refers to a pure resistor. Such a non-ideal capacitor is often
called a constant phase element. The magnitude and phase of the total impedance for the pas-
sive membrane, i.e. the parallel resistor-capacitor circuit,

Z tot ¼
1

Z�1
r þ ðZa

c Þ�1 ¼
Rm

1þ RmðjoCmÞa
; ð16Þ

are shown as a function of frequency ω for different values of α in Fig 1B. For all values of α,
the total impedance magnitude approaches 1 at low frequencies and decreases at high frequen-
cies, i.e., the membrane acts as a low-pass filter. However, for small α, the drop-off at high fre-
quencies is reduced, i.e., the slope (on a log-log scale) is smaller, reflecting the power law
relation present at short time scales. Further, the phase angle observed for high frequencies var-
ies with α, as the phase approaches −90° for α = 1 and −45° for α = 0.5. From Eq 16, it can be
shown that the phase at high frequencies is given by�p

2
a. Early studies by Cole and colleagues

measured phases corresponding to α values between 0.61 and 0.86, consistent with measure-
ments based on strength-duration data [19–21].

It is worth emphasizing that the order α of the fractional passive membrane does not simply
alter the effective time constant, but rather the dynamics at multiple time scales. To illustrate,
we consider the response of the fractional passive membrane following a step current input, to
characterize the sub-threshold response in a neuron or other excitable cell. The membrane po-
tential Vm(t) time course, given by Eq 7, is shown as a function of time for different values of α
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in Fig 1C. For small α, the membrane initially charges faster, compared with the exponential so-
lution when α = 1, following the current step input. Subsequently, Vm(t) approaches the
steady-state voltage more slowly. Thus, in this study, we investigate to what extent the sub-
threshold dependence on α will also influence the super-threshold response and the properties
of the active neuron and interacting neurons.

Fractional-order membrane patch model
With sufficient numerical tools to proceed, we present here the fractional-order Hodgkin-Hux-
ley (fHH) model of the neuron:

Ca
m

dav
dta

¼ IðtÞ � gNam
3hðv � ENaÞ � gKn

4ðv � EKÞ � gLðv � ELÞ ð17aÞ

m0ðtÞ ¼ amð1�mÞ � bmm ð17bÞ

h0ðtÞ ¼ ahð1� hÞ � bhh ð17cÞ

n0ðtÞ ¼ anð1� nÞ � bnn; ð17dÞ

where v = Vm−Vrest represents the membrane potential Vm relative to the resting potential
Vrest,m, h, and n are the sodium current INa activation, INa inactivation, and potassium current
IK activation gating variables, respectively, I(t) is a time-dependent applied stimulus, the prime
denotes a first-order derivative with respect to time, and dα v/dtα refers to the fractional deriva-
tive in the Caputo sense (since we specify integer-order initial conditions).

Numerical integration. We can use Eq 15 to integrate the entire system (Eq 17) using a
specified value for α for integration of Eq 17a and a value of 1 for Eqs 17b–17d. In practice,
summation of the previous history becomes computational expensive for long simulations, and
thus integration of Eqs 17b–17d was performed via forward Euler coupled with the Grunwald-
Letnikov integration scheme in MATLAB (Mathworks, Inc.), using of a time step of
Δt = 10−4−10−3 ms. As α decreases, we found that a smaller integration time step Δt is required
for numerical stability, which leads to significantly longer simulation times. Maximum time
steps and simulation times are shown as functions of α in S1 Text (Fig. B in S1 Text). Standard
parameters and initial conditions (Table A in S1 Text), and gating equations are given in S1
Text, and simulation code is provided in S1 Code.

Numerical integration using the standard forward Euler method, i.e., for α = 1, the mem-
brane potential v at time tn, v(tn), is a function of state variables at time tn−1, whereas for 0< α
< 1, v(tn) is a function of all of prior history of the membrane potential due to capacitive mem-
ory. Using the numerical scheme in Eq 15, we can directly characterize the influence of capaci-
tive memory by defining a voltage memory trace, following the similar approach of Teka et al.
[22], that is the weighted sum of previous values of membrane potential, excluding the immedi-
ate previous term,

vmemðtnþ1Þ ¼
Xn
k¼1

cakþ1vðtn�kÞ; n � 1 ð18Þ

where we define vmem(t0) = vmem(t1) = 0.
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Spikes triggered by a brief stimulus pulse
Spike properties. We first characterize the influence of the fractional-order α on the prop-

erties of the neuronal spike in response to a brief stimulus pulse (Fig 2). For small α, Vm is de-
polarized rapidly, in fact faster than sodium current (INa) activation, such that Vm

subsequently repolarizes until sufficient time has passed that INa activation triggers a full depo-
larization and the spike upstroke (Fig 2A, red and green traces). As a consequence of the rapid
membrane depolarization, the spike peak is earlier for small α. However, once triggered, there
are only small differences in the properties of the spike and ionic currents. Sodium current INa
exhibits the largest dependence on α: as α decreases, the peak INa magnitude increases (Fig 2B).
The INa time course is also slightly modified. We found that the increase in INa peak magnitude
was primarily due to a decrease in INa inactivation, i.e., the INa inactivation gate at the time of
the current peak, hpeak, increases as α decreases.

The magnitude of the voltage memory trace vmem greatly increases and is non-zero over a
longer time period as α decreases, demonstrating a larger influence on membrane potential dy-
namics as expected. Less prominent effects include a small decrease in the potassium current
(IK) peak magnitude, the Vm maximum (spike peak), and the Vm hyperpolarization overshoot
(an increase in Vm minimum), such that the spike amplitude is reduced (Fig 2B).

Post-spike refractoriness. To characterize refractoriness following a spike, we measure
the minimum time period between stimuli for which two spikes could be triggered by a brief
0.1-ms stimulus (Fig 3). We found that this minimum time decreased as α decreased. However,
after accounting for the earlier spike peak (as seen in Fig 2A), the difference in refractoriness as

Fig 2. Properties of the fractional-order Hodgkin-Huxley spike. (A) The membrane potential Vm, sodium current INa, potassium current IK, and voltage
memory trace vmem are shown as a function of time, for different values of fractional-order α. (B). Vmmaximum and minimum (left), INa and IK peak current
magnitude, and hpeak (the sodium inactivation gating variable at the time of peak INa current) are shown as a function of α. Spikes are elicited by a brief 0.1-ms
duration, 1.5x threshold stimulus.

doi:10.1371/journal.pone.0126629.g002
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α varied was small: the time between the spike peak and the subsequent stimuli varied less than
1 ms for α between 0.4 and 1. This is likely due to the fact that refractoriness is primarily a con-
sequence of the sodium current INa recovery from inactivation, which is minimally influenced
by the fractional-order when the stimulus is brief.

Spikes triggered by a constant stimulus
Repetitive firing in the fractional-order neuron model. It is well-established in the clas-

sical Hodgkin-Huxley model (i.e., α = 1), the neuron will repetitively fire or spike in response
to a constant applied stimulus Iapp 2 [I1, I2], where I1 and I2 represent critical values discussed
below [23]. We next investigate to what extent fractional-order α alters the properties of repeti-
tive firing for a constant stimulus. We show the membrane potential Vm, ionic currents INa and
IK, and voltage memory trace vmem as functions of time for a constant applied current, for dif-
ferent values of Iapp and α, during a 100-ms duration simulation (Fig 4A).

We found a complex time-varying relationship between α, Iapp, and the spike frequency and
amplitude. For small values of Iapp (Fig 4, left), spike frequency clearly decreases as α decreases.
Spike amplitude and peak IK are reduced and peak vmem is greatly increased, while peak INa is
slightly increased. The instantaneous spike frequency increases as a function of the interspike
interval (ISI) number for all values of α and approaches an asymptotic value after 2–3 intervals
(Fig 4B). For a given value of α, the increase between the first and final interval is small, ap-
proximately 5 Hz.

Fig 3. Refractoriness in the fractional-order Hodgkin-Huxley model. The minimum time period between stimuli (top), the time to the spike peak (middle),
and their difference (bottom) are shown as a function of fractional-order α. Spikes are elicited by a brief 0.1-ms duration, 1.5x threshold stimulus.

doi:10.1371/journal.pone.0126629.g003
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For an intermediate value of Iapp (Fig 4, middle), spike frequency decreases to a much
smaller extent as α decreases. For all values of α, spike amplitude is reduced, such that the in-
crease in vmem as α decreases is mitigated. Both peak ionic current magnitudes decrease as α de-
creases. As before, the instantaneous spike frequency increases as a function of ISI number,
approaching an asymptotic value after 4–5 intervals. The increase between the first and final
interval is larger, approximately 20 Hz. For a larger value of Iapp (Fig 4, right), for α = 1, small
amplitude oscillations or spikes persist, following stimulus onset. However, as α decreases,
spike amplitude decreases to 0, such that the neuron no longer fires, and Vm is held at an ele-
vated level, a phenomenon known as excitation block.

The mechanisms underlying the dependence of spiking properties and excitation block on α
are complex and can be generally explained as follows: Following stimulus onset, although
peak INa increases during the first spike, rapid membrane polarization reduces the time avail-
able for INa recovery from inactivation following the first triggered spike, which reduces peak
INa current and peak membrane potential Vm during the subsequent spike. This, in turn, re-
duces IK activation and peak IK current. Reduced IK current causes a less hyperpolarized Vm

overshoot, which reduces the magnitude of leak current IL, which is depolarizing at this phase
of the spike. Reduced IL decreases the rate of interspike Vm depolarization and thus

Fig 4. Repetitive firing in the fractional-order Hodgkin-Huxley model. (A) The membrane potential Vm, sodium current INa, potassium current IK, and
voltage memory trace vmem are shown as a function of time in response to a constant applied current, Iapp = 20 (left), 100 (middle), and 140 (right) μA/cm2, for
different values of fractional-order α. (B) The instantaneous spike frequency is shown as a function of the interspike interval (ISI) number for different values
of α.

doi:10.1371/journal.pone.0126629.g004

Membrane Capacitive Memory Alters Spiking in Neurons

PLOS ONE | DOI:10.1371/journal.pone.0126629 May 13, 2015 10 / 27



subsequently reduces spike frequency. Capacitive memory further reduces the Vm depolariza-
tion rate, as the voltage memory trace vmem more heavily weighs the hyperpolarized Vm values
during the preceding overshoot. For larger values of Iapp, over several spikes, the reduced peak
Vm also reduces INa activation, which in turn further reduces INa peak current. These feedback
interactions are self-limited, and spike and ionic current characteristics stabilize after several
spikes, resulting in spike frequency and amplitude approaching asymptotic values. By averag-
ing over time periods that include the neuron at rest and the hyperpolarization overshoot, the
voltage memory trace vmem effectively “dampens” changes in the membrane potential. Even
though the magnitude of vmem decreases as Iapp increases, the magnitude of the ionic currents
are decreased to a larger extent, such that capacitive memory is more influential for large values
of Iapp. For a larger value of Iapp, small fractional-order αmay reduce the spike amplitude suffi-
ciently and result in excitation block.

To further determine if the dependence of spiking properties on α is primarily a conse-
quence of the fractional passive membrane dynamics or the subsequent modulation the ionic
currents, both passive and active, we run simulations in which we assume first-order Vm dy-
namics but also scale the ionic current IL, INa, and IK conductances, gL, gNa, and gK, respectively,
such that the peak current magnitudes are equivalent to the values for a given α in the fraction-
al-order model, i.e., the asymptotic current peak INa and IK values in Fig 4A. Peak IL magnitude
is measured as the maximum depolarizing current, since IL is both depolarizing and hyperpo-
larizing. For example, as α is decreased in this scaled ionic conductance first-order model, gK is
decreased to account for the smaller peak IKmagnitude. For Iapp = 20 μA/cm2, gNa is slightly in-
creased, while for Iapp = 100 μA/cm2, gNa is decreased. We investigate the influence of scaling
the ionic current conductances both individually and combined (Fig 5). Scaling the leak con-
ductance gL had minimal influence on spike frequency or amplitude for all values of Iapp, due
to its small amplitude relative to the other currents (Fig 5A). For small Iapp, scaling the sodium
conductance gNa had minimal influence (Fig 5B). For intermediate Iapp, scaling gNa does reduce
spike frequency and amplitude, however to a larger extent than observed in the fractional-
order neuronal model. For a larger Iapp, scaling gNa also leads to excitation block, however with
a different dependence on α as in the fractional-order model (also see Fig 6B and 6C). For a
given value of Iapp, scaling gK does not alter spike amplitude and further, increases spike fre-
quency, the opposite effect as observed in the fractional-order model (Fig 5C). When all of the
conductances are scaled, the collective influence is that spike frequency increases, not de-
creases, as the value of α decreases (Fig 5D), demonstrating that simply scaling the magnitude
of ionic currents does not reproduce the influence of fractional-order Vm dynamics. Interest-
ingly, scaling all three conductances does fairly accurately reproduce the reduction in spike am-
plitude as α decreases.

In Fig 4, we demonstrate that spike amplitude and frequency approach asymptotic values
after several spikes during a constant stimulus. Therefore, we next investigated how these as-
ymptotic values varied for different values of α and Iapp. In the classical Hodgkin-Huxley
model, as the applied current magnitude Iapp increases, the resting potential gradually increases
until Iapp = I1 (a subcritical Hopf bifurcation), a critical value at which the neuron fires repeti-
tively. As Iapp increases further, spike frequency increases while the spike amplitude decreases,
until Iapp = I2 (a supercritical Hopf bifurcation), a critical value for excitation block.

The value of α will not influence the steady-state of the system; however α can alter the sys-
tem stability [24] and thus may influence the values for I1 and I2 and the range of Iapp values
for which the neuron spikes. In Fig 6A, we show the steady state for a resting (stable) system
and maximum and minimum values for a spiking (unstable) system, for Vm, and ionic currents
INa and IK, as a function of Iapp. As α decreases, the Vm range is reduced (consistent with the re-
duced spike amplitude in Fig 4), in conjunction with a reduced range for INa and IK. The
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reduction in INa is primarily due to a reduction in the sodium activation gatem, while the re-
duction in IK is primarily due to a reduction in the Vm driving force, with a smaller influence
via reduced potassium activation gate n. There is minimal influence of the values on sodium in-
activation gate h (Fig. C in S1 Text).

In Fig 6B (solid lines), we show I1 and I2 as a function of α. I1 and I2 increase and decrease,
respectively, as α decreases, such that the Iapp range for which the neuron spikes is reduced. In
Fig 6C (solid lines), the asymptotic values of the spiking frequency (top) and spike amplitude
(bottom), calculated over the final 30-ms of a 100-ms simulation, are shown as a function of α
and Iapp. In the original Hodgkin-Huxley model (α = 1), as Iapp increases, spike frequency in-
creases, while spike amplitude decreases (Fig 6C, black lines). We found this relationship—in-
creasing spike frequency and decreasing spike amplitude, for increasing Iapp—for all values of α
(Fig 6C, solid color lines). As observed in Fig 4, for all values of Iapp, spike amplitude decrease
as α decreases. For small values of Iapp, spike frequency decreases as α decreases. The reduction
in spike frequency is mitigated for larger values of Iapp and, in fact, spike frequency increases as
α decreases for Iapp near the critical bifurcation value I2. We show for comparison (dashed lines

Fig 5. Repetitive firing in the first-order Hodgkin-Huxleymodel with scaled ionic current conductances. The membrane potential Vm is shown as a
function of time in response to a constant applied current, Iapp = 20 (left), 100 (middle), and 140 (right) μA/cm2, for different values of fractional-order α.
Sodium, potassium, and leak conductances, gNa, gK, and gL, respectively, are scaled, individually (A-C) and combined (D, top), such that peak current
measurements are equivalent to values for particular value of α, as described in the text. (D, bottom) The instantaneous spike frequency is shown as a
function of the interspike interval (ISI) number for different values of α.

doi:10.1371/journal.pone.0126629.g005
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in Fig 6B and 6C) measurements of I1, I2, and spike frequency and amplitude for the first-order
model with all ionic current conductances scaled (Fig 5D). Critical value I1 is similar in the two
models, while I2 is smaller compared with measurements from the fractional-order model,
demonstrating that only accounting for the influence of peak ionic currents underestimates the
range of stimuli that result in neuronal spiking. As observed in Fig 5D, the reduction in spike
amplitude for decreasing α is in close agreement between the two models, as the dashed and
solid lines are nearly identical. However, spike frequency in the scaled conductance first-order
model increases as α decreases, in contrast with the fractional-order model.

Fractional-order nerve axonmodel
Expanding in scale beyond the spatially-clamped membrane patch, we next consider a spatial-
ly-extended system, a one-dimensional cable, to investigate whether the fractional-order α in-
fluences the properties of electrical propagation in a nerve axon.

Sub-threshold Propagation
As in the previous section, we first investigate the properties of the passive membrane. The
fractional-order passive cable equation is given by Eq 6 with the additional of a voltage

Fig 6. Spike properties in the fractional-order Hodgkin-Huxleymodel. (A) Bifurcation diagram of Vm, sodium current INa, and potassium current IK,
showing steady-state values and limit cycle maximum and minimum, as a function of the applied current Iapp, for different values of α. (B) The critical values
denoting Iapp lower and upper limits for spiking (Hopf bifurcations), I1 and I2, respectively, are indicated (fractional-order Hodgkin-Huxley model (fHH), solid
lines). (C) The spike frequency (top) and amplitude (bottom) are shown as a function of Iapp and α. In B and C, values for I1, I2, and spike frequency and
amplitude are shown for the first-order model with scaled conductances for comparison (dashed lines, see Fig 5 and main text for more details). In the bottom
panel of C, the solid and dashed lines are nearly identical.

doi:10.1371/journal.pone.0126629.g006
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diffusion term:

Ca
m

@aVm

@ta
þ 1

Rm

Vm ¼ g
@2Vm

@x2
þ Iðx; tÞ; ð19Þ

where g is a longitudinal cable conductance. Eq 19 can be written in standard form,

ta
@aVm

@ta
¼ l2

@2Vm

@x2
� Vm þ RmIðx; tÞ; ð20Þ

where time constant ta ¼ RmC
a
m and space constant l ¼ ffiffiffiffiffiffiffiffi

Rmg
p

. The membrane potential
Vm(x, t) can be determined by

Vmðx; tÞ ¼ Rm

Z t

0

Z 1

�1
Gðx � x0; t � t0ÞIðx0; t0Þdx0dt0; ð21Þ

the convolution of the applied current I(x, t) and G(x, t), the impulse response, scaled by Rm.
We solve for G(x, t) using an analytical-numerical approach using the Laplace-Fourier trans-
form (see S1 Text), shown in Fig 7A and 7B. At early time points, for small α, G(x, t) is more
“spread out” in space, while G(x, t) is less spread out at later time points (Fig 7A). At the site of

Fig 7. Sub-threshold impulse and voltage response in the passive fractional-order cable equation. (A) The impulse response functionG(x/λ, t/τ) is
shown as a function of space x, normalized by space constant λ, at times t = 0.05τ and t = τ, where τ is the time constant, on a linear (top) and logarithmic
(bottom) scale, for different values of fractional-order α. (B)G(x/λ, t/τ) is shown as a function of normalized time t/τ at location x = 0 (top) and x = λ (bottom).
(C) The normalized voltage response to a current step input at the origin x = 0 is shown as a function of normalized time t/τ at locations x = 0 and x = λ. The
voltage response in the membrane patch is shown for comparison (dashed lines, Fig 1C). (D) The normalized position of stimulus propagation x/λ is shown
as a function of normalized time t/τ (the time at which the normalized voltage response is 0.5) (E) The pseudo-velocity, given by the slope of the stimulus
propagation, in units of λ/τ, is shown as a function of α.

doi:10.1371/journal.pone.0126629.g007
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the impulse (x = 0) and one length constant away (x = λ), the impulse is also more spread out
in time for small α (Fig 7B).

As with the membrane patch, we plot the voltage response to a current step input at the ori-
gin (x = 0), that is, I(x, t) = Im u(t)δ(x), where δ(x) is the Dirac delta function. While it is not
possible to characterize a “velocity” of the sub-threshold response, since Vm decays to 0 as x ap-
proaches infinity, we can measure the propagation of Vm(x, t), normalized by the steady-state
voltage at that particular spatial location Vss(x) (Fig 7C). Membrane polarization is more rapid
for small α at x = 0, as in the membrane patch (Fig 1C, shown here for comparison as dashed
lines). Downstream of the current input site, at x = λ, Vm increases at a much earlier time for
small α, compared with α = 1, that is, the sub-threshold stimulus propagates down the cable
faster for small α. The position of the stimulus propagation is shown as a function of the time
when the normalized voltage response reaches 0.5 (Fig 7D). For small α, the stimulus propaga-
tion is much faster, and we find that the “pseudo-velocity,” given by the slope of the stimulus
propagation position as a function of time, increases as α decreases (Fig 7E). For α = 1, the
pseudo-velocity is approximately 2λ/τ, consistent a prior analytical calculation for the classical
cable equation [25].

Spike propagation
We next consider the active nerve axon and investigate how fractional-order α influences spike
propagation. As in the previous section, we investigate the response of the neuronal model to a
brief stimulus pulse and a constant stimulus. Importantly, simulating the response to both a
brief and constant stimulus enables the analysis of fractional-order α when capacitive memory
may influence spike propagation during a single spike following a resting state and multiple
spikes, respectively. The fractional-order Hodgkin-Huxley model can be extended to a cable
model by Eq 17a with the addition of a voltage diffusion term:

Ca
m

@av
@ta

¼ g
@2v
@x2

þ Iðx; tÞ � gNam
3hðv � ENaÞ � gKn

4ðv � EKÞ � gLðv � ELÞ; ð22Þ

where g is the axon conductance. The gating variable dynamics are similarly functions of space
and time. In practice, we integrate this system by converting the fractional-order partial differ-
ential equation in Eq 22 to a system of fractional-order ordinary differential equations using
the method of lines, with a spatial discretization of Δx = 0.5 mm and utilizing the numerical
scheme described above (Eq 15). Simulation code is provided in S1 Code.

Spike propagation trigged by a brief stimulus pulse. We first consider the influence of
fractional-order α on spike propagation following a brief stimulus pulse. Representative space-
time plots of spike propagation for different values of α are shown in Fig 8A. We find that the
spike propagates the length of the cable (1 cm) faster as α decreases. To determine the mecha-
nism underlying faster spike propagation in the cable, we first measure the peak current magni-
tudes and voltage memory trace along the length of the cable for different values of α (Fig 8B).
As in the membrane patch (Fig 2), peak INa and vmem increase and IK decreases, respectively, as
α decreases. Propagation velocity is measured by calculating the difference between the spike
peak time at x = 0.25 and 0.75 cm. We plot the spike propagation velocity as a function of α for
different axon conductance levels g (Fig 8C, solid lines). For both values of g, the velocity in-
creases as α decreases, consistent with the passive cable; however, the dependence of the veloci-
ty on α is mitigated as g decreases (solid lines, an increase of*65% for g = 0.706 μS and*88%
for g = 7.06 μS, from α = 1 to 0.4).

To determine if the dependence of spike propagation velocity on α is primarily a conse-
quence of the properties of the fractional passive cable or the changes in the passive and active
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ionic currents, as in the previous section, we run simulations in which we assume first-order
Vm dynamics but also scale the ionic current IL, INa, and IK conductances, gL, gNa, and gK, re-
spectively, such that the peak current magnitudes are equivalent to the values for a given α and
location x (the values in Fig 8B), i.e., we increase gNa and decrease gK and gL. In these simula-
tions, spike propagation velocity marginally increases as α decreases (Fig 8C, dashed lines, both
increase*3% from α = 1 to 0.4) but not nearly to the extent as in the fractional-order nerve
axon model. This result, in conjunction with analysis of the sub-threshold stimulus propaga-
tion, suggests that the increase in velocity observed for small α is primarily a consequence of
the passive cable properties of the axon (Fig 7), and not the modulation of the ionic currents.

Spike propagation trigged by a constant stimulus. We next investigate the influence of
fractional-order α on spike propagation during a constant stimulus, in which capacitive memo-
ry may alter propagation over successive spikes. In Fig 9A (top), we plot spike propagation ve-
locity as a function of the spike number for different values of α and the applied current

Fig 8. Spike propagation in the fractional-order Hodgkin-Huxley nerve axon following a brief stimulus pulse. (A) A space-time plot of the membrane
potential Vm(x, t) is shown for different values of fractional-order α. (B) The peak sodium current INa, potassium current IK, leak current IL, and voltage memory
trace vmem magnitude are shown as a function of position along the cable x, for different values of α. (C) Spike propagation velocity is shown in the fractional-
order Hodgkin-Huxley (fHH) nerve axon, as a function of α, for different values of longitudinal conductance g (solid lines). Velocity measurements are also
shown (dashed lines) for simulations in which the sodium gNa and potassium gK conductances are scaled such that peak current measurements are
equivalent to values for particular value of α. See text for more details. In A and B, axon conductance g = 7.06 μS. Propagating spikes are elicited by a brief
0.1-ms duration, 500-μA/cm2 stimulus at x = 0.

doi:10.1371/journal.pone.0126629.g008
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amplitude Iapp. In general, spike propagation velocity decreases as a function of the spike num-
ber, and in most cases, approaches an asymptotic value after 3–4 spikes. For a small value of
Iapp (left), velocity decreases to a small extent as spike number increases, and this decrease is
approximately the same for all values of α. We characterize this decrease by calculating the dif-
ference between the velocity for a given spike number and between the final (asymptotic) ve-
locity, as a percentage of the final velocity (Fig 9A, bottom). This small change in velocity is
due to the fact that, as in the membrane patch, spike frequency is small for small Iapp (Fig 6),
such that the time between propagating spikes in the nerve axon is sufficiently long for sodium
channel recovery (see Fig. D in S1 Text for further analysis of the relationship between spike
frequency and propagation velocity). However, for α = 0.4, propagation fails after a single
spike, since the sodium channel recovery is insufficient to maintain the fast propagation veloci-
ty over many spikes.

For an intermediate Iapp (Fig 9, middle, top), velocity decreases to a larger extent as spike
number increases, which is a consequence of faster spike frequency and thus less recovery time
between spikes. The decrease in the velocity is also larger for smaller α (Fig 9, middle, bottom).

Fig 9. Spike propagation in the fractional-order Hodgkin-Huxley nerve axon during a constant stimulus. (A) Spike propagation velocity (top) and the
change in velocity, as a percentage of the final velocity (bottom), are shown as functions of spike number, for different values of fractional-order α and applied
current amplitude Iapp. (B) Velocity measurements are shown for simulations in which the sodium, potassium, and leak conductances, gNa, gK, and gL,
respectively, are scaled such that peak current measurements are equivalent to values for particular value of α and location x, as described in the text. Axon
conductance g = 7.06 μS. Propagating spikes are elicited by a constant stimulus at x = 0.

doi:10.1371/journal.pone.0126629.g009
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For larger Iapp (Fig 9, right, top), we find that propagation fails after 3 and 4 propagating spikes
for α = 0.4 and 0.6, respectively, demonstrating that, as in the membrane patch (Fig 6), the
range of Iapp values for which the axon can sustain repetitive spiking and propagation decreases
as α decreases.

Interestingly, we note that for all values of Iapp, the first spike propagation velocity is equal
to the velocity following the brief stimulus pulse (Fig 8), demonstrating that capacitive memory
does alter spike propagation progressively over several spikes. If we scale the ionic current con-
ductances as before, with the peak IL, INa, and IK magnitudes measured over the final 30-ms of
a 100-ms simulation (Fig 9B), for most parameters, there is only negligible alteration of the
spike propagation velocity. Collectively, these results suggest that the influence of fractional-
order Vm dynamics on spike propagation over many spikes is due to fractional-order mem-
brane dynamics and capacitive memory, while the modulation of ionic currents is
minimally influential.

Fractional-order neural network model
Finally, we consider a network of N = 50 randomly connected fractional-order Hodgkin-Hux-
ley neurons. We add a synaptic current to the fractional-order Hodgkin-Huxley model (Eq
17a), such that the dynamics of the ith neuron are governed by the following equation:

Ca
m

davi
dta

¼ IiðtÞ � gNam
3
i hiðvi � ENaÞ � gKn

4
i ðvi � EKÞ � gLðvi � ELÞ � Isyn;i; ð23Þ

where the synaptic current is given by the sum of the excitatory and inhibitory synaptic cur-
rents,

Isyn;i ¼ IsynE;i þ IsynI;i ð24aÞ

where

IsynE;i ¼ gsyn
X
j2Sex

sjiðvjÞ
 !

ðvi � Esyn;exÞ; ð24bÞ

IsynI;i ¼ gsyn
X
j2Sin

sjiðvjÞ
 !

ðvi � Esyn;inÞ; ð24cÞ

Sex and Sin are the set of presynaptic neurons with connections to neuron i, with excitatory and
inhibitory, respectively, synapses, and sji is the gating variable for the postsynaptic conduc-
tance, an instantaneous, sigmoidal function of the presynaptic cell potential vj with a threshold
Vsyn [26], that is

sjiðvjÞ ¼
1

1þexp ½�ðvj � VsynÞ=ksyn�
: ð24dÞ

Synaptic current parameters are given in S1 Text (Table B in S1 Text), and simulation code
is provided in S1 Code. We have previously studied this type of random neural network [27].
Briefly, synaptic connections were determined as follows: The number of presynaptic connec-
tions to the ith neuron is drawn from a Gaussian distribution with mean μ = 25 and standard
deviation σ = 2.5, rounded to the nearest whole number. The presynaptic neuron indices j are
chosen at random from integers [1, N]. The type of each synapse, excitatory or inhibitory, is de-
termined at random, such that the probability of an excitatory synapse is on average 0.1. Elec-
trical activity is evoked in the neural network by applying a 40-μA/cm2, 50-ms current in 13

Membrane Capacitive Memory Alters Spiking in Neurons

PLOS ONE | DOI:10.1371/journal.pone.0126629 May 13, 2015 18 / 27



randomly selected neurons at time t = 0. Simulations of 550-ms duration are performed by in-
tegrating the system of fractional-order ordinary differential equations utilizing the numerical
scheme described above (Eq 15).

We perform simulations of the fractional-order neural network for different values of α, in
which the network architecture and synaptic connections are identical. The collective activity
of the neural network is represented by the rastergram (Fig 10A) and the the pseudo-electroen-
cephalogram (pEEG) [28], given by Λ(t),

LðtÞ ¼ 1

N

XN
i¼1

viðtÞ; ð25Þ

Fig 10. Electrical activity in a fractional-order Hodgkin-Huxley neural network. (A) Rastergram of spikes in the neural network for different values of
fractional-order α. Synaptic connections and network architecture were identical in all simulations. (B) The pseudo-electroencephalogram (pEEG, Eq 25) and
(C) firing rate are shown as functions of time, for the simulations in A. Firing rate is measured in a sliding 50-ms window, with 10-ms steps. (D) Interspike
interval (ISI) histograms are shown for each simulation. The gray bar denotes the 50-ms applied stimulus, during which a 40-μA/cm2 current was applied to
13 randomly chosen neurons. (E) The mean network activity duration ± standard error of the mean and (F) the fraction of sustained network activity are
shown in the fractional-order Hodgkin-Huxley (fHH) neural network, as a function of α (solid lines). Network simulations in which the sodium, potassium, and
leak conductances, gNa, gK, and gL, respectively, are scaled such that peak current measurements are equivalent to values for particular value of α, as
described in the text, are shown for comparison (dashed lines). Values in E and F are calculated for 12 network architectures.

doi:10.1371/journal.pone.0126629.g010
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the membrane potential averaged over all neurons (Fig 10B). We found that, for α = 1 and 0.9,
network activity persists for the entire simulation. However, as α decreases, network activity
self-terminates shortly following the cessation of the 50-ms applied stimulus. The time of net-
work quiescence is not strictly a monotonic function of α, as, for example, for this specific net-
work, activity persists longer for α = 0.6 compared with 0.8 (see also Fig. E in S1 Text).

Next, we measure the firing rate per cell as a function of time, by counting the total number
of spikes in 50-ms sliding windows, with a 10-ms step (Fig 10C). We found that for α = 0.9, the
firing rate is slightly higher compared with α = 1. However, for smaller α, the firing rate is ini-
tially higher during the stimulus but then sharply decreases and then becomes 0, when the net-
work is quiescent. Histograms of the interspike intervals (ISIs) for the entire network illustrate
that, for small α and networks that are quiescent following stimulus cessation, there is a higher
proportion of short ISI values (Fig 10D). Interestingly, this is contrast with the relationship be-
tween spike frequency and α in the membrane patch, in which decreasing α decreases spike fre-
quency (Fig 6C). Since the synaptic current is essentially a brief stimulus, shorter ISI values for
small α are a consequence of rapid membrane depolarization, as observed in the membrane
patch (Fig 2A), that triggers earlier spike peak times and thus shorter timing between excitatory
synaptic current stimuli.

Measured for 12 distinct network architectures, the average duration of network electrical
activity (Fig 10E, solid line) and the fraction of networks with sustained electrical activity at the
end of the simulation (Fig 10F, solid line) both in general decrease with decreasing α. As in pre-
vious sections, we run network simulations in which we assume first-order Vm dynamics and
scale ionic current conductances (here, scaling to peak current magnitudes for a constant stim-
ulus of Iapp = 40-μA/cm2 in the membrane patch). In this scaled conductance model, network
activity is generally sustained for the entire simulation (Fig 10E and 10F, dashed lines), in
agreement with fractional-order Vm dynamics primarily altering network activity by influenc-
ing membrane polarization and not modulating ionic currents.

Finally, we also investigate the influence of fractional-order α on synaptic integration. In Fig
11, we show the excitatory and inhibitory synaptic current, IsynE and IsynI, respectively, averaged
over all neurons, for the network analyzed in Fig 10A–10D. By close visual inspection, there ap-
pears to be a reduction in the synaptic current magnitudes during the applied stimulus (gray
bar), as α decreases. To quantify this change, we calculated the excitatory and inhibitory synap-
tic charge, QsynE and QsynI, the time integral of IsynE and IsynI, respectively, during the 50-ms
stimulus, and averaged over 12 network architectures (Fig 11B, solid lines). We found that
both QsynE and QsynI in general decrease as α decreases, with the the excitatory synaptic charge
QsynE decreasing to a larger extent.

Despite shorter ISI values and thus more overall spikes, synaptic current and charge are re-
duced due to the reduced spike amplitude, which reduces both the synaptic gate sji (Eq 24d)
and the synaptic current driving force. For small α, at the cessation of the 50-ms applied stimu-
lus, shorter ISI values result in a larger fraction of network neurons in a refractory state, and
combined with reduced excitatory synaptic charge, network activity is more likely to self-termi-
nate. In contrast, in the scaled conductance network model, QsynE and QsynI both increase to a
small extent as α decreases, and these changes negate each other, such that network activity is
unaltered (Fig 11B, dashed lines).

Discussion

Summary of main findings
In this study, we investigate the properties of fractional-order neuron models and characterize
how the fractional-order α influences the properties of the neuron, the spatially-distributed
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axon, and a random network of interconnected neurons. In the passive membrane, we show
that, for small α, membrane polarization occurs rapidly, and as a consequence, the spike peak
is earlier in the neuron model. Further, the bi-directional coupling between Vm and the ionic
currents alters the ionic current time course, and the peak sodium and potassium currents in-
crease and decrease, respectively. During a constant applied stimulus, smaller α decreases spike
amplitude, and for small values of Iapp, decreases spike frequency. Further, decreasing α re-
duces the range of applied stimulus amplitudes, Iapp 2 [I1, I2], that trigger spiking. In the frac-
tional-order passive cable, we show that the impulse response is more spread out in time and
space for small α, and as a consequence, sub-threshold stimuli propagate faster in the cable. In
the nerve axon, spike propagation velocity also increases as α decreases, with complex depen-
dence on spike frequency for varying amplitudes of a constant stimulus. Finally, we show in a
random network of fractional-order neurons that cessation of neural network activity is more
likely as α decreases. The fractional-order alters the network activity firing rate; however the
dependence on α depends on the specific structure of the network.

Importantly, we found that, while the modulation of ionic currents that occur for small val-
ues of fractional-order α can account for some of the changes in spiking properties, such as
spike amplitude, peak ionic current changes cannot account for many important spiking prop-
erties, including spike frequency and propagation (and their respective time-dependence dur-
ing a constant stimulus) and the self-termination of neural network activity. The alteration of

Fig 11. Synaptic activity in a fractional-order Hodgkin-Huxley neural network. (A) The excitatory and inhibitory synaptic currents, IsynE and IsynI,
respectively, averaged over all network neurons, are shown as a function of time, for different values of fractional-order α, for the same network as shown in
Fig 10A–10D. The gray bar denotes the 50-ms applied stimulus, during which a 40-μA/cm2 current was applied to 13 randomly chosen neurons. (B) The
mean of excitatory and inhibitory current charge magnitude,QsynE andQsynI, respectively, ± standard error of the mean, are shown as a function of α,
calculated for 12 network architectures (solid lines). Network simulations in which the sodium, potassium, and leak conductances, gNa, gK, and gL,
respectively, are scaled such that peak current measurements are equivalent to values for particular value of α, as described in the text, are shown for
comparison (dashed lines).

doi:10.1371/journal.pone.0126629.g011
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these spiking properties primarily arises due to fractional-order passive membrane properties,
both in the membrane patch and cable, and the resulting capacitive memory effects.

Rationale for the fractional-order neuronal model
The original Hodgkin-Huxley model is natural extension of the passive membrane patch
model of the parallel resistor-capacitor circuit, with the active sodium and potassium currents
represented in the model by time- and voltage-dependent resistors added in parallel. As in the
passive membrane patch, ideal capacitive behavior of the cell membrane and thus first-order
Vm dynamics are assumed in the original Hodgkin-Huxley model. Motivated by the experi-
mental evidence for non-ideal capacitive behavior in the nerve membrane, as discussed in the
Introduction, in this study Vm dynamics are given by a differential equation of fractional order
(Eq 17a).

The original Hodgkin-Huxley model assumes that four IK activation, three INa activation,
and one INa inactivation gates transition independently and that the kinetics of these gates can
be represented by reversible isomerization reactions between “not-activated” (“inactivated”)
and “activated” (“not-inactivated”) states (Eqs 17b–17d). Although we know that these as-
sumptions are not strictly correct, e.g., INa activation and inactivation is not independent and
gating transitions often involve multiple “not-activated” states [29], these complications can be
easily addressed by incorporating more detailed gating mechanisms, as many studies have
done. However, an assumption that is more challenging to address, implicit in this formulation,
is that channel gating is a Markov process, i.e., gating transitions only depend on the current
system state and do not depend on prior history. While the Markov assumption is generally ac-
cepted in the field of ion channel biophysics, some studies have shown that channel gating ki-
netics present memory in the form of short- and long-term correlations between open- and
closed-dwell times [30–33], and that fractal gating kinetics, i.e., transition rates that scale in-
versely with the duration in a given state, can reproduce such correlations [30, 34]. Mathemati-
cal treatments have begun to address the relationship between these dwell time correlations
and fractional-order dynamics in theoretical channel models [35, 36] and more generally the
relationship between fractional derivatives and fractal dimension [37]. However, to our knowl-
edge, no studies have investigated the relationship between fractional-order gating dynamics
and dwell times in a biophysically-detailed gating model. Further work is needed to investigate
this relationship. In this study, to specifically address the influence of non-ideal membrane ca-
pacitive behavior and fractional-order Vm dynamics, we assume Markovian channel gating,
such that gating variable dynamics remain unchanged from the original formulation and as-
sumed first-order.

Comparison with prior work
To our knowledge, only two prior studies have investigated the fractional-order Hodgkin-Hux-
ley model [38, 39], and both also showed that the fractional-order influenced the time course
of the membrane potential Vm and gating variables, including an earlier spike peak time, as we
show in Fig 2. Both of these studies also assumed that the gating variables are governed by frac-
tional-order dynamics. As discussed above, ion channel gating memory may be present. How-
ever, these studies assume the same fractional-order for Vm and all three gating variables,
which we believe is an unjustified modification of the original model given the distinctly differ-
ent biophysical origin for each source of memory. Further, our analysis is significantly more
complete. Here, we characterize the influence of fractional-order on many properties, including
spike frequency and amplitude, as well properties of spike propagation in the nerve axon and
neural network activity, which are not considered in the aforementioned studies.
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A few prior studies have investigated fractional-order Vm dynamics in other excitable cell
models. Shi and Wang demonstrated that the fractional-order Morris-Lecar neuron model can
exhibit a wider range of bursting behavior than can be reproduced by the original, first-order
model [40]. Jun et al. similarly show that fractional Vm dynamics in the Hindmarsh-Rose neu-
ronal model alters spiking patterns and also found a larger applied current threshold for repeti-
tive spiking for smaller fractional-order [41], in agreement with our findings in the Hodgkin-
Huxley model (Fig 6B and 6C). Teka et al. demonstrated that fractional dynamics and memory
in the leaky integrate-and-fire model altered spike adaptation and firing patterns, including
spike latency and interspike variability [22].

Momani et al. studied the coupling of fractional-order neurons modeled using the minimal
FitzHugh-Nagumo [42]. However, this study was primarily focused on analysis of numerical
techniques. Moaddy et al. studied a neuronal model represented by the fractional passive mem-
brane (analyzed in Fig 1) with the addition of a fractional-order inductor [43]. The fractional-
order inductor essentially augments the passive membrane model with an additional slow vari-
able, which is comparable to the FitzHugh-Nagumo model. This study was also primarily fo-
cused on numerical techniques; however the authors do find that synchronization of coupled
(2 or 3) neurons occurs more quickly as the fractional-order decreased, which appears in agree-
ment with our analysis of larger networks (Fig 10), although the number of networks simulated
in our study is too small for a definitive conclusion on synchrony.

While this study and the aforementioned modeling studies focus on fractional-order dy-
namics for the membrane potential and the influence on neuronal spiking properties, fraction-
al-order dynamics for spiking activity has also been observed experimentally. Lundstrom et al.
showed that in response to a sinusoidal stimulus, the firing rate of neocortical pyramidal neu-
rons could be well-approximated by a fractional-order derivative of the input [44]. Anastasio
showed that the frequency response of the firing rate, relative to eye position, of premotor neu-
rons in the oculomotor system exhibited fractional-order dynamics, with a phase lag less than
90 degrees (see Fig 1B), suggesting fractional-order dynamics are involved in processing of sac-
cade-related activity [45].

Physiological implications
The biophysical basis underlying short- and long-term memory is an important area of neuro-
science research [46, 47]. The molecular, cellular, and network level mechanisms underlying
memory are complex and inevitably involve the interactions between dynamics across a wide
range of spatiotemporal scales. An important consequence of fractional-order dynamics is that
the membrane potential Vm has memory, in the sense that Vm depends on its entire history
from an initial state, albeit with decremental weighting (Fig. A in S1 Text). For fractional-or-
ders in the range considered here, Vm dynamics theoretically may be influenced by history on
the order of minutes to hours (see Fig. A in S1 Text). In this study, the small integration time
step required for numerical stability (Fig. B in S1 Text) prohibited parameter studies of minute-
to hour-long simulations; thus, although our analysis suggests that several important spiking
properties, such as spike frequency and propagation velocity, approach asymptotic values on
the order of tens of milliseconds, it is possible that dynamics influenced by memory emerge at
this longer time scale. Further, in some neural networks, firing rates approach asymptotic val-
ues, while in other networks, firing rate is quite variable in time (Fig. E in S1 Text). Thus, the
influence of memory on the longer time scale of minutes to hours may be significant in specific
network architectures. While the mechanisms underlying neuronal short-term memory are
necessarily more complex than memory associated with the cellular membrane dielectric be-
havior, our study shows that this memory behavior contributes to, or at least modulates, the
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electrical activity underlying short-term memory. Further work is necessary to thoroughly ad-
dress this question.

Practical considerations for neuronal modeling
In this study, we demonstrate that accounting for fractional-order dynamics of the membrane
potential alters many properties at the level of the neuron, axon, and network. While we have
shown that accounting for fractional-order dynamics may be important, it is not our intention
to argue that studies using the “standard” excitable cell model, assuming ideal (first-order) ca-
pacitive behavior, are inaccurate. In the neuronal membrane patch following a brief stimulus,
the fractional-order α primarily influences measures quantitatively, e.g., peak current magni-
tudes and refractoriness, but did not alter the overall qualitative behavior of the neuron. These
properties may be similarly reproduced by altering model parameters.

However, at longer time scales, on the order of tens to hundreds of milliseconds, capacitive
memory and fractional-order membrane properties are more significant, such that scaling
ionic current conductances does not reproduce important spiking properties, such as spike fre-
quency. Further, at the level of the nerve axon and neural network, we found that fractional-
order Vm dynamics can significantly alter emergent properties of the system that are not repro-
duced by appropriately rescaling ionic current conductances. For example, modulating peak
ionic currents does not reproduce the significant increase in propagation velocity in the frac-
tional-order nerve axon model (Fig 8), nor the self-termination of network electrical activity in
a random network (Fig 10).

Thus, it is a difficult challenge to determine for which models and settings it is necessary to
represent Vm with fractional-order dynamics. Our study suggests that it is important particu-
larly at longer time scales and when accounting for neural membranes that are interconnected
via propagation in a nerve axon or synaptic connections in a random network. However, this
conclusion may be model-specific (see Limitations section). The use of fractional differential
equations to model excitable cells and biological systems in general is presently limited by the
complex mathematics involved and limitations on numerical methods. While numerical inte-
gration of fractional differential equations is typically more computational expensive compared
with integer-order differential equations, advanced integration methods have been recently de-
veloped [48–50]. As these methods become more widely used, characterized, and optimized,
we expect that modeling of fractional-order excitable cell systems and networks will become
more computational feasible, which will allow for further determination of models in which ac-
counting for fractional-order dynamics is important.

Limitations
The prior studies of fractional-order dynamics, mentioned above, typically focused on minimal
neuron models, such as the FitzHugh-Nagumo and Morris-Lecar models, which while valu-
able, are limited in their biophysical detail. The Hodgkin-Huxley model of the squid giant axon
neuron is a classical biophysical model of an excitable cell that is well-characterized, and thus it
was a reasonable model to use as a starting point to investigate the influence of fractional-order
Vm dynamics on neuronal properties. However, more biophysically-detailed neuronal models
relevant to mammalian physiology have been described, incorporating more detailed sodium,
potassium, and calcium currents [51, 52]. It may also be important to account for intracellular
calcium signaling, specifically stochastic dynamics that can influence electrical activity [53, 54],
including spiking frequencies and synaptic transmission.

The properties of the neural networks considered in this study were random; while this type
of network provides general insight, the dynamics of activity in networks with a physiological
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architecture may differ, particularly in the context of disease states such as epileptic seizures
[55]. Further work is needed investigate fractional-order dynamics in these more physiological-
ly-realistic neuronal models and networks. Nonetheless, our study provides valuable insight
and serves as a reference for investigating fractional-order dynamics in models of
neuronal activity.
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