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Modern radiotherapy techniques are vulnerable to delineation inaccuracies owing to the steep dose gradient around the target.
In this aspect, accurate contouring comprises an indispensable part of optimal radiation treatment planning (RTP). We suggest
a fully automated method to segment the lungs, trachea/main bronchi, and spinal canal accurately from computed tomography
(CT) scans of patients with lung cancer to use for RTP. For this purpose, we developed a new algorithm for inclusion of excluded
pathological areas into the segmented lungs and a modified version of the fuzzy segmentation by morphological reconstruction
for spinal canal segmentation and implemented some image processing algorithms along with them. To assess the accuracy, we
performed two comparisons between the automatically obtained results and the results obtainedmanually by an expert.The average
volume overlap ratio values range between 94.30 ± 3.93% and 99.11 ± 0.26% on the two different datasets. We obtained the average
symmetric surface distance values between the ranges of 0.28 ± 0.21mm and 0.89 ± 0.32mm by using the same datasets. Our
method provides favorable results in the segmentation of CT scans of patients with lung cancer and can avoid heavy computational
load and might offer expedited segmentation that can be used in RTP.

1. Introduction

Computed tomography (CT) scans are primarily used for
diagnostic purposes; however, they may also be used in
radiation treatment planning (RTP). Detailed CT scans of
patients with cancer are acquired for RTP purposes and
used for localizing the tumor and organs at risk (OARs).
Optimal RTP requires precise definition of target and critical
structures to achieve the best radiotherapeutic outcomes in
terms of toxicity and cure. Modern radiotherapy techniques
such as intensity modulated radiation therapy (IMRT) are
vulnerable to delineation inaccuracies due to the steep dose
gradient around the target. In this aspect, accurate contouring
is extremely important and comprises an indispensable part
of RTP in the modern era.

The delineation procedure is traditionally performed by
an expert in radiation oncology with meticulous assessment

of CT images of a given patient followed by manual con-
struction of the structure set by drawing two-dimensional
contours of every structure in consecutive CT slices. Depend-
ing on the tumor site and number of slices to be contoured,
delineation of the target and OARs for precise RTP can be
quite time-consuming and labor-intensive. Moreover, there
is generally no consensus on accurate contouring of target
and OARs to guide this critical component of RTP because
of the fuzziness of image objects. Contouring procedures
performed by different experts may differ substantially and
a single expert may even contour the same CT image differ-
ently on consequent occasions, referred to as “interobserver
variability” and “intraobserver variability,” respectively [1–3].
Discordance, inconsistency, and even slight inaccuracies in
the delineation procedure may result in significant variations
in target and OAR definition of a given patient, which
may have a profound impact on treatment outcomes. Thus,
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methods to improve consistency, concordance, and accuracy
of the contouring procedure for precise RTP are needed.

Automated segmentation algorithms are increasingly
used in RTP to optimize the delineation procedure. Robust
algorithms significantly expedite the contouring and improve
consistency and concordance. The implementation of these
sophisticated methods in radiation oncology practice may
have implications particularly in busy clinics.

Segmentation of the lungs, trachea/main bronchi, and
spinal canal plays a central role in RTP for lung cancer. Most
of the lung segmentation approaches [4–6] use thresholding
based on the density values followed by connectivity analysis,
postprocessing for lung separation, and lung closing to
include the high density structures such as vessels and jux-
tapleural nodules into the segmented lungs. The juxtapleural
nodules and pulmonary vessels abutting the medial lung
border may inadvertently be excluded from the segmented
lungs when lung closing operation is not sufficient. In
order to address this undersegmentation issue, a number of
approaches have been suggested in the literature [7–17].

de Nunzio et al. [7] applied morphological three-dimen-
sional closing with a fixed size (diameter of 30mm) spherical
structural element to the segmented lungs for inclusion of
pleural and internal nodules and to patch the concavities
corresponding to vessels.

Yim and Hong [10] proposed a curvature based method
for correcting the segmented lung boundary.

Wang et al. [11] developed a texture analysis basedmethod
for accurate segmentation of lungs with severe interstitial
lung disease.

Sluimer et al. [13] proposed a segmentation-by-registra-
tion scheme that is applicable to severe lung pathologies.
Major drawbacks of this method include its complexity and
the long computation time. Van Rikxoort et al. [14] improved
this method by adding an error detection step.

Prasad et al. [15] used the curvature of the ribs in the pro-
cess of thresholding to segment the lungs in the presence of
pulmonary disease. Although the method conferred accurate
results in this case, it may fail in the presence of lungs with
high density pathologies such as large tumors.

Shape models [16, 17] have also been suggested in lung
segmentation; however, these models require a large amount
of training data. Furthermore, if a lung shape that cannot be
explained by the model is encountered, it needs to be added
to the learning set [17].

Airway tree segmentation is critical in correcting the
results of lung segmentation, that is, elimination of the exter-
nal airways from the segmented lungs. Most of the airway
tree segmentation methods use region growing and mor-
phological operators applied on the density values [18–21].
Other methods are based on fuzzy connectivity [22], pattern
recognition [23], and template matching [24].

Methods for segmenting the spinal cord and the spinal
canal include knowledge-based approach [25], atlas-based
approach [26], multilevel thresholding, and morphological
image processing [27]. Most of them utilize extraction of the
vertebra.

Banik et al. [27] performed automatic identification of the
rib structure, vertebral column, and spinal canal of pediatric

patients. In order to segment the spinal canal, they utilized
the Hough transform and the opening-by-reconstruction
procedure.

Haas et al. [28] proposed an approach including preseg-
mentation, anatomic orientation, and structure segmentation
processes for the automatic segmentation of thoracic and
pelvic CT images used for RTP.

In this study, we suggest a fully automated method to
segment the lungs, trachea/main bronchi, and spinal canal
accurately from CT scans of patients with lung cancer to
be used for RTP purposes. Our method consists of three
processes. First, the body region of the patient in a CT image
is segmented by elimination of the background. Second,
rough segmentation of the lung fields, segmentation and
elimination of the trachea/main bronchi, the lung fields
correction, the right and left lung seperation steps, and a post-
processing step for inclusion of excluded pathological areas
into the segmented lungs are realized, respectively. Third, the
vertebra and finally the spinal canal are segmented by means
of the fuzzy segmentation algorithm.Within these processes,
a new algorithm for inclusion of excluded pathological areas
into the segmented lungs, a modified version of the fuzzy
segmentation by morphological reconstruction for spinal
canal segmentation, and the well-known image processing
algorithms were used.

Section 2 explains our materials and method in detail.
Section 3 presents the results obtained from our method.
Finally, discussion and concluding remarks are given in
Section 4.

2. Materials and Methods

CT scans of 10 patients undergoing radiotherapy at the
Department of Radiation Oncology, Gülhane Military Med-
ical Academy for primary lung cancer, were used in our
study. Informed consents of all patients were taken before CT
acquisition at the dedicatedCT-simulator (GELightspeedRT,
GE Healthcare, Chalfont St. Giles, UK). Slices are 512 × 512
pixel, 16-bit gray level matrices; and pixel size ranges between
0.76mm and 1.27mm.The average number of slices per scan
is 100 (range: 79 to 129 slices) while slice thickness ranges
between 2.5mm and 5mm.

In addition to the 10 CT scans of the 10 patients with
lung cancer, we also used 10 different thoracic CT scans from
the Lung Image Database Consortium (LIDC) [29] which is
a public database headed by the US National Cancer Insti-
tute.

To compare our method with other methods, we imple-
mented the algorithmsproposed in other studies [7, 10, 11, 27].

Figure 1 shows the workflow in our study.

2.1. Segmentation of the Body Region. The body region is
segmented from a CT image by thresholding. First, the
Hounsfield Unit-HU (range: −175 to 750) [28] is used as the
threshold and then hole-filling procedure is applied to the
thresholded results. Segments greater than 800mm2 [28] are
accepted as the body region (Figure 2).
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Figure 1: Workflow of the study.
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Figure 2: Segmentation of the body region: (a) original CT slice, (b) segmented body region in white, and (c) body contour in red
superimposed on the original slice.

2.2. Segmentation of the Lungs. As shown in Figure 3, the
main steps of lung segmentation are the rough segmen-
tation of the lung fields, segmentation and elimination
of the trachea/main bronchi, and then making the lung
fields correction. These steps are followed by the right and
left lung separation and inclusion of excluded pathological
areas.

2.2.1. Rough Segmentation of the Lung Fields. The body seg-
ments of each slice are thresholded using the value of
−300HU [11] and then connected component labelling is
applied to the thresholded results.

2.2.2. Segmentation and Elimination of the Trachea/Main
Bronchi. A three-dimensional region growing is used to
segment the trachea and main bronchi. Within the body
segments of the first (upper) few slices, all the pixels with
density values lower than −900HU are labelled as air-filled
since air has very low HU values around −1000 in CT
slices. By using the connected component analysis, the air-
filled region closest to the center of the corresponding body
segment with the maximum area is labelled as the trachea.

Using the center pixel of the trachea region as a seed,
three-dimensional region growing is applied repeatedly with
increasing values of the threshold. Here, initial value of the
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Figure 3: Segmentation of the lungs: (a, b) original CT slices, (c, d) rough segmentation of the lung fields of (a, b) in white, (e) lungs in white
after eliminating the bronchi from (c), (f) lungs in white after removing intestine from (d), and (g, h) lung contours in red superimposed on
the original slices.

threshold is −900HU and we take 64HU as a value of
increment. In order to find the center pixel of the trachea,
average location of the pixels in the trachea is calculated.

If the segmented structures have a total volume at least
twice the structures segmentedwith the previous threshold, it
is considered that the growing region penetrates through the
bronchial wall and enters into the lung parenchyma. In this
case, value of the increment is reduced by half.This operation
is terminated when the increment reaches the value of 1HU
and leakage into the lung field is detected synchronously.
Figure 4 shows the segmented trachea/main bronchi areas
using different thresholds.

To include the airwaywall with higher density values than
the air-filled region (lumen), we applymorphological dilation
with a 3 × 3 disk-shaped structuring element [30]. Segmented
structures are labelled as the trachea/main bronchi as shown
in Figure 5 and removed from the rough lung fields. Here, the
morphological dilation alters the borders in a way that the
trachea/main bronchi include the airway wall as intended.

We fill the holes stemming from vessels, nodules, tumors,
or other high density pathologies that are inside the lung
fields using a hole-filling algorithm. Finally, morphological
closing with a 3 × 3 disk-shaped structuring element [30] is
applied twice to the lungs to obtain the pulmonary borders
clearly.

2.2.3. The Lung Fields Correction. A three-dimensional eval-
uation of the CT scan is performed to remove intestine that
has similar density values as the lungs. Intestine appears in the

lower (caudal) slices of the scan. All the rough lung regions
smaller than 200mm2 are eliminated and connectivity is
checkedwithin the remaining lung regions bymeans of three-
dimensional region growing [7], using the pixels that belong
to rough lung regions in the central slice of the scan as the
seeds.

2.2.4. The Right and Left Lung Separation. If a slice contains
a lung region wider than half of the width of the body
region, then separation of the connected lungs is performed
by identifying the anterior and posterior junctions as follows.

Step 1. Find the bounding box (BB) of the lung region and
determine the boundaries of BB as BB.left, BB.right, BB.top,
and BB.bottom.

Step 2. In order to generate the anterior and posterior
junction lines, determine a region of interest (ROI) using the
border definitions below:

ROI.left = BB.left +
(BB.right − BB.left)

3

,

ROI.right = BB.left + 2(
(BB.right − BB.left)

3

) ,

ROI.top = BB.top,

ROI.bottom =
(BB.top + BB.bottom)

2

.

(1)
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Figure 4: Results of three-dimensional region growing for a CT slice: (a) original CT slice, (b) used threshold which is −836HU, (c) used
threshold which is −772HU, and (d) used threshold which is −708HU.

(a) (b) (c)

Figure 5: Segmentation of the trachea/main bronchi: (a) original CT slice, (b) segmented trachea/main bronchi inwhite, and (c) trachea/main
bronchi contour in red superimposed on the original slice.

Step 3. Find the greatest nonlung component that is in the
middle upper part of the ROI.

Step 4. For anterior junction line, find the pixel of the
nonlung component obtained from the previous step with
minimum row position, that is, nearest pixel to the ROI.top
and closest to the center column of the ROI. Save this pixel as
𝑃(𝑟, 𝑐), where 𝑟 and 𝑐 show the row and column position of
this pixel, respectively.

Step 5. Compare the density values of𝑃(𝑟−1, 𝑐−1),𝑃(𝑟−1, 𝑐),
and𝑃(𝑟−1, 𝑐+1).Mark the pixel withmaximumdensity value
as the new 𝑃(𝑟, 𝑐).

Step 6. If𝑃(𝑟, 𝑐) belongs to the lung region, label it as nonlung
and go to Step 5.

Step 7. For posterior junction line, find the pixel of the
nonlung component obtained from Step 3 with maximum
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(a) (b) (c)

Figure 6: The right and left lung separation: (a) original CT slice, (b) connected lungs in white, and (c) right lung contour in yellow and left
lung contour in red superimposed on the original slice.

row position, that is, nearest pixel to the ROI.bottom and
closest to the center column of the ROI. Save this pixel as
𝑃(𝑟, 𝑐), where 𝑟 and 𝑐 show the row and column position of
this pixel, respectively.

Step 8. Compare the density values of𝑃(𝑟+1, 𝑐−1),𝑃(𝑟+1, 𝑐),
and𝑃(𝑟+1, 𝑐+1).Mark the pixel withmaximumdensity value
as the new 𝑃(𝑟, 𝑐).

Step 9. If𝑃(𝑟, 𝑐) belongs to the lung region, label it as nonlung
and go to Step 8. Otherwise, terminate the processing.

The result is shown in Figure 6.

2.2.5. Inclusion of Excluded Pathological Areas. Although the
lung segmentation based on thresholding is simple and quite
fast, it may fail in case of lungs with large tumors of high
density since a significant contrast between the lungs and the
surrounding tissues does not exist. In such circumstances,
morphological operations like closing may not be sufficient
to correct the borders of the lungs.

We propose a three-stage approach to include pathologi-
cal areas, that is, tumors that are in relation with the borders
of the lungs and are excluded by segmentation in the previous
steps, into the lungs. This approach is based on obtaining the
intersection of interpolated and propagated lungs.

Stage 1. Apply an interpolation procedure to the lungs
obtained from the previous subprocess.

Step 1. Create an empty mask, that is, a two-dimensional
matrix the same size as the slices.

Step 2. Starting from the first (upper) slice to the last (lower)
slice of CT scan, if a pixel 𝑃(𝑥, 𝑦) is labelled as lung in any
slice, label the corresponding pixel 𝑃(𝑥, 𝑦) in the mask as
lung.

Step 3. For each pixel 𝑃(𝑥, 𝑦) labelled as lung in the mask,
find the first (𝑓) and the last (𝑙) slices of CT scan in which
𝑃(𝑥, 𝑦) is labelled as lung.

Step 4. Label all the pixels 𝑃(𝑥, 𝑦) as lung in all of the slices
between 𝑓 and 𝑙, where 𝑥 and 𝑦 are the coordinates of the
pixel 𝑃.

Stage 2. Propagate the right and left lungs obtained from the
previous subprocess separately.

Step 1. Find the border pixels of the lung.

Step 2. For each border pixel, find the nonlung pixels within
the neighborhood (7 × 7) centered at the current border pixel
and label them as candidate pixels.

Step 3. For each candidate pixel, ifmore than half of the pixels
within the neighborhood (7 × 7 × 7) centered at the current
candidate pixel are labelled as lung, schedule the current
candidate pixel for inclusion into the lung.

Step 4. If there is any scheduled candidate pixel, label them
as lung and go to Step 1. Otherwise terminate the processing.

Stage 3. Get the intersection of the lungs that resulted from
Stages 1 and 2.

Herein, neighborhood of 7 × 7 × 7 region was chosen
experimentally by testing this approach on the CT scans from
the Department of Radiation Oncology, Gülhane Military
Medical Academy. These CT scans belong to 10 patients with
limited-stage small cell lung cancer. Each of the patients has
one tumor. Gross tumor volumes (GTVs) are 36.7, 16.4, 85.8,
33.0, 28.7, 40.8, 66.5, 21.7, 45.5, and 93.2 cc. Figure 7 shows
the effects of different neighborhoods used in Stage 2, Step 3.
After all, as shown in Figure 8, excluded pathological areas
are included into the lungs.

In order to see results of this approach in case of
juxtapleural nodules, we used 10 CT scans from the LIDC.
The CT scans from the LIDC do not include large tumors
but comprised a total of 12 juxtapleural nodules that are 5.0–
10.0mm in diameter.

As can be seen fromSection 3, the lungs can be segmented
accurately in both cases using this approach.
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Figure 7: Effects of different neighborhoods used in Section 2.2.5, Stage 2, Step 3: (a) original CT slice, (b) segmented right lung, (c)
propagated right lung using 5 × 5 × 5 neighborhood, (d) propagated right lung using 7 × 7 × 7 neighborhood, and (e) propagated right
lung using 9 × 9 × 9 neighborhood. Using 7 × 7 × 7 neighborhood, excluded pathological areas are included into the lungs successfully.

Figure 8: Inclusion of excluded pathological areas: pathological
areas contours in red superimposed on the original slice.

2.3. Segmentation of the Spinal Canal. Fuzzy segmentation
approach is examined in segmentation of the spinal canal.
This process includes two subprocesses: segmentation of the
vertebra and fuzzy segmentation of the spinal canal.

2.3.1. Segmentation of the Vertebra. Since the spinal canal is
the space in vertebra through which the spinal cord passes,
vertebra must be segmented initially. Bones have higher
density values than other structures so that the body region
is thresholded with a value of 145HU [28] in each slice.
Using the connected component labelling, the regions that
are greater than 25mm2 and have at least a distance of 10
pixels to the border of the body segments are accepted as bone
segments. Exploiting the advantage of anatomic knowledge,
a region of interest is determined and vertebra is segmented
as follows.

Step 1. Find the bounding box (BB) of the body segment and
determine the boundaries of BB as BB.left, BB.right, BB.top,
and BB.bottom.

Step 2. Determine the coordinates of the center point (CP) of
BB as CP.row and CP.col.

Step 3. Determine a region of interest (ROI) for vertebra
detection using the border definitions below:

ROI.left = CP.col − 10,

ROI.right = CP.col + 10,

ROI.top = CP.row − 50,

ROI.bottom = BB.bottom − 10.

(2)

Step 4. Label the bone segment that overlaps with the ROI
as vertebra and create a binarized vertebra image for the
corresponding slice.

Step 5. In the vertebra image detect the pixels that have
nonzero gradient magnitude values and label them as verte-
bra in order to include the missing parts.

2.3.2. Fuzzy Segmentation. Banik et al. [27] usedmorphologi-
cal reconstruction to segment the spinal canal instead of fuzzy
connectivity.They applied the Hough transform to detect the
best fitting circles to the cropped edge maps that include the
thoracic vertebral structure and then used the centers of these
circles as the seeds for the morphological reconstruction.

We use a modified version of the fuzzy segmentation by
morphological reconstruction presented in aforementioned
study [27]. The proposed spinal canal segmentation method
detects the seeds and performs fuzzy segmentation only for
slices in which the spinal canal is not enclosed completely by
the vertebra.

The steps of the fuzzy segmentation approach that we
propose are as follows.

Step 1. Determine if the slice has a spinal canal enclosed
completely by the vertebra or not. To do this, find the
bounding box of the vertebra. In the bounding box of
the vertebra, find the pixels that are not labelled as bone.
Using connected component labelling, detect the segments
that the pixels form. If the slice has a segment that is not
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connected to the boundaries of bounding box of the vertebra,
it is understood that the slice has a spinal canal enclosed
completely by the vertebra.

Step 2. If so, label the nonbone region enclosed by the
vertebra as the spinal canal and then go to Step 9.

Step 3. If not, take CP of the spinal canal in the previous
(following) slice as a seed.

Step 4. Take a window of size 11 × 11 pixels centered at the
coordinates of CP in the current slice. Detect the pixels in the
definedwindowhaving density values in the range of 𝜇±2.5𝜎,
where 𝜇 = 23HU and 𝜎 = 15HU. Calculate the mean 𝜇SP
and the standard deviation 𝜎SP of the density values of the
detected pixels.

Step 5. Reconstruct the fuzzy region according to the fuzzy
membership function, namely, the unnormalized Gaussian
function, using 𝜇SP and 𝜎SP as the mean and the standard
deviation parameters and the pixels detected in the previous
step as the seeds.

Step 6. Binarize the fuzzy region using 0.5 as the threshold
value.

Step 7. Using the connected component labelling, find the
segment with the maximum area in the thresholded fuzzy
region and label it as the spinal canal.

Step 8. Morphologically open [30] the spinal canal with a
3 × 3 disk-shaped structuring element to obtain the border
regions clearly.

Step 9. Take the following (previous) slice and go to Step 1.

The result of this process is shown in Figure 9.

3. Results and Discussion

The proposed segmentation method was implemented in
Matlab R14 and tested on a PC with 1.73GHz processor and
1.0GBRAM.Also, we implemented themethods proposed in
other studies [7, 10, 11, 27] as described in Introduction and
applied them along with our method to the 10 CT scans of
patients with cancer and to the 10 CT scans from the LIDC on
the same platform mentioned above. Figures 10 and 11 show
results of our method for randomly selected slices from the
10 CT scans of patients with cancer.

Similar to other studies [7, 10, 11], to segment the lungs
and trachea/main bronchi, we used combinations of well-
known image processing algorithms, namely, thresholding,
morphological operations, region growing, and connected
component labelling.

In order to solve the undersegmentation problem caused
by pleural nodules and pulmonary vessels contacting the
lung boundary, de Nunzio et al. [7] applied morphological
three-dimensional closing to the segmented lungs, and Yim
and Hong [10] corrected the lung boundaries in each slice
by evaluating curvatures of the boundary pixels. Wang et

al. [11] created texture feature images using a cooccurrence
matrix and thresholdedmultiplication of entropy and inverse
difference moment feature values of each pixel to identify the
missed abnormal lung regions in CT slices.

In this study, we propose an original method to obtain
pathological areas in the segmented lungs as described in
Section 2.2.5, based on obtaining the intersection of the
interpolated and propagated lungs.

Banik et al. [27] utilized a fuzzy segmentation approach
by using morphological reconstruction to segment the spinal
canal. For each slice they applied the Hough transform to
detect the best fitting circles to the cropped edge maps that
include the thoracic vertebral structure and then used the
centers of these circles as the seeds for the morphological
reconstruction. Our approach to segment the spinal canal
differs from the method proposed by Banik et al. [27] in two
ways. First, unlike the method proposed by Banik et al. [27],
we detect the seeds and perform fuzzy segmentation only for
slices in which the spinal canal is not enclosed completely
by the vertebra. We segment the nonbone region enclosed by
the vertebra as the spinal canal if it is enclosed completely by
the vertebra. Second, we take simply the center point of the
segmented spinal canal in the previous (following) slice as a
seed without requiring any time-consuming process like the
Hough transform.

To assess the accuracy, we performed two comparisons
between the automatically obtained results and the gold
standard. Here, the results obtained manually by an expert
were used as gold standard. An expert radiation oncologist
manually delineated the body region, right and left lung,
trachea/main bronchi, and spinal canal in consecutive slices
of all CT scans by mouse dragging at a dedicated contouring
workstation using Advantage SimMD simulation and local-
ization software (Advantage SimMD, GE, UK) [31, 32].

The first comparison was performed by computing the
volume overlap ratio (VOR) [4, 33], that is, ratio of the
intersection volume to the union volume, as follows:

VOR = 𝑉 (𝐴 ∩𝑀)
𝑉 (𝐴 ∪𝑀)

× 100, (3)

where 𝐴 and𝑀 are automatically and manually segmented
structures, respectively.

Volume of a structure is computed by taking the product
of total number of pixels labelled as that structure, pixel
dimensions (width and height), and slice thickness.

As the second comparison, surface distance evaluation
[33] was performed to account for the global and local dis-
agreement between automatically and manually segmented
structures precisely. Herein the average, root mean square
(RMS), and maximum symmetric surface distance values
between the surface voxels of manually and automatically
segmented structures were assessed. To that end, the voxels
in a segmented structure having at least one neighbor (within
18 neighborhoods) that does not belong to the structure are
defined as the surface voxels. After defining the sets of surface
voxels for manually and automatically segmented structures,
for each surface voxel in these sets, the Euclidean distance to
the closest surface voxel in the other set is calculated.
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(e) (f)

Figure 9: Segmentation of the spinal canal: (a) original CT slice in which the vertebra encloses the spinal canal completely, (b) original CT
slice in which the vertebra does not enclose the spinal canal completely, (c, d) segmented spinal canals of (a, b) in white, and (e, f) spinal canal
contours in red superimposed on the original slices.
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Figure 10: Automatic and manual segmentation of the lungs, trachea/main bronchi, and spinal canal: contours in yellow show automatic
segmentation results and contours in green show manual segmentation results.

For a given structure, the average symmetric surface dis-
tance (ASD), RMS symmetric surface distance (RMSD), and
maximum symmetric surface distance (MSD) are calculated
using the following equations:

ASD =
∑
𝑉𝐴∈𝑆𝐴
𝑑 (𝑉
𝐴
, 𝑆
𝑀
) + ∑
𝑉𝑀∈𝑆𝑀
𝑑 (𝑉
𝑀
, 𝑆
𝐴
)

󵄨󵄨󵄨󵄨
𝑆
𝐴

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑆
𝑀

󵄨󵄨󵄨󵄨

,

RMSD = √
∑
𝑉𝐴∈𝑆𝐴
𝑑
2
(𝑉
𝐴
, 𝑆
𝑀
) + ∑
𝑉𝑀∈𝑆𝑀
𝑑
2
(𝑉
𝑀
, 𝑆
𝐴
)

󵄨󵄨󵄨󵄨
𝑆
𝐴

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑆
𝑀

󵄨󵄨󵄨󵄨

,

MSD = max{max
𝑉𝐴∈𝑆𝐴

{𝑑 (𝑉
𝐴
, 𝑆
𝑀
)} , max
𝑉𝑀∈𝑆𝑀

{𝑑 (𝑉
𝑀
, 𝑆
𝐴
)}} ,

(4)

where 𝑆
𝐴

and 𝑆
𝑀

represent the sets of surface voxels of
automatically and manually segmented structures, respec-
tively, while 𝑑(V, 𝑆) refers to theminimumEuclidean distance

between a voxel V and surface 𝑆, and |𝑆| is the number of
voxels that belong to the surface 𝑆.

Comparison of the results of our method and the other
methods with the gold standard is shown in Tables 1, 2, 3, and
4 for the 10 CT scans from the LIDC and in Tables 5, 6, 7, and
8 for the 10 CT scans of the 10 cancer patients.

To make a performance assessment of the proposed
segmentation method, we compared the average processing
time measured from all scans for segmentation of the lungs,
trachea/main bronchi, and spinal canal with the methods
proposed in other studies [7, 10, 11, 27]. For this purpose, by
means of “tic” and “toc” commands of Matlab, we started a
stopwatch timer and display the elapsed time to segment a
structure in a slice using one of the methods. We obtained
the elapsed time values for each method, each structure, and
each slice separately. After then, for eachmethod, themean of
the time values to segment a structure in a slice is calculated
and multiplied by 100. Table 9 shows average processing time
of the methods for a 512 × 512 × 100CT scan.
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Figure 11:The contours of automatically segmented structures: body contours in yellow, left lung contours in blue, right lung contours in red,
trachea/main bronchi contours in green, bone contours in magenta, and spinal canal contours in cyan superimposed on the original slices.

Table 1: Comparison of VOR (%) for the 10 CT scans from the LIDC.

OARs Method
Our method de Nunzio et al. [7] Yim and Hong [10] Wang et al. [11] Banik et al. [27]

Left lung 99.14 ± 0.33 99.12 ± 0.38 — — —
Right lung 99.07 ± 0.30 99.03 ± 0.42 — — —
Lungs (together) 99.11 ± 0.26 — 99.15 ± 0.30 98.90 ± 0.30 —
Trachea/main bronchi 96.91 ± 1.47 97.06 ± 1.30 97.68 ± 1.42 95.61 ± 1.65 —
Spinal canal 97.19 ± 2.72 — — — 97.11 ± 2.35

4. Conclusions

In this study, we suggest a fully automatedmethod to segment
the lungs, trachea/main bronchi, and spinal canal from CT
scans of thorax intended for use in RTP. For this purpose, we
implemented software that performs three processes. In the
first process, the body region of the patient was segmented by
elimination of the background. The lungs and trachea/main
bronchi were segmented in the second process and finally,
the spinal canal was segmented. Within these processes, a
new algorithm for inclusion of excluded pathological areas
into the segmented lungs, a modified version of the fuzzy

segmentation by morphological reconstruction for spinal
canal segmentation, and the well-known image processing
algorithms were used.The fixed threshold values and the size
of the structuring elements we utilized were determined on
the basis of our experiments and the other studies in the
literature.

Comparison of our method with the gold standard using
the LIDC data reveals that the proposed method properly
reproduces themanual segmentations, similar to othermeth-
ods (Tables 1–4). Furthermore, our method provides better
results in the segmentation of CT scans of patients with lung
cancer (Tables 5–8). We obtained lower distance values than
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Table 2: Comparison of the average symmetric surface distance (mm) for the 10 CT scans from the LIDC.

OARs Method
Our method de Nunzio et al. [7] Yim and Hong [10] Wang et al. [11] Banik et al. [27]

Left lung 0.31 ± 0.10 0.44 ± 0.19 — — —
Right lung 0.27 ± 0.17 0.34 ± 0.12 — — —
Lungs (together) 0.29 ± 0.03 — 0.32 ± 0.11 0.34 ± 0.20 —
Trachea/main bronchi 0.34 ± 0.14 0.36 ± 0.05 0.39 ± 0.13 0.59 ± 0.15 —
Spinal canal 0.28 ± 0.21 — — — 0.35 ± 0.09

Table 3: Comparison of the RMS symmetric surface distance (mm) for the 10 CT scans from the LIDC.

OARs Method
Our method de Nunzio et al. [7] Yim and Hong [10] Wang et al. [11] Banik et al. [27]

Left lung 0.61 ± 0.22 0.79 ± 0.23 — — —
Right lung 0.63 ± 0.38 0.82 ± 0.51 — — —
Lungs (together) 0.67 ± 0.18 — 0.71 ± 0.22 0.89 ± 0.37 —
Trachea/main bronchi 0.66 ± 0.35 0.69 ± 0.20 0.81 ± 0.24 1.13 ± 0.41 —
Spinal canal 0.60 ± 0.43 — — — 0.73 ± 0.38

Table 4: Comparison of the maximum symmetric surface distance (mm) for the 10 CT scans from the LIDC.

OARs Method
Our method de Nunzio et al. [7] Yim and Hong [10] Wang et al. [11] Banik et al. [27]

Left lung 1.76 ± 0.66 1.83 ± 0.99 — — —
Right lung 1.93 ± 1.03 2.02 ± 0.87 — — —
Lungs (together) 2.08 ± 1.15 — 2.23 ± 1.36 2.76 ± 1.90 —
Trachea/main bronchi 2.55 ± 1.44 2.88 ± 0.97 3.03 ± 1.65 3.51 ± 2.24 —
Spinal canal 2.67 ± 1.89 — — — 3.78 ± 2.00

Table 5: Comparison of VOR (%) for the 10 CT scans of the 10 cancer patients.

OARs Method
Our method de Nunzio et al. [7] Yim and Hong [10] Wang et al. [11] Banik et al. [27]

Left lung 98.70 ± 1.32 96.50 ± 0.91 — — —
Right lung 98.70 ± 0.86 96.30 ± 1.12 — — —
Lungs (together) 98.70 ± 1.27 — 97.10 ± 1.02 95.40 ± 1.82 —
Trachea/main bronchi 94.30 ± 3.93 94.60 ± 3.35 94.60 ± 2.87 93.00 ± 3.63 —
Spinal canal 96.50 ± 3.67 — — — 96.70 ± 3.59

Table 6: Comparison of the average symmetric surface distance (mm) for the 10 CT scans of the 10 cancer patients.

OARs Method
Our method de Nunzio et al. [7] Yim and Hong [10] Wang et al. [11] Banik et al. [27]

Left lung 0.73 ± 0.36 0.90 ± 0.51 — — —
Right lung 0.77 ± 0.48 0.93 ± 0.71 — — —
Lungs (together) 0.63 ± 0.32 — 0.94 ± 0.57 0.99 ± 0.73 —
Trachea/main bronchi 0.89 ± 0.72 0.50 ± 0.23 0.55 ± 0.31 0.71 ± 0.22 —
Spinal canal 0.57 ± 0.41 — — — 0.52 ± 0.39

the methods proposed in [7, 10, 11]. This confirms that our
method ensures better agreementwith the gold standard.Our
superior results in lung segmentation may be explained with
the inclusion of an additional subprocess, namely, “inclusion
of excluded pathological areas” which is unique to our study.

As shown in Table 9, our lung segmentation method
is 1.3, 1.7, and 2.3 times faster than the methods proposed
in other studies [7, 10, 11], respectively. This is because,
unlike the methods proposed in other studies [7, 10, 11], our
method does not utilize time-consuming processes, that is,
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Table 7: Comparison of the RMS symmetric surface distance (mm) for the 10 CT scans of the 10 cancer patients.

OARs Method
Our method de Nunzio et al. [7] Yim and Hong [10] Wang et al. [11] Banik et al. [27]

Left lung 1.33 ± 0.48 1.77 ± 0.63 — — —
Right lung 1.48 ± 0.75 1.51 ± 0.89 — — —
Lungs (together) 1.30 ± 0.93 — 1.92 ± 1.13 2.16 ± 1.24 —
Trachea/main bronchi 1.52 ± 0.86 1.23 ± 0.55 1.38 ± 0.77 1.56 ± 0.97 —
Spinal canal 1.13 ± 0.78 — — — 1.02 ± 0.62

Table 8: Comparison of the maximum symmetric surface distance (mm) for the 10 CT scans of the 10 cancer patients.

OARs Method
Our method de Nunzio et al. [7] Yim and Hong [10] Wang et al. [11] Banik et al. [27]

Left lung 8.42 ± 3.48 9.16 ± 3.01 — — —
Right lung 8.23 ± 4.12 10.02 ± 4.65 — — —
Lungs (together) 8.57 ± 2.88 — 10.67 ± 2.78 11.13 ± 4.34 —
Trachea/main bronchi 11.78 ± 4.35 11.21 ± 3.98 11.28 ± 4.74 12.96 ± 4.02 —
Spinal canal 8.46 ± 3.97 — — — 8.38 ± 5.79

Table 9: Average processing time (minutes) of the methods for a 512 × 512 × 100CT scan.

OARs Method
Our method de Nunzio et al. [7] Yim and Hong [10] Wang et al. [11] Banik et al. [27]

Lungs 3.8 5.0 6.3 8.9 —
Trachea/main bronchi 1.5 1.8 1.6 1.5 —
Spinal canal 4.4 — — — 9.3

morphological three-dimensional closing, scan line search,
and texture feature calculation.While the number of required
calculations in our lung segmentation method is 9, the
methods proposed in those studies [7, 10, 11] require 9, 10, and
12 calculations, respectively.

Our modified version of the fuzzy segmentation by mor-
phological reconstruction has achieved comparable results to
the one presented in the aforementioned study [27], while
decreasing the computational load and speeding up the
process of spinal canal segmentation. On average, our spinal
canal segmentation process takes 4.4 minutes, while the
time needed for the method proposed in [27] is 9.3 minutes
(Table 9).This may be explained by our different approach in
detecting the seeds and omitting fuzzy segmentation in slices
where the vertebra encloses the spinal canal completely.

The use of our method in RTP may have potential impli-
cations. It may improve consistency and concordance in
delineation, which is a critical part of RTP. It may also assist
in accelerating the clinical workflow through shortening the
time of contouring, which is highly desirable in busy clinics.

In conclusion, our proposed method achieved favorable
results in patients with lung cancer. This very concise and
effective method can avoid heavy computational load and
might offer expedited segmentation that can be used in RTP,
despite the need for further studies supporting its utiliza-
tion.
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