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Use of zebrafish larvae lateral line to 
study protection against cisplatin-induced 
ototoxicity: A scoping review
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Abstract
Aim: The present review aimed to consolidate and analyze the recent information about the use of zebrafish in studies 
concerning cisplatin-induced ototoxicity and otoprotection.
Material and methods: The PubMed, Web of Science, and Scopus databanks were searched using the following MESH 
terms: zebrafish, cisplatin, ototoxicity. The identified publications were screened according to inclusion and exclusion 
criteria and the 26 qualifying manuscripts were included in the full-text analysis. The experimental protocols, including 
cisplatin concentrations, the exposure duration and the outcome measurements used in zebrafish larvae studies, were 
evaluated and the reported knowledge was summarized.
Results: Twenty-six substances protecting from cisplatin-induced toxicity were identified with the use of zebrafish 
larvae. These substances include quinine, salvianolic acid B, berbamine 6, benzamil, quercetin, dexmedetomidine, 
dexamethsanone, quinoxaline, edaravone, apocynin, dimethyl sulfoxide, KR-22335, SRT1720, ORC-13661, 3-MA, 
D-methionine, mdivi-1, FUT-175, rapamycin, Z-LLF-CHO, ATX, NAC, CYM-5478, CHCP1, CHCP2 and leupeptin. The 
otoprotective effects of compounds were attributed to their anti-ROS, anti-apoptotic and cisplatin uptake-blocking 
properties. The broadest range of protection was achieved when the experimental flow used preconditioning with an 
otoprotective compound and later a co-incubation with cisplatin. Protection against a high concentration of cisplatin was 
observed only in protocols using short exposure times (4 and 6 h).
Conclusions: The data extracted from the selected papers confirm that despite the differences between the human 
and the zebra fish hearing thresholds (as affected by cisplatin), the sensory cells of zebrafish and larval zebrafish are 
a valuable tool which could be used: (i) for the discovery of novel otoprotective substances and compounds; (ii) to 
screen their side effects and (iii) to extend the knowledge on the mechanisms of cisplatin-induced inner ear damage. 
For future studies, the development of a consensus experimental protocol is highly recommended.
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Introduction

Hearing loss is a widespread human sensory disa-
bility adversely affecting the communication, 
social isolation, depression and the quality of life 
of the affected persons. One of the common causes 
of hearing loss is the exposure to ototoxic sub-
stances such as heavy metals or ototoxic drugs, 
aminoglycoside antibiotics (neomycin, gentamy-
cin), loop diuretics, and platinum-based cytostatic 
drugs (cisplatin, oxaliplatin, and carboplatin). The 
platinum-containing medications are used for the 
treatment of solid cancers (e.g., head and neck car-
cinomas, lung carcinomas, cervical carcinomas, or 
melanomas).1,2 Unfortunately, the incidence of 
cisplatin-induced ototoxicity is high and the cispl-
atin-induced hearing loss is not only bilateral, pro-
gressive and irreversible but also often associated 
with vertigo and tinnitus.3,4 According to the litera-
ture, children are more prone to develop hearing 
loss following cisplatin treatment than adults. Loss 
of hearing at an early age has negative psychoso-
cial consequences, negatively affecting the devel-
opment of the affected child.5,6

Recent research has concentrated on under-
standing the mechanisms of cisplatin-induced 
inner ear damage and on identifying anti-ototoxic 
substances. Since auditory cell-lines cannot substi-
tute the mature hearing organ, animal models are 
used in ototoxicity research, including rats, guinea 
pigs, mice and zebrafish (Danio rerio).

Despite many differences, the zebrafish and 
human models share considerable similarities and 
zebrafish can be used to screen conditions 
observed in human pathologies.7 The easy acces-
sibility to the hearing organ, the small size and the 
structural and functional similarities between 
zebrafish and mammalian hair cells, make 
zebrafish a valuable animal model for studying 
cisplatin-induced hearing loss. The zebrafish pos-
sesses hair cells on the outside of its body in a 
sensory system called the lateral line. In the lat-
eral line, mechanosensory hair cells are organized 
into small groups called neuromasts. Each neuro-
mast contains 10–20 hair cells and associated 
supporting cells.8–14 In zebrafish larvae, neuro-
masts are mature with functional hair cells by 
3 days post-fertilization (dpf).15 The physiologi-
cal similarities between lateral line and hair cells 
of the inner ear, easy visualization of the lateral 
line, and full maturity by 3 days post-fertilization 
make the lateral line of larvae zebrafish an ideal 

model for screening large numbers of individual 
drugs and drugs combinations. The adult zebrafish 
are used less frequently in the ototoxicity-related 
studies than the larval zebrafish. There are several 
advantages of using zebrafish larvae in this type 
of research, including their permeability to small 
molecules, their small size and transparency, their 
rapid generation time and the lateral hair cell sim-
ilarity to the mature hair cells in the inner ear of 
adult zebrafish.

Although the zebrafish model offers many 
advantages over the other animal models, it is 
essential to remember that in humans, cisplatin 
induces a hearing loss in the high frequencies, 
while in zebrafish, only the low frequencies are 
affected. Also, the sensory hair cells of the fish can 
regenerate, which a feature not observed in mam-
mals. Therefore, only the acute ototoxicity can be 
studied using the zebrafish model, not matching 
the chronic ototoxicity that induces a permanent 
hearing loss in humans.16

The present review focused on the lateral line of 
zebrafish larvae and adult animals in studies of 
cisplatin-induced sensory hair cell loss and otopro-
tection. The main goal was to analyze the useful-
ness of the zebrafish model to identify new 
substances protecting against cisplatin and to 
explore new knowledge about the mechanisms 
mediating ototoxicity. The experimental protocols 
used in the included publications, the protective 
mechanisms and the adverse effects of the identi-
fied substances were evaluated.

In this scoping review, articles published 
between 2009 and 2020 were considered.

Methods

The present study searched for papers published 
between January 2009 and May 2020, using the 
following databanks:

•• US National Library of Medicine - National 
Institutes of Health (PubMed);

•• Scopus;
•• Web of Science.

The search was restricted to publications in the 
English language. The keywords included the fol-
lowing combination of mesh terms: zebrafish AND 
cisplatin AND ototoxicity. Full-text articles were 
downloaded when the title, abstract, or keywords 
suggested that the study may be eligible for this 
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review. The selection procedure followed the inclu-
sion and exclusion criteria summarized below (see 
also Figure 1).

Inclusion criteria

•• articles published in the last 12 years (2009– 
2020)

•• original research
•• articles dedicated to studying molecules or 

compounds protecting from cisplatin-
induced toxicity to sensory hair cells

•• using zebrafish1

Exclusion criteria

•• full text not available
•• literature review
•• lack of information about the experimental 

groups

After applying the selection criteria, 26 papers 
were selected for analysis. The following informa-
tion was extracted from each publication (for the 

complete dataset see Table A1 in the Appendix 
section):

•• the objective of the study
•• the experimental flow (length of exposure to 

cisplatin, used concentration of cisplatin, 
conditions of treatment with compound/mol-
ecule, the sample size2)

•• mechanism of action of compound/molecule 
used

•• the adverse effects of the compound/
molecule

•• the outcome measurements

The extracted information was analyzed and the 
information was summarized and presented in the 
Results section.

Results

The focus of selected literature

The present review has identified research articles, 
in which a lateral line of zebrafish was used to 
study cisplatin-induced hearing loss and otoprotec-
tion. The general goals of all the papers were: (i) to 
identify molecules and compounds protecting the 
sensory hair cells from cisplatin toxicity (fourteen 
papers); (i) to develop new knowledge about the 
mechanisms mediating cisplatin-induced hair cell 
damage (five papers); (ii) to screen the ototoxicity 
of various drugs (two papers); (iii) to investigate 
their synergistically ototoxic effect on hair cells 
(three articles) and to develop behavioral methods 
dedicated to zebrafish (two papers).

Zebrafish culture conditions

In all studies, zebrafish embryos were kept at 
28.5°C on a 14 h light/10 h dark cycle. The embryos 
were maintained in Petri dishes in embryo media 
(EM). Two types of EM were used. The first EM 
was composed of 15.0 mM NaCl, 0.5 mM KCl, 
1.0 mM MgSO4, 0.12 mM KH2PO4, 0.074 mM 
Na2HPO4, 1.0 mM CaCl2, 0.5 mM NaHCO3 in dis-
tilled water.17–28 The second EM was compsed of 
14.9 mM NaCl, 0.503 mM KCl, 0.994 mM MgSO4, 
0.150 mM KH2PO4, 42 mM Na2HPO4, 0.986 mM 
CaCl2, 0.714 mM NaHCO3 in distilled water.12,29–

31,32,33 In addition, the embryos were also kept in 
E3 embryo media consisting of 5 mM NaCl, 
0.17 mM KCl, 0.33 mM CaCl2, 0.33 MgSO4 or in a 
standard bath solution containing: 120 mM NaCl, 

Figure 1. Flowchart of the study.
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2 mM KCl, 10 mM HEPES (2-[4-(2-hydroxyethyl)
piperazin-1-yl]ethanesulfonic acid), 2 mM CaCl2 
and 0.7 mM NaH2PO4 adjusted to pH 7.2.21,34 For 
the anesthesia, MS-222 (3-aminobenzoic acid ethyl 
ester, methanesulfonate salt) was used. Various 
sample size was used in the studies, ranging from 3 
to 30 zebrafish per experimental group.

Experimental protocols

Based on the literature, cisplatin at low concentra-
tions (50–100 μm) causes the death of lateral line 
hair cells in zebrafish larvae after 24 h, whereas 
cisplatin at higher concentrations (250–500 μm) is 
toxic after 6 h.11,12 In the selected articles, the 
zebrafish were exposed to cisplatin for either 24 h 
(six studies), 6 h (six studies), 4 h (seven studies), 
and 16 h (one study). In one article, two exposure 
times were used (12 and 24 h). In the research dedi-
cated to adult zebrafish, the incubation time used 
was 45 min and 24 h. The results were examined 
after one cisplatin injection (four articles). In one 
article, there was no information on that topic.

Various cisplatin concentrations and different 
exposure times were applied in the studies. Thirteen 
studies used cisplatin in a concentration lower than 
200 µM. Three studies applied cisplatin in a con-
centration ranging from 200 to 800 µM, whereas 
seven studies used cisplatin at concentrations rang-
ing between 0.8 and 1 mM (Table 1). In studies 
focusing at the inner ear of adult zebrafish, 25 mg/
kg cisplatin was injected. Two articles provided no 
information about the concentrations used. The 
data are summarized in Table 1.

Based on the protocols used, three main experi-
mental designs were identified. In the first design, 
simultaneous incubation with tested compounds 
(apocynin, berbamine, edaravone, quercetin, ORC-
13661, mdivi-1, NAC, CYM-5478) and cisplatin 
was used.20,21,23–25,30 The second experimental strat-
egy used preconditioning with an otoprotective sub-
stance (quinoxaline, Z-LLF-CHO, benzamil, 
quinine, leupeptin, 3-MA, D-methionine, rapamy-
cin, Sal B, SRT1720 and FUT-175) followed by 
simultaneous incubation with cisplatin.12,19,31,34,38 
The last experimental strategy consisted of precon-
ditioning with otoprotective medication (dexme-
detomidine, KR-22335, CHCP1, CHCP2, ATX) and 
later a sole exposure to cisplatin.17,26,27,40 In one 
experimental protocol using adult zebrafish, a single 
microinjection of cisplatin and drug was applied, 

whereas when cell cultures were used, the experi-
mental procedure included incubation with cisplatin 
and then co-incubation with the otoprotective 
substances.33,35,36

In the studies dedicated to apocynin, L-Serine, 
CHCP1, Rapamycin, Sal B, KR-22335, ORC-
13661, ATX, NAC, CYM-5478, and curcuminoids 
zebrafish served as a second model in addition to 
mice, guinea pig, cancer cell lines and HEI-OC1 
mouse cell line derived from the organ of 
Corti.17,20,27,28,30,35,38–40

The details regarding the experimental design 
for otoprotective screening are summarized in 
Table 2.

Berbamine, quinine, and leupeptin offered pro-
tection against high concentrations of cisplatin 
(250–500 µM), whereas ORC-13661, benzamil, 
L-Serine and mdivi-1 protected against cisplatin 
used in lower concentration (0–200 µM).12,19,21, 

25,30,31,35 Dexmedetomidine, quercetin, and edara-
vone protected against 1000 µM cisplatin.23,24,26 
FUT-175 (500–1000 µM), quinoxaline (50–
400 µM), D-methionine (250–1000 µM), and 
KR-22335 offered relatively broad protection 
whereas CHCP2, Sal B, and ATX-LPN exhibited a 
narrow protection profile (<50 and <60 µM), 
respectively. Rapamycin and SRT1720 protected 
the lateral line of larval zebrafish against 12 h 
exposure to 600 µM cisplatin.17,28,31,34,38,40 The pro-
teasome inhibitor (Z-LLF-CHO) protected from 
the exposure to 750 μM cisplatin but had no effect 
when the lower concentration of cisplatin was 
used.31 The curcuminoids offered protection 
against a single cisplatin injection (25 mg/kg).36

Five anti-cancer drugs (sunitinib, raloxifene, 
dactinomycin, carmustine, and exemestane) were 
identified as ototoxic substances by using zebrafish 
larvae.22 Moreover, drugs such as doxorubicin, 
vincristine and vinorelbine were shown to have 
synergistic ototoxic effects.22 Interestingly, carbo-
platin caused no ototoxicity in the zebrafish, pos-
sibly due to differences in the genome and proteome 
between mammals and fish, which affects the tar-
geting ability of carboplatin in fish.22

Mechanism of otoprotective action of studied 
compounds and molecules

This review has identified three general strategies 
used to protect the sensory hair cells from cispl-
atin-induced damage (see Figure 2).
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The physiological production of reactive oxy-
gen species is essential for cellular metabolism; 
however, overproduction or accumulation of ROS 
can lead to apoptosis. The first type of otoprotec-
tive strategy aims at the reduction of overproduc-
tion and/or accumulation of ROS to restore cellular 
homeostasis leading to cell survival. In agreement 
with the above notion, the otoprotective action of 
dexmedetomidine, edaravone, KR-22335, apoc-
ynin, ATX-LPN, quercetin, and the CHCP1 and 
CHCP2 molecules were related to their ability to 
decrease ROS production.17,20,23,26 Similarly, the 
EF-24 was suggested to prevent intracellular ROS 
formation via inhibition of NF-kB-induced signal-
ing and suppressed expression of oncogenic miR-
NAs, including miR-21.33 Also dimethyl sulfoxide 
(DMSO) used at low concentrations is a known 
scavenger of the hydroxyl radicals.41

Apoptosis is a programmed cell death initiated 
via the intrinsic or extrinsic pathway. The intrinsic 
pathway can be started by intracellular processes, 
such as damage to DNA or overproduction of ROS, 
both known to be induced by cisplatin. In contrast, 

the extrinsic pathway can be activated by extracel-
lular ligands binding the transmembrane death 
receptors. At the point of initiation and execution 
of apoptosis, several proteolytic proteins from the 
family of caspases and sometimes from the family 
of calpains may be activated. Targeting the apop-
totic or the autophagy pathways by otoprotective 
substances and compounds may lead to cell sur-
vival and is the second type of otoprotective strat-
egy.42,43 Studies of the inner ear of adult zebrafish 
have suggested that synthetic curcumin analogs 
(CLEFMA or EF-24) protect the auditory system 
against cisplatin-induced damage by inhibition of 
the apoptotic pathway. Following 48 h exposure to 
cisplatin, curcuminoids administration induced 
significant recovery of ABR thresholds (0.1–
3 kHz), when compared to cisplatin only.36 Also, 
the serin protease inhibitor FUT-175 might func-
tion as an apoptosis blocker and protect hair cells 
from death via interaction with the intrinsic and 
extrinsic apoptotic pathways.31 Leupeptin, inhibits 
serine and cysteine proteases—plasmin, trypsin, 
papain, calpain, and cathepsin B, of which calpain 

Table 1. Concentration and duration of exposure to cisplatin (CIS) based on the extracted data.

Article Cisplatin 
concentration

Duration of exposure 
to cisplatin

Experimental flow

Vlasits et al.12 0–100 µM 24 h Pre-treatment for 1 h, then co-exposure for 24 h
Todd et al.5 0–1000 µM 4 h CIS exposure for 4 h
Monroe et al.35 100 µM 45 min Co-exposure for 45 min
Hong et al.24 1000 µM 4 h Co-exposure for 4 h
Lee et al.23 1000 µM 4 h Co-exposure for 4 h
Choi et al.42 1000 µM 6 h Co-exposure for 6 h
Min et al.26 1000 µM 6 h Pre-treatment for 150 min, then CIS exposure for 6 h
Niihori et al.6 1000 μM 4 h Pre-treatment for 12 h, then co-exposure for 4 h
Monroe et al.33 100–500 µM 45 min CIS exposure for 45 min,regeneration for 3 h, then co-

exposure for 15 h (cell culture)
Coffin et al.31 250–1000 µM 6 h Pre-treatment for 1 h, then co-exposure for 6 h
Uribe et al.18 250–1500 μM 4 h Co-exposure for 4  h
Kitcher et al.30 25–200 µM 24 h Co-exposure for 24 h
Monroe et al.36 25 mg/kg Single microinjection CIS microinjection, 24 after drug microinjection
Mackenzie and Raible29 50 µM 24 h Co-exposure for 24 h
Shin et al.37 50 µM 24 h Pre-treatment for 1 h, then CIS exposure for 24 h
Thomas et al.27 50 µM 24 h Pre-treatment for 1 h, then CIS exposure for 24 h
Zheng et al.38 50 µM 24 h Pre-treatment for 2 h, then co-exposure for 24 h
Hirose et al.22 50 µM 6 h Co-exposure for 6 h
Kruger et al.25 500 µM 6 h Co-exposure for 6 h
Vargo et al.21 50–200 µM 16 h Co-exposure for 16 h
Thomas et al.19 50–500 µM 6 and 24 h Pre-treatment for 1 h, then co-exposure for 6 h and 24 h
Rocha-Sanchez et al.34 50–800 µM 6 h Pre-treatment for 2 h, then co-exposure for 6 h
Gu et al.39 60 µM 24 h Pre-treatment for 4 h, then CIS exposure for 24 h
Pang et al.28 600 µM 12 and 24 h Pre-treatment for 1 h, then co-exposure for 12 h and 24 h
Wang et al.40 Data not available 24 h Co-exposure for 24 h
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and cathepsin were implicated to be involved in 
apoptotic processes.44

The therapeutic impact of quinoxaline (Qx) 
against cisplatin was attributed to the prevention of 
apoptosis of the sensory hair cells in a still indeter-
minate way.34 The cellular process of autophagy, in 
which the damaged mitochondria are being elimi-
nated from the cells, thus, promoting cell survival, 
can counteract apoptosis.45 In agreement with that, 
the experiments demonstrated that the exposure of 
larval zebrafish to autophagy modulators (3-MA 
and rapamycin) prevented the cisplatin-induced 
damage to the lateral line.28,31

The third otoprotective strategy involves block-
ing the entry of toxic substances into the inner ear 
and, in particular, into hair cells.31,46 Lateral line 
hair cells share mechanisms of mechanotransduc-
tion (MET) with hair cells of the inner ear.19  
Data in the literature suggest that blocking MET  
channel prevents the intracellular accumulation of 
cisplatin.19 Currently, it is unclear if cisplatin enters 
the lateral line of zebrafish directly through the 
MET channels. However, studies using blockers of 
MET channels (Mdivi-1, E6 berbamine, benzamil 
and ORC-13661, quinine) in larval zebrafish have 
confirmed that blocking of MET channels protects 

from the cisplatin-induced hair cell death.12,19,21,25 
Lastly, blockade of mechanotransduction using 
quinine protected from the cisplatin-induced hair 
cell loss. However, quinine is a well-known oto-
toxin; therefore, its medical usefulness as an oto-
protector might be negligible.19,47

The adverse effects of the tested compounds/
molecule

The adverse effects of the compounds and mole-
cules used as otoprotectors were identified during 
data extraction. The adverse effect was found to be 
time and dose-dependent. Mdivi-1 in doses higher 
than 10 μM was toxic to zebrafish. CHCP1 started 
to be lethal, for the zebrafish larvae, in concentra-
tions above 100 μM.21 On the one hand, Z-LLF-
CHO presented otoprotective properties; however, 
continuous exposure to Z-LLF-CHO was toxic to 
the hair cells.31 A similar dependence was ecoun-
tered with DMSO at a concentration of 0.01%, 
which was toxic to zebrafish, as opposed to lower 
concentration which could induce otoprotection.48 
The DMSO concentration of 0.5% or higher were 
shown to be toxic to the auditory hair cells in the 
rat cochlear explant cultures.49 In combination 

Figure 2. Summary of anti-ototoxic strategies and respective compounds.
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with cisplatin, DMSO has induced more extensive 
hair cell death than cisplatin alone.18 The protec-
tive effect of quinoxaline depends on the incuba-
tion protocol. The otoprotection D-methionine was 
limited to incomplete hair cell survival seen in all 
cases.31 Incubation with flubendazole during 
recovery after cisplatin exposition blocked produc-
ing the new hair cells in zebrafish.50 The adverse 
effects of other substances were not reported.

Outcome measurements

In the majority of the reviewed studies, the assess-
ment of the otoprotective and ototoxic effects 
involved sensory hair cell counting (eighteen  
articles).12,17,18,20–22,24,25,27,28,30,31,32–34,39,40 An addi-
tional method, evaluating the hair cell function, 
was the uptake of FM1-43 dye (four articles) and 
the recording of microphonic potentials (two  
articles).19,21,25,34,43 In six articles, the TUNEL assay 
was applied, detecting single-stranded brakes in 
the chromosomal DNA (a feature of apoptosis). 
20,23,24,34,37,38 The proliferation assay was used  
in two articles, whereas the fluorescent platinum 
analog (Rho-Pt) uptake assay was used in one  
article.27,29,34 In two studies, anatomic changes were 
correlated with behavioral modification observed 
in the zebrafish with the help of rheotaxis.6,32 In 
another two studies, in which the inner ear cell of 
zebrafish was cultured, spectrophotometry was 
used.33,35 Lastly, one publication assessed the hear-
ing abilities of adult zebrafish by measuring audi-
tory brainstem responses (ABR).36

Discussion

This review aimed to assess the usefulness of the 
lateral line in zebrafish for studying cisplatin-
induced ototoxicity and otoprotection. Twenty-two 
studies published between January 2009 and May 
2020 dedicated to the zebrafish larvae and four 
dedicated to the studies of the inner ear in adult 
zebrafish met the inclusion criteria. All articles 
have confirmed the usefulness of the lateral line in 
the high-throughput screening of otoprotective 
substances. These studies employed anatomical 
and behavioral assays to measure the experimental 
outcome.

In the inner ear, cisplatin accumulates predomi-
nantly in the stria vascularis. However, the most 
significant damage induced by cisplatin is seen in 

the sensory hair cells, the supporting cells in the 
mammalian vestibular system (utricle), and the 
regenerative potential of the utricle.14,51,52 Cisplatin 
induces cytotoxicity by binding to the nuclear 
DNA, leading to apoptosis, particularly in the pro-
liferating cells.53 In addition to that, cisplatin can 
mediate the activation of NADPH oxidase 3 
(NOX3), which catalyzes the production of super-
oxide, representing reactive oxygen species (ROS). 
Overproduction of ROS can activate the signal 
transducer and activator of transcription 1 (STAT1), 
inducing the inflammation.46 Previous studies have 
shown that ROS might induce autophagy, which, 
depending on the stimulation context, can promote 
either cell survival or lead to cell death.54,55

The critical step responsible for the ototoxic 
properties of cisplatin is its transport inside the sen-
sory cell. Several studies have reported that mecha-
notransducer (MET) channels mediate the entry of 
cisplatin into cochlear hair cells, but it remains 
unclear whether MET channels are blocked during 
that process.30,46,53 A study using larval zebrafish 
confirmed that cisplatin-induced damage to the  
hair cells relies on functional MET channels.19 
Furthermore, the effect of platinum (II) complexes 
on adult zebrafish auditory system suggested that 
cisplatin, and to a limited extent phenanthriplatin, 
can induce hair cells loss in particular regions of the 
saccule but not the utricle,56 suggesting either vari-
ous regional susceptibility to cisplatin or its distinct 
diffusion or transport pattern.

Studies using larvae zebrafish included in the 
present review confirmed the otoprotective proper-
ties of astaxanthin (ASX), N-acetylcysteine (NAC), 
rapamycin, aalvianolic acid B, SRT1720, E6 berba-
mine, quercetin, dexamethasome, dexmedetomi-
dine, edaravone, quinine, dimethyl sulfoxide 
(DMSO), FUT-175, benzamil, apocynin, and 
flubendazole. What is more, the clinical adverse 
effects of the above molecules are already known, 
as ASX, NAC, rapamycin, dexamethasone, qui-
nine, dexmedetomidine, DMSO, edaravone, fluben-
dazole are used in clinical trials or practice (see 
Table 3). Interestingly, the screening of new mole-
cules by the zebrafish model, identified new oto-
protective compounds such as CHCP1, CHCP2, 
apocynin, quinoxaline, ORC-13661, SRT1720, 
CYM-5478, mdivi-1, KR-22335, leupeptin, and 
3-MA. Although no information is yet available on 
the impact of these compounds on cisplatin-effi-
ciency, their small size makes a local delivery 
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possible, which could be a solution to avoid the risk 
of antitumor interference and other adverse effects.

The otoprotective effect of various substances 
observed in zebrafish was also demonstrated in 
other animal models and humans. The administra-
tion of dexamethasone delivered by intratympanic 
injection in cancer patients provided narrow pro-
tection against hearing-loss (at 6 kHz).3 Lack of 
otoprotection was observed in patients who have 
received cisplatin chemotherapy and an injection 
of poloxamer hydrogel containing dexamethasone 
(OTO-104).99 Currently, the OTO-104 is tested in 
patients with unilateral Meniere’s Disease (admin-
istrated by a single intratympanic injection).100 
Animal studies with guinea pigs demonstrated an 
otoprotective effect of dexamethasone only in co-
administration with curcumin, whereas when both 
substances were administrated alone provided no 
protection in the zebrafish.26,36,101 To consider that 
data in the literature show that dexamethasone 
reduces the cisplatin efficiency.65

N-Acetylcysteine (NAC) which was found pro-
tective in zebrafish, presented conflicting results in 
humans. One study found that a local delivery of 
NAC provided an otoprotection at 8 kHz (using the 
patient’s opposite ear as a control);70 another study 
by Yoo et al, reported no differences between can-
cer patients treated with NAC and an untreated 
group.102 There was no protective effect of an oral 
low-dose NAC in patients with head and neck can-
cer from cisplatin-induced toxicities and oxidative 
stress.103 Currently, there is an IV phase clinical 
trial of the effectiveness of intratympanic adminis-
tration of N-acetylcysteine in patients treated with 
cisplatin.104

Studies in zebrafish confirmed the otoprotective 
effect of D-methionine observed in guinea pigs. 
Guinea pigs, after a local application of D-methionine 
in the round window, presented improved otoacous-
tic emissions.105 Multiple studies have demonstrated 
the D-methionine protection against cisplatin, ami-
kacin and on permanent noise-induced hearing 
loss.106 Nevertheless, there is no information about 
the effect of D-methionine on cancer cells. Currently, 
the efficacy of L-serine, astaxanthin (ATX) and 
rapamycin are assessed in clinical trials for treating 
Alzheimer's disease, glucose intolerance and amyo-
trophic lateral sclerosis (ALS), which will help us 
understand their adverse effects.107–109

Similarities observed in the results obtained 
from different animal models and humans, support 

the idea of using of zebrafish for preclinical drug-
screening. Nevertheless, not all substances identi-
fied by the zebrafish are acceptable for use in 
humans. The differences between results in otopro-
tective studies in humans and animals are caused 
by differences in the drug administration protocol, 
cohort size and cancer types.110

The majority of studies used anatomical or his-
tological/immunohistological assays considered a 
gold standard in the ototoxicity research to meas-
ure the experimental outcome. Few studies 
employed specific, zebrafish-related behavioral 
methods such as rheotaxis. The rheotaxis uses the 
physiological principle of fish facing the oncoming 
current of water, which can be already observed in 
zebrafish larvae because the lateral line is entirely 
sensitive to the environment from 5 dpf.111 There is 
a dose-dependent relationship between cisplatin 
exposure, progressive hair cell damage, and 
reduced fish swimming behavior. Moreover, in 
response to otoprotective substances such as dexa-
methasone (5 μM+ cisplatin 1000 μM), the rheo-
taxis of zebrafish improved significantly.6 These 
results indicate that detecting changes in the swim-
ming behavior could serve as a biomarker for the 
functionality of hair cells of fish. The automated 
swimming apparatus provides quick testing of 
large numbers of zebrafish and opens a new field in 
the ototoxic studies.6,32 Nevertheless, a few model 
limitations must be considered. Firstly, not only the 
lateral line but also the visual system are essential 
for rheotaxis.112 Secondly, higher concentrations of 
cisplatin may affect other systems of zebrafish 
(e.g., neurotransmitters or motor neurons), chang-
ing their swimming behavior.6

While collecting data for the present review, we 
have identified four articles dedicated to adult 
zebrafish inner ear (⩾6 mpf) and cisplatin-induced 
ototoxicity that were published between 2009 and 
2020. Two of the manuscripts were studying the 
curcuminoids-dependent otoprotection against cis-
platin.33,36 The third article focused on the effect of 
the platinum (II) complex on ABR hearing thresh-
olds and found that the exposure to platinum (II) 
complex resulted in decreased hearing thresholds 
similarly as in response to cisplatin.56 The aim of 
the fourth article was to study whether L-serine 
might impact on the reduction of cisplatin-medi-
ated ROS generation in vestibular tissue.35

The zebrafish larvae model offers two significant 
advantages: (i) it can be used during a screening of 
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novel substances and compounds against cisplatin-
induced hair cell damage; (ii) it can promote a bet-
ter understanding of the mechanisms related to 
cisplatin-induced hearing loss.21 However, studies 
using zebrafish are not free of limitations. The first 
limitation is the ability of zebrafish hair cells to 
regenerate through the proliferation of supporting 
cells, which is not the case for mammalian hair 
cells. Subsequently, diverse damage protocols 
appear to induce different pathways leading to hair 
cell loss.111 This implies the importance of testing 
zebrafish over a longer time. The second limitation 
is the fact that the zebrafish hearing range is low 
and does not reflect this of humans, whereas  
cisplatin primarily affects the hair cells in high  
frequencies.113 In addition, larvae are sensitive to 
frequencies up to 1200 Hz, while the inner ear hair 
cells of the adult zebrafish can detect sound fre-
quencies up to 4000 Hz. The inner ear of zebrafish 
is sensitive to a broader spectrum of frequencies, 
whereas the zebrafish lateral line is restricted to 
detecting low-frequency sounds.113,114 The third 
limitation is the lack of a stria vascularis in contrast 
to the human inner ear; thus, damage through strial 
mechanism could not be evaluated.24 The fourth 
limitation is that the zebrafish shares only 70% 
homology with the human genome, and therefore, 
some proteins that in humans will be targeted by the 
ototoxic drugs may no longer be a good target, or 
simply are absent in fish. It suggests that zebrafish 
could be used as a model only for studying acute 
ototoxicity at low frequencies; however, some find-
ings may still be applicable to humans.19 The fifth 
pitfall of the presented studies is the varying sample 
size. Because of the character of our review, the 
sample size was not used as an exclusion criterion. 
In large part, the ototoxic studies focused on the 
zebrafish lateral line. In contrast, it is supposed that 
the zebrafish's inner ear may display different sen-
sitivity to drugs or different times of response and 
regeneration.14 Nonetheless, the zebrafish lateral 
line is a relatively easy, quick, and inexpensive 
alternative to the ototoxicity studies in rodents.

The studies using zebrafish larvae demonstrated 
that cisplatin-induced hair cell loss could be reduced 
by lowering the levels of ROS, by the apoptosis and 
by inhibiting the MET channel. However, the effec-
tiveness of substances and compounds tested still 
has to be proven under other experimental condi-
tions. Importantly, the present review identified sig-
nificant discrepancies between the protocols used, 

suggesting a need for the establishment of a consen-
sus method to test the anti-ototoxic properties of 
compounds in zebrafish. These protocols should 
implement optimized concentrations of cisplatin 
and standardized incubation times. A practical sug-
gestion to improve data presentation is using RDI 
(relative dose intensity), reflecting the ratio of 
“delivered” to the “planned” dose intensity and can 
be expressed as a percentage.

Conclusion

Despite a relatively low number of studies in the 
past 12 years, zebrafish prove to be a useful model 
for studying ototoxicity, especially during high 
throughput screening of new ototoxic compounds. 
However, the present study identified a need for 
developing a consensus protocol that should be 
used during future ototoxic studies. It is recom-
mended to develop a standardized range of cispl-
atin concentration, duration of exposure, and the 
sequence of exposure concerning tested com-
pounds. The generation of an agreed-upon experi-
mental protocol should be on the priority list of 
researchers using the zebrafish model to study oto-
toxicity. This field of science would also benefit 
from standardization of outcome measures and 
units used, as well as from precise specification of 
observed effects and molecules (e.g., instead of 
using ROS, referring to a precise molecule that is 
produced, such as peroxide, superoxide, hydroxyl 
radical, singlet oxygen, or alpha-oxygen). Finally, 
even though zebrafish does not offer an ideal model 
for cisplatin-induced hearing loss, the mechanism 
of the damage to zebrafish hair cells is likely simi-
lar to that in humans, which is encouraging for fur-
ther use of this model in ototoxicity and 
otoprotection-related studies.

List of abbreviations

3-MA 3-methyladenine
ATX  Astaxanthin
CHCP1 Cisplatin Hair Cell Protectant 1
CHCP2 Cisplatin Hair Cell Protectant 2
CYM-5478 an S1P2 selective agonist
Danio rerio  zebrafish
dpf  days post-fertilization
EM embryo media
FUT-175 Nafamostat Mesilate
KR-22335  3-Amino-3-(4-fluoro-phenyl)-1H 

-quinoline-2,4-dione
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mdivi-1  Mitochondrial Division Inhibitor 1
MET  mechanotransducer
NAC N-acetylcysteine
ORC-13661 Oricula Therapeutics' first product
RDI  relative dose intensity
ROS Reactive oxygen species
SRT1720  a specific SIRT1 activator/ a cell-

permeable inhibitor of the mito-
chondrial SIRT3

Z-LLF-CHO  benzyl N-[(2S)-4-methyl-1-[[(2S)-4- 
methyl-2-[(1-oxo-3-phenylpropan-
2-yl)amino]pentanoyl]amino]-1-ox-
opentan-2-yl]carbamate
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Notes
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2. The sample size was not considered as an exclusion 
criteria.
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