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Background: Lung cancer, especially non-small cell lung cancer (NSCLC), is one of the most-deadly 
malignancies worldwide. Lung cancer has a worse 5-year survival rate than many primary malignancies. 
Thus, the early detection and prognosis prediction of lung cancer are crucial. The early detection and 
prognosis prediction of lung cancer have improved with the widespread use of artificial intelligence (AI) 
technologies. This meta-analysis examined the accuracy and efficacy of AI-based models in predicting lymph 
node metastasis (LNM) in NSCLC patients using imaging data. Our findings could help clinicians predict 
patient prognosis and select alternative therapies.
Methods: We searched the PubMed, Web of Science, Cochrane Library, and Embase databases for 
relevant articles published up to January 31, 2024. Two reviewers individually evaluated all the retrieved 
articles to assess their eligibility for inclusion in the meta-analysis. The systematic assessment and meta-
analysis comprised articles that satisfied the inclusion criteria (e.g., randomized or non-randomized trials, 
and observational studies) and exclusion criteria (e.g., articles not published in English), and provided data 
for the quantitative synthesis. The quality of the included articles was assessed using the Quality Assessment 
of Diagnostic Accuracy Studies-2 (QUADAS-2). The pooled sensitivity, specificity, and area under the curve 
(AUC) were used to evaluate the ability of AI-based imaging models to predict LNM in NSCLC patients. 
Sources of heterogeneity were investigated using meta-regression. Covariates, including country, sample 
size, imaging modality, model validation technique, and model algorithm, were examined in the subgroup 
analysis.
Results: The final meta-analysis comprised 11 retrospective studies of 6,088 NSCLC patients, of whom 
1,483 had LNM. The pooled sensitivity, specificity, and AUC of the AI-based imaging model for predicting 
LNM in NSCLC patients were 0.87 [95% confidence interval (CI): 0.80–0.91], 0.85 (95% CI: 0.78–0.89), 
and 0.92 (95% CI: 0.90–0.94). Based on the QUADAS-2 results, a risk of bias was detected in the patient 
selection and diagnostic tests of the included articles. However, the quality of the included articles was 
generally acceptable. The pooled sensitivity and specificity were heterogeneous (I2>75%). The meta-
regression and subgroup analyses showed that imaging modality [computed tomography (CT) or positron 
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Introduction

Despite significant progress in the early detection and 
management of lung cancer, it has been the primary cause of 
cancer-related death worldwide for an extended period (1).  
The predominant histological subtype of lung cancer is 
non-small cell lung cancer (NSCLC), which comprises 
approximately 80–85% of all lung cancer cases (2). This 
subtype has a five-year survival rate of just 23.6% (2). 
Despite advances in clinical studies on the differential 
diagnosis, preoperative staging, efficacy evaluation, and 
prognosis prediction of NSCLC over the past decade, 
the prognosis of NSCLC patients remains poor This is 
primarily attributed to many patients having lymph node 
metastasis (LNM) or distant metastasis at the time of 
diagnosis. LNM is the predominant and consequential 
method o f  metas ta s i s  in  pa t ient s  wi th  NSCLC. 
Approximately 16.6% of patients with tumor stage I (T1) 
NSCLC develop LNM (3). The survival rate beyond five 
years for NSCLC patients diagnosed with LNM ranges 
from 26% to 53% (4). In tumor-lymph node-metastasis 
(TNM) staging, node-staging (N-staging) plays a crucial 
role in the diagnosis, treatment strategy, and prognosis 
prediction of patients (5).

Existing approaches for evaluating LNM in lung cancer 
include clinical procedures, imaging techniques, and 
invasive medical examinations. LNM can be accurately 
assessed by imaging techniques such as ultrasonography, 
computed tomography (CT), magnetic resonance imaging 
(MRI), and positron emission tomography (PET)-CT. 
Lymph node biopsy and dissection are invasive techniques 
that provide direct access to lymph node tissue samples, 
enabling the confirmation of diagnosis and staging. 

However, despite the widespread use of these assessment 
techniques in patients diagnosed with lung cancer, each 
has its own inherent limitations. For example, imaging 
investigations are limited in their ability to identify 
micronodal metastasis and accurately evaluate the extent of 
metastasis. Further, in PET-CT scans, there is the potential 
of false positives when reactive non-metastatic lymph nodes 
exhibit fluorodeoxyglucose (FDG) concentrations (6). 
Despite their ability to provide conclusive outcomes, the 
efficacy of invasive testing is limited by its intrusive nature 
and the accompanying hazards. Thus, the development of 
novel and precise non-invasive assessment techniques has 
great clinical significance in the evaluation of LNM among 
patients diagnosed with lung cancer.

The advent of the digital age in recent years has resulted 
in a substantial increase in the volume of medical data. The 
wide variety of medical data has placed greater demands 
on data pre-processing, storage, analysis, and utilization. 
The continual advancement of AI technology is being 
deeply incorporated with clinical applications in lung 
cancer treatment (7). AI technology relies on extensive data 
training and deep-learning algorithms to autonomously 
extract information from medical pictures and execute 
precise analysis and decision making (8). AI algorithms 
are progressively becoming a significant part of the lung 
cancer imaging diagnosis. The primary components of 
AI include radiomics, machine learning, deep learning, 
and natural language processing procedures. Based on 
high-throughput automated data analysis, imageomics 
technology can automatically, accurately and quantitatively 
extract the image features of the region of interest, mine the 
changes of tissues, cells, proteins and nucleic acids implicit 
in the images through a large amount of data, analyze 

emission tomography (PET)/CT], and the neural network method model design significantly affected 
heterogeneity of this study. Models employing sample size data from a single center and the least absolute 
shrinkage and selection operator (LASSO) method had greater sensitivity than other techniques. Using the 
Deek’ s funnel plot, no publishing bias was found. The results of the sensitivity analysis showed that deleting 
each article one by one did not change the findings.
Conclusions: Imaging data models based on AI algorithms have good diagnostic accuracy in predicting 
LNM in patients with NSCLC and could be applied in clinical settings.
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the pathophysiology, genetics and metabolism, signal 
transduction and other states of the region of interest. 
Consequently, it enables the accurate determination of 
tumor differentiation and staging and the prediction of 
tumor behavior (9).

Various machine-learning algorithms, such as logistic 
regression, support vector machines (SVMs), artificial 
neural networks, Bayesian, K-neighborhood algorithms, 
decision trees, and random forests (RFs), can be used 
to autonomously detect patient clinical variables and 
indicators, analyze patient medical data, and provide 
valuable insights that aid in the process of diagnostic and 
therapeutic decision making for specific cases. Machine-
learning methods now have substantial clinical significance 
in the screening, diagnosis, and prognosis of lung cancer. 
Deep learning, which includes convolutional neural 
networks (CNNs), recurrent neural networks, generative 
adversarial networks, and transformers, represents a 
distinct category within the field of machine learning. 
These models employ deep networks to acquire knowledge 
iteratively and approximate intricate models, enabling 
robust functionalities. AI technology can extract abundant 
information from the imaging data of patients with lung 
cancer, enabling clinicians to precisely evaluate the presence 
and progression of tumors. Using deep learning and neural 
network technology, AI can autonomously detect lung 
cancer related lesion characteristics, including the form, 
size, and edge properties of the mass. This helps clinicians 
to promptly identify and diagnose a patient’s condition (10). 
Further, AI algorithms have been shown to have notable 
consistency and impartiality, enabling them to effectively 
make automated judgements using extensive training data 
and algorithmic models. This capability serves to reduce 
diagnostic disparities among medical practitioners (11). 
Unlike conventional human interpretation techniques, 
AI algorithms can provide automated image analysis and 
diagnosis. This leads to a significant reduction in the time 
required for diagnosis and an enhancement in lung cancer’s 
early detection rate and treatment efficacy (12). Urso et al. (13)  
have shown that imaging genomics and AI enable the 
detection of characteristics in medical images that are 
often imperceptible to the human eye. These features have 
significant promise for staging, prognosis, and biological 
assessment applications.

Recently, several scholars have developed imaging-
based AI models to predict LNM (14-24). The accurate 
preoperative prediction of lymph node status facilitates the 
selection of lung segmentectomy or wedge resection for 

early-stage patients with negative lymph nodes. Notably, 
lymph node status cannot be assessed during wedge 
resection. Conversely, knowledge of patients’ lymph node 
metastatic status could help to stratify patients and inform 
treatment decisions. Lobectomy and radical lymph node 
dissection could improve the survival of high-risk patients. 
While less invasive procedures, such as sub-lobar resection 
or wedge resection, could improve the quality of life of 
low-risk patients. In addition, for patients planning to 
undergo radiation therapy, accurate mediastinal staging 
can help oncologists designate irradiation fields and reduce 
the risk of treatment failure due to occult LNM. Both 
NSCLC and small cell lung cancer can be evaluated by 
TNM reports, which can inform decisions about treatment 
strategies. Therefore, the accurate prediction of N-staging 
in the TNM report can provide clinicians with additional 
information for the selection of treatment strategies such 
as surgery, chemotherapy, and radiation therapy. Due 
to the limited number and diversity of image features, 
developing more reliable methods based on imaging to 
accurately predict LNM in NSCLC would be an essential 
advancement in diagnostic technology.

Several studies have examined the use of AI in predicting 
LNM in lung cancer; however, systematic assessments 
evaluating the predictive accuracy of AI-based imaging 
data are limited. This study sought to conduct a systematic 
review and meta-analysis of existing research data on the 
use of AI algorithm-assisted imaging for the evaluation of 
LNM in lung cancer. More specifically, this study sought to 
examine the diagnostic accuracy, sensitivity, and specificity of 
this imaging technique. By using AI algorithms, practitioners 
could enhance their understanding of and ability to predict 
LNM in lung cancer patients, which in turn could enhance 
the precision of early detection and the reliability of 
treatment decision making, ultimately leading to improved 
treatment outcomes and survival rates for lung cancer 
patients. We present this article in accordance with the 
PRISMA-DTA reporting checklist (25) (available at https://
qims.amegroups.com/article/view/10.21037/qims-24-664/
rc).

Methods

We conducted a systematic review and meta-analysis 
of diagnostic test accuracy studies. This study has 
been registered in the Internat ional  Prospect ive 
Registry for Systematic Evaluation (PROSPERO) (ID: 
CRD42024516017).

https://qims.amegroups.com/article/view/10.21037/qims-24-664/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-664/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-664/rc
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Search strategies and literature screening

We conducted an extensive literature search to retrieve 
relevant articles. We searched the PubMed (Medline), 
Embase, Cochrane Library, and Web of Science databases 
to retrieve relevant articles published up to January 31, 
2024. We used a combination of keywords, including 
subject headings (MeSH)/Emtree glossaries combined with 
free words, to search the titles and abstracts of articles. 
The following keywords were used: “non-small cell lung 
cancer”, “lymph node metastasis”, “artificial intelligence”, 
“deep learning”, “machine learning”, and “radiomics”. 
For more information on the search keywords used for 
each database, please see the table available at https://cdn.
amegroups.cn/static/public/qims-24-664-1.xlsx. Searches 
were limited to English-language publications; however, 
there were no restrictions on the year of publication, age, or 
location of participants. Additionally, we manually searched 
the reference lists of the relevant studies and meta-analyses 
to ensure we identified any potentially relevant research 
articles. Two researchers independently selected studies 
based on pre-specified inclusion and exclusion criteria, and 
imported the literature into Endnote X9.3.1 (Clarivate 
Analytics, US) for management. Duplicate articles or 
ineligible studies were excluded. We identified studies that 
met the inclusion criteria by screening the titles, abstracts, 
and full text of all the articles.

Inclusion and exclusion criteria

After removing the duplicate articles, the remaining 
articles were reviewed to identify studies that met the 
following include criteria: (I) population: the study included 
patients with pathologically confirmed NSCLC (including 
adenocarcinoma, squamous cell carcinoma, and large cell 
carcinoma); (II)  intervention: the study sought to predict 
LNM using an AI algorithm based on quantitative imaging 
data; (III) outcome: the study used the area under the curve 
(AUC) as the primary outcome metric, and sensitivity, 
specificity, and the positive likelihood ratio (PLR), and 
the negative likelihood ratio (NLR) as the secondary 
outcome metrics; and (IV) study design: the study was 
an observational study (retrospective or prospective), 
randomized or non-randomized controlled trial. Articles 
were excluded from the meta-analysis if they met any of 
the following criteria: (I) repeated studies with similar data; 
(II) were related to an animal study, case report, literature 
review, or conference abstract; and/or (III) were published 

in languages other than English. The above inclusion and 
exclusion criteria were employed to ensure the quality and 
reliability of the studies, and minimize potential biases 
and errors. Two researchers performed the data extraction 
independently, and a third researcher was consulted if any 
differences of opinion arose.

Data extraction and quality assessment

The following data were extracted from each of the 
included studies: (I) surname of the first author; (II) year of 
publication; (III) origin(s) of the patients; (IV) type of study; 
(V) number and average age of patients; (VI) metastasis/
non-metastasis status; (VII) use of the gold standard for 
LNM (yes/no); (VIII) method of validation of the model; 
(IX) diagnostic endpoints; (X) type of imaging data; (XI) AI 
algorithms used to construct the model; and (XII) AUC, 
and other parameters. Four-cell tabulated data (2×2) were 
collected, including the true positive, true negative, false 
positive, and false negative. When comparing the diagnostic 
performance of different algorithms for the same sample, 
the algorithm that produced the best results was selected. 
If there were no sensitivities or specificities in a study, the 
Engauge Digitizer (version 12.1, Mark Mitchell) was used 
to calculate the sensitivities and specificities at the maximum 
of the Youden Index based on the receiver operating 
characteristic (ROC) curves from the article. If there were 
more than two models for the same group of patients in a 
study, the model with the higher AUC value was included 
in our meta-analysis.

The quality of the included studies was assessed by 
two reviewers using the Quality Assessment of Diagnostic 
Accuracy Studies-2 (QUADAS-2) (26). This tool assessed 
the “risk of bias” of the studies across the following four key 
domains: patient selection; index test; reference standard; 
flow and timing. The applicability of the first three domains 
was also assessed using a rating of “high”, “low”, or 
“unclear”. For individual studies, the risk of bias for each 
domain was assessed as “high”, “low”, or “unclear”. The 
evaluation was performed using Revman 5.3 (Cochrane 
Collaboration, UK).

Statistical analysis

Stata 14.2 (StataCorp LP, College Station, TX, USA) 
was used for the data analysis. Due to the significant 
heterogeneity of this study, we combined the relevant 
diagnostic accuracy indicators, including sensitivity, 

https://cdn.amegroups.cn/static/public/qims-24-664-1.xlsx
https://cdn.amegroups.cn/static/public/qims-24-664-1.xlsx
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specificity, diagnostic odds ratio (DOR), NLR, and PLR, 
using a bivariate random-effects model. The model’s AUC 
was calculated using the summary receiver operating 
characteristic (SROC). A threshold effect test was 
conducted using Meta-disc version 1.4 (Hospital Ramon y 
Cajal and Complutense University of Madrid, ESP). The 
presence or absence of a threshold effect was determined 
by calculating the Spearman’s correlation coefficient 
between the logarithm of sensitivity and the logarithm of 
(1-specificity). A strong positive correlation indicated the 
presence of a threshold effect. The heterogeneity of the 
results of the included studies was assessed using Cochran’s 
Q test, combined with I2 statistics. By adding covariates to 
the model, meta-regression and subgroup analyses based on 
country (China or other), sample size, data source (single-
center or multi-center), imaging modality (CT or PET/
CT), model validation modality (train-test split or cross-
validation), and the algorithm used to construct the model 
[least absolute shrinkage and selection operator (LASSO), 
SVM, or neural network were performed to identify the 
sources of heterogeneity]. The likelihood of publication 
bias was assessed using funnel plots, and the stability of the 

results was assessed by sensitivity analyses. Clinical utility 
was evaluated using Fagan plots, which provided the pretest 
probability of lymphatic metastasis when calculating the 
post-test probability. The combined effect value of multiple 
studies was statistically significant if P≤0.05.

Results

Literature search results

Figure 1 summarizes the results of the literature search and 
screening of relevant studies. Initially, 304 articles were 
retrieved from the searched databases; that is, PubMed [41], 
Embase [62], Cochrane Library [0], and Web of Science [201]. 
Using software and manually removing duplicate records, 
55 duplicate articles were successfully eliminated. Following 
the application of the inclusion/exclusion criteria, 11 articles  
(14-24) were selected for inclusion in the meta-analysis.

Basic characteristics of the included literature

Tables 1 and 2 detail the characteristics of each eligible 
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Full-text articles assessed for 
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Studies included in systematic 
review (n=11)

Studies included in meta-analysis
(n=11)

Full-text articles excluded, with reason 
(n=204):

•	 Not-related outcomes or not used AI 
(n=167)

•	 Not based on imaging data (n=37)

Figure 1 PRISMA flowchart of literature screening. NSCLC, non-small cell lung cancer; AI, artificial intelligence.
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study. All the included studies were published between 
2020 and 2024. The study sample sizes ranged from 71 
to 1,325 patients with a mean age of 58 to 74 years; four 
studies did not mention patient age. Almost all of these 
studies were retrospective in nature, and most were single-
center studies; only three were multi-center studies. For the 
model validation, all of the studies used internal validation, 
including cross-validation and randomized division of the 
dataset. Of the 11 eligible studies, 9 used CT, and 2 used 
PET/CT to train their algorithms. Different AI algorithms 
were used for modeling, with common algorithms including 
SVMs, RFs, neural networks, LASSO regression, and 
extreme gradient boosting (XGBoost). All the studies 
diagnosed LNM based on a pathologic examination of the 
surgical resection sample.

Quality assessment

QUADAS-2 was used to examine the risk of bias and 
applicability issues of the included studies (Figure 2). In 
relation to patient selection, the overall risk of bias was 
low; only two studies were rated as having a high risk of 
bias because they did not avoid inappropriate exclusions. 
In relation to the “diagnostic tests to be evaluated”, four 
studies were rated as having an unclear risk of bias because 
they did not mention the timing of the interpretation of 
the results and the determination of thresholds. In relation 
to the gold standard, case process, and progression, almost 
all of the studies were rated as having a low risk of bias. 
Overall, the quality of the included articles was almost 
acceptable according to the QUADAS-2 results.

Table 1 Baseline data from included studies

Study Design
Data 
source

Country Population
Number of 

patients 
Metastasis/non-

metastasis
Age (years)

Validation 
method

Tian, 2024 
(14)

Retrospective Multi-
center

China Patients with solid-
predominantly 
invasive lung 
adenocarcinoma

1,325 478/847 59.9±9.2 (training); 
60.0±9.7 (validation); 
59.4±10.6 (test)

Train-test 
split

Shimada, 
2023 (15)

Retrospective Single 
center

Japan Patients with non-
small cell lung cancer

720 83/637 66±10 (training);  
67±10 (validation)

Train-test 
split

Ma, 2023 
(16)

Retrospective Single 
center

China Patients with 
pathologically 
confirmed lung 
adenocarcinoma

720 124/596 60.0 [52.5–64.0] 
[training]; 59.0 [53.0–
66.0] [validation]; 58.5 
[51.3–66.0] [test]

Train-test 
split

Zhang, 2023 
(17)

Retrospective Single 
center

China Patients with lung 
cancer

140 67/73 60.26±8.93 (training); 
59.80±9.91 (test)

Train-test 
split

Wang, 2023 
(18)

Retrospective Single 
center

China Patients with non-
small cell lung cancer

462 176/286 63.77±9.13 Cross-
validation

Hu, 2023 
(19)

Retrospective Single 
center

China Patients with non-
small cell lung cancer

681 92/589 61.22±9.51 Cross-
validation

Yin, 2021 
(20)

Retrospective Single 
center

China Patients with lung 
cancer

71 20/51 61±8 Train-test 
split

Zhao, 2021 
(21)

Retrospective Multi-
center

China Patients with lung 
adenocarcinoma

554 146/408 NR Cross-
validation

Geng, 2022 
(22)

Retrospective Single 
center

China Patients with non-
small cell lung cancer

82 48/34 NR Train-test 
split

Zhao, 2020 
(23)

Retrospective Multi-
center

China patients with lung 
adenocarcinoma

501 133/368 NR Cross-
validation

Wu, 2020 
(24)

Retrospective Single 
center

China Patients with non-
small cell lung cancer

1,102 116/986 58 [51–65] Train-test 
split

Age is expressed as the mean ± standard deviation or median [range]. NR, not reported. 
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Table 2 Basic features of predictive models for imaging data based on artificial intelligence algorithms

Study AI algorithm Image 
Reference 
standard 

Outcome 
definition

AUC Accuracy Specificity Sensitivity

Tian, 2024 (14) SVM, ResNet, DenseNet, Swin 
Transformer

CT Surgical 
resection

LNM 0.84 0.78 0.72 0.83

Shimada, 2023 (15) CNN CT Surgical 
resection

LNM 0.93 0.68 0.68 0.7

Ma, 2023 (16) Swin Transformer CT Surgical 
resection

LNM 0.97 NR 0.94 0.91

Zhang, 2023 (17) LASSO regression, CNN, transfer learning CT Surgical 
resection

LNM 0.95 0.85 0.84 0.85

Wang, 2023 (18) LASSO regression, MLP, LightGBM,  
SVM, GBDT, XGBoost

PET/CT Surgical 
resection

LNM 0.94 0.93 0.88 0.97

Hu, 2023 (19) LR, SVM, ResNet,DenseNet, EfficientNet, 
ViT, Swin transform, MHGF, RF, GBDT, 
MLP, DensePriNet, 3M-CN, SR-CorRinE

CT Surgical 
resection

LNM 0.81 NR NR NR

Yin, 2021 (20) SVM, RF, KNN PET/CT Surgical 
resection

LNM 0.94 0.92 NR NR

Zhao, 2021 (21) 3M-CN CT Surgical 
resection

LNM 0.95 NR 0.93 0.88

Geng, 2022 (22) ANN, LASSO regression CT Surgical 
resection

LNM 0.86 0.98 0.77 0.81

Zhao, 2020 (23) CNN, LASSO regression CT Surgical 
resection

LNM 0.93 0.88 0.88 0.86

Wu, 2020 (24) AdaBoost, ANN, DT, GBDT, LR, MNB, 
RFC, XGBoost

CT Surgical 
resection

LNM 0.89 NR 0.71 0.93

AI, artificial intelligence; AUC, area under the curve; SVM, support vector machine; CT, computed tomography; LNM, lymph node 
metastasis; CNN, convolutional neural network; NR, not reported; LASSO, least absolute shrinkage and selection operator; MLP, multilayer 
perceptron; LightGBM, light gradient boosting machine; GBDT, gradient boosting decision tree; XGBoost, extreme gradient boosting; LR, 
logistic regression; ViT, vision transformer; MHGF, multi-modal heterogeneous graph forest; RF, random forest; 3M-CN, 3D multi-scale, 
multi-task, multi-label classification network; SR-CorRinE, core-ring residual estimation with size-related damper block; KNN, k-nearest 
neighbor; PET, positron emission tomography; ANN, artificial neural network; AdaBoost, adaptive boosting; DT, decision tree; MNB, 
multinomial naive bayes; RFC, random forest classifier.

A meta-analysis of the accuracy of AI-based imaging 
models for predicting LNM

The forest plots and combined results of the meta-
analysis for predicting LNM in patients with NSCLC 
using an AI-based imaging model are shown in Figures 
3-5 .  The diagnostic threshold analysis showed no 
significant threshold effect (Spearman correlation 
coefficient =−0.409, P=0.212). The pooled sensitivity 
of the model was 0.87 [95% confidence interval (CI): 
0.80–0.91; P<0.001; I2=90.80%], the specificity was 0.85 
(95% CI: 0.78–0.89; P<0.001; I2=97.61%), the PLR was 
5.64 (95% CI: 3.88–8.21; I2=96.58%), the NLR was 0.15 

(95% CI: 0.10–0.24; I2=93.28%), the DOR was 36.51 
(95% CI: 17.57–75.87), and the diagnostic score was 3.60 
(95% CI: 2.87–4.33). The AUC based on the pooled ROC 
(SROC) curve was 0.92 (95% CI: 0.90–0.94; Figure 6).  
The I2 values for the sensitivity, specificity, PLR, and NLR 
indicated high heterogeneity. To further examine the 
source of heterogeneity, we performed a meta-regression 
analysis. The results showed that the following factors were 
significantly associated with study heterogeneity in the 
meta-regression model: imaging modality (CT or PET/CT) 
(P value =0.03), and the use of a neural network algorithm 
to construct the model (P value =0.01) (Table 3).

Based on the subgroup analyses, we found that models 
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Figure 2 Risk of bias and applicability concerns according to Quality Assessment of Diagnostic Accuracy Studies-2 tool: (A) per study 
assessment. (B) Per domain summary.

constructed from sample size data from a single center had a 
higher sensitivity (89% vs. 86%, P value =0.00), and models 
built based on CT images had less sensitivity and specificity 
than those based on PET/CT images (84% vs. 96%, P 
value =0.00; 83% vs. 90%, P value =0.02). In addition, the 
sensitivity (83% vs. 94%, P value =0.00) and specificity (81% 
vs. 92%, P value =0.00) of studies using neural networks 
for model construction were lower than those using other 
methods [i.e., algorithms other than neural networks, 
such as SVM, gradient boosting decision tree (GBDT), 
XGBoost, multilayer perceptron (MLP), and multinomial 
naive Bayes (MNB)]. The specificity of the studies that 
used LASSO and SVM for model construction was higher 

than that of the studies that used other methods (i.e., 
algorithms other than LASSO and SVM, such as GBDT, 
XGBoost, MLP, and MNB) for model construction (85% 
vs. 84%, P value =0.03). The specificity of the studies that 
did not use other methods (i.e., methods other than neural 
networks, LASSO, and SVM) to construct the model was 
also relatively high (85% vs. 84%, P value =0.03) for other 
methods (e.g., GBDT, XGBoost, MLP, and MNB).

We performed a publication bias analysis of the included 
studies (Figure 7). The funnel plot asymmetry test showed 
no significant publication bias for the included studies 
(P=0.58). When conducting the meta-analysis, we also 
performed a sensitivity analysis (Figure 8), which showed 
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Sensitivity (95% CI)Study ID

Zhao 
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Wu 
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Ma 

Hu 
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0.93 [0.87–0.97] 

0.97 [0.93–0.99] 

0.83 [0.79–0.86] 

0.70 [0.59–0.79] 

0.91 [0.85–0.95] 

0.63 [0.52–0.73] 

0.81 [0.67–0.91]

Combined 0.87 [0.80–0.91]

Q=108.75, df=10.00, P=0.00 

I2=90.80% [86.66–94.94%]
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15.09 [10.94–20.81] 

3.91 [3.07–4.98] 
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Figure 3 Combined sensitivity and specificity forest plots. CI, confidence interval.

Figure 4 Forest plots for the likelihood ratio after combination (LR+, LR−). CI, confidence interval; DLR, diagnostic likelihood ratio; LR, 
likelihood ratio.

that the point estimate of the combined effect size fell 
between the 95% CIs of the total combined effect size after 
deleting a study, indicating the stability of the findings.

Studies have shown (27) that the pre-detection 

probability of the Fagan plot usually depends on the 
prevalence of the disease. Thus, we searched the related 
literature and summarized the estimates. The estimates 
showed that the probability of LNM in NSCLC was about 
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19.4%; thus, we set the pre-detection probability as 19.4%. 
Using the AI-based imaging model, the post-test probability 
increased from 19% to 58% when the pretest was positive 
with a PLR of 6. However, when the pretest was negative, 
the post-test probability decreased to 4% with a NLR of 
0.15 (Figure 9). Thus, when the predictive model results 
were positive, it increased the likelihood of LNM (increasing 

the post-test probability from 19% to 58%), and when the 
predictive model results were negative, it provided evidence 
against the occurrence of LNM (decreasing the post-test 
probability from 19% to 4%). These findings suggest that 
AI models are helpful in clinical practice.

Discussion

AI and the value of the results of this meta-analysis

AI has become widely used in medical imaging, which 
has led to the active prediction of LNM in different 
malignancies using radiomics and deep-learning models. 
The primary objective of this study was to conduct a meta-
analysis on the use of AI in medical imaging to predict the 
spread of cancer cells to the lymph nodes in patients with 
NSCLC. We thoroughly examined multiple recent studies 
to evaluate the efficacy of AI algorithms in this domain. Our 
analysis of these studies indicated that AI-based imaging 
has high predictive accuracy and reliability, particularly in 
predicting LNM in patients with NSCLC. AI algorithms 
can assist clinicians to accurately predict the occurrence 
of LNM in patients with NSCLC. This is essential for 
directing the creation of personalized treatment regimens 
and the selection of suitable treatment modalities.

In addition, the use of AI algorithms in image 
interpretation effectively minimizes the number of 
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Figure 5 Forest plots for the diagnostic diagnostic score and odds ratio after combination. CI, confidence interval.
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Table 3 Subgroup analysis in combined model studies

Variable n Sensitivity (95% CI) P1 Specificity (95% CI) P2
Joint model analysis

LRT Chi2 P value I2 (%)

Country 0.41 0.56 3.71 0.16 46

China 10 0.98 (0.83–0.93) 0.86 (0.81–0.91)

Others 1 0.70 (0.42–0.98) 0.68 (0.43–0.93)

Sample size (numbers) 0.12 0.07 0.05 0.98 0

>150 8 0.87 (0.80–0.93) 0.84 (0.78–0.91)

≤150 3 0.88 (0.77–0.99) 0.81 (0.74–0.96)

Data source 0.00 0.08 0.32 0.85 0

Multi-center 3 0.86 (0.77–0.95) 0.86 (0.77–0.95)

Single center 8 0.89 (0.84–0.95) 0.84 (0.77–0.90)

Imaging mode 0.00 0.02 6.89 0.03 71

CT 9 0.84 (0.79–0.90) 0.83 (0.77–0.89)

PET/CT 2 0.96 (0.92–1.00) 0.90 (0.81–0.99)

Validation methods 0.10 0.09 2.44 0.29 18

Train-test split 7 0.86 (0.80–0.92) 0.79 (0.71–0.87)

Cross-validation 4 0.91 (0.86–0.97) 0.90 (0.84–0.96)

AI algorithm

NN 8 0.83 (0.77–0.89) 0.00 0.81 (0.75–0.87) 0.00 8.57 0.01 77

LASSO regression 4 0.90 (0.84–0.97) 0.19 0.85 (0.76–0.94) 0.03 1.22 0.54 0

SVM 4 0.87 (0.78–0.96) 0.07 0.85 (0.76–0.94) 0.03 0.00 1.00 0

Others 8 0.88 (0.83–0.94) 0.33 0.84 (0.78–0.91) 0.03 1.24 0.54 0

CI, confidence interval; LRT, likelihood ratio test; CT, computed tomography; PET, positron emission tomography; AI, artificial intelligence; 
NN, neural network; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine. 
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Figure 7 Deeks’ funnel plot with superimposed regression line. 
The funnel plot asymmetry test revealed no publication bias (P 
values >0.10). ESS, effective sample size.

unnecessary puncture biopsies and surgical resections, 
which in turn, reduces the physical and psychological 
strain placed on patients while enhancing their treatment 
outcomes and overall quality of life. Unnecessary lymph 
node dissection can be avoided if lymph node metastatic 
status can be accurately predicted preoperatively. Lymph 
node status is first diagnosed by radiologic techniques 
(CT or PET/CT); however, this conventional technique 
may not accurately reflect lymph node status, as it is 
challenging to detect microscopic disease with conventional 
imaging features alone. Moreover, current image-based 
preoperative assessments of lymph node status largely 
depend on the subjective judgment of radiologists, and can 
be both time-consuming and inaccurate. Further, incorrect 
assessments of lymph node status can lead to under- or 
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over-treatment and increase the risk of recurrence and 
postoperative complications (28). Therefore, developing 
an effective tool to diagnose lymph node status accurately 
is essential, as it could ensure better clinical treatment for 
lung adenocarcinoma patients. Our results and findings 
provide a powerful tool for therapeutic decision-making and 
prognostic assessment of NSCLC patients.

Comparison of different imaging modalities in the 
prediction of LNM

This was the first meta-analysis to assess the diagnostic 
efficacy of imaging modalities (such as CT and PET/CT) 
in predicting the spread of cancer cells to lymph nodes in 
patients with lung cancer using AI algorithms. Previous 
research has investigated the application of imaging 
techniques in detecting the spread of lung cancer to lymph 
nodes. However, only a few studies have thoroughly 
combined and assessed this study area of the application 
of imaging techniques to detect the spread of lung cancer 
to the lymph nodes. Previous research has largely sought 
to evaluate the spread of lung cancer to the lymph nodes 
using CT scans. Currently, CT is the most widely used 
imaging method and is extensively employed to evaluate 
the health of lymph nodes before surgery. CT is crucial in 
the regular diagnosis, analysis, and assessment of treatment 
effectiveness for lung cancer due to its exceptional spatial 
resolution. The clinical information provided by CT 
images, including information about the shape, size, and 
orientation of nodes, plays a crucial role in disease diagnosis 
and prognosis prediction (29,30). Multiple research studies 
have successfully used AI-based CT images to predict 
the occurrence of lung cancer LNM (14-17,19,21-24). 
Typically, conventional CT scans identify metastatic lymph 
nodes based on their physical characteristics, such as a 
short diameter greater than 10 mm and a short-to-long 
diameter ratio. CT is ineffective in diagnosing or ruling out 
metastatic lymph nodes when the mass is enlarged because 
of micrometastases or inflammatory lesions (31).

Compared with CT, PET/CT and dual-energy CT have 
unique advantages and disadvantages in assessing LNM 
in lung cancer patients. First, PET/CT characterizes the 
metabolic and anatomical features of lesions. It is also more 
reliable than conventional CT morphometric indices in 
the staging of lung cancer lymph nodes (32). However, 
PET/CT does not avoid invasive lymph node sampling to 
confirm metastasis and does not exclude LNM in patients 
without metabolically active lymph nodes, and it still has a 
high false-positive rate in detecting malignancies in normal-
sized lymph nodes and in excluding malignancies in patients 
with comorbid inflammatory or infectious diseases. A 
meta-analysis by Seol et al. (33) reported that the pooled 
specificity of PET/CT was 0.65, and the false-positive rate 
was approximately 35%.
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Figure 8 Sensitivity analysis. CI, confidence interval.
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Recently, spectral CT, as a novel and convenient imaging 
modality, has been shown to be valuable in the preoperative 
assessment of LNM and can provide additional quantitative 
metrics through analytical tools (34). This multiparametric 
quantitative technique extends the capabilit ies of 
convent ional  CT to enable  rea l- t ime,  i sotropic , 
homologous, simultaneous, accurate material separation 
and quantitative analysis, and had may be able to reduce 
contrast, radiation dose, or suppressing artifacts (35). The 
results of a meta-analysis of 11 studies (comprising 1,290 
patients) by Wang et al. (36) reported that dual-energy CT 
in predicting LNM of lung cancer had a combined AUC 
greater than 0.8.

Performance of AI models

AI techniques are non-intrusive diagnostic tools that 
offer clinicians novel perspectives in disease management, 
particularly in oncology. Consequently, an increasing 
number of studies have examined the suitability of AI in 
many types of cancer, including gastrointestinal, pulmonary, 
neurological, and breast cancer. Liu et al. (37) conducted 
a systematic review and statistical analysis of 16 studies 
involving 4,764 patients diagnosed with breast cancer, CT, 
and MRI scans, and showed that the AI algorithms had 
high diagnostic precision in predicting the occurrence of 
LNM in breast cancer patients. The sensitivity, specificity 
and AUC of the summarized MRI scans were 0.85, 0.81, 
and 0.85, respectively. While the sensitivity, specificity, 
and AUC of the summarized CT images were 0.88, 0.80, 
and 0.91, respectively. Bedrikovetski et al. (38) performed a 
meta-analysis to evaluate the precision of AI in diagnosing 
LNM in colorectal cancer using CT/MRI, and reported an 
AUC of 0.917, which indicated that the performance of AI 
was considerably superior to that of radiologists. Hakkak 
Moghadam Torbati et al. (40) based on machine learning 
and a texture analysis of [18F] FDG PET/CT images to 
predict distant metastasis in NSCLC patients, showing an 
AUC of 0.63 and an accuracy of 74.4%. Thus, we believe 
that AI algorithms can enhance the precision and reliability 
of predicting LNM in lung cancer through image analysis, 
thereby addressing the inherent constraints of imaging.

In this meta-analysis, we analyzed an imaging model 
built based on AI algorithms, and the model’s sensitivity, 
specificity, and AUC were approximately 0.87, 0.85, and 
0.92, respectively, indicating good performance. The 
confirmation of metastatic lymph node pathology, which 
was used as the reference standard for inclusion in the study, 

was determined postoperatively. However, in practice, 
if treatments need to be adjusted based on lymph node 
status, it would be better to determine that status before 
surgery. Imaging models based on AI algorithms have 
excellent predictive capabilities and can predict positive 
LNM results in patients preoperatively without unnecessary 
invasive interventions. In addition, the 84% specificity 
allowed us to determine with reasonable certainty that 
patients with positive model predictions of LNM required 
optimized treatment. Thus, the imaging models based on 
AI algorithms had good diagnostic performance.

Analysis of sources of heterogeneity

In our analyses, we found a high degree of heterogeneity 
between studies. We explored the possible sources of 
heterogeneity using subgroup analyses and meta-regression. 
The Spearman correlation coefficient was not a source 
of heterogeneity. However, differences between different 
imaging modalities and different algorithms could have 
been sources of heterogeneity. The results suggest that 
PET/CT (2/11) imaging modalities are more sensitive than 
CT imaging modalities, but most studies used CT imaging 
modalities (9/11) rather than PET/CT. In relation to the type 
of AI algorithms used for modeling, in the studies included in 
our meta-analysis, neural networks were the most commonly 
used AI algorithms.Neural networks as a special class of 
machine learning, by building deep networks continuously 
learn and approximate real complex models, that can 
acquire global and local image information directly from the 
nucleus，to achieve powerful learning capabilities and flexible 
diagnostic functions (7). Tian et al. (14,15,17,19,21-24)  
used a neural network classifier to predict LNM, and 
reported a pooled AUC of 0.89 (Figure 10A), which 
indicates fair overall performance; however, this algorithm 
had relatively low sensitivity and characterization compared 
to other algorithms. LASSO is a linear regression method 
that uses L1 regularization, which allows for feature sparsity 
and selection by making the learned weights of certain 
features zero. In this meta-analysis, LASSO had a higher 
specificity than the other algorithms, and the sensitivity was 
relatively high but not statistically significant, with a pooled 
AUC of 0.89 (Figure 10B).

Other algorithms include the SVM, XGBoost, and 
RF. The SVM is one of the most popular classification 
techniques, is an excellent algorithm for modeling 
misspecification, and can effectively handle high-dimensional 
data (39). Hakkak Moghadam Torbati et al. (40) compared 
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Figure 10 The pooled SROC curves of models constructed by neural network classifiers (A), and models constructed by LASSO regression 
algorithm (B). SROC, summary receiver operating characteristic; SENS, sensitivity; SPEC, specificity; AUC, area under the curve; CI, 
confidence interval; LASSO, least absolute shrinkage and selection operator.

six machine-learning methods to select the best-trained 
model for predicting distant metastasis in NSCLC patients. 
The SVM and decision tree methods had the highest 
prediction accuracy for the whole set of variables. XGBoost 
is an optimized distributed gradient boosting library that is 
efficient, flexible, and portable. RFs are composed of many 
trees, but they are differentiated by randomly selecting 
variables to reduce the correlation between the fitted 
trees (41). However, the data for these algorithms are not 
sufficient, and the literature we have included revealed 
little about the calibration of the AI based imaging model, 
the purpose of calibration is to bring the model closer to 
reality in order to maintain the accuracy of its predictions. 
Therefore, in the future, it will be necessary to judge the 
accuracy of model predictions based on larger sample sizes 
and calibration of the joined models. Moreover, multiple 
polynomial models should be used in clinical routines to 
improve the diagnostic performance of the models.

The results of the meta-analysis are encouraging. With 
a pooled sensitivity of approximately 0.88, almost 90% of 
patients with LNM will be detected. However, this also 
implies that LNM may be undetected in 12 out of every 
100 patients, which could negatively affect the overall 
survival of the 12% of patients with positive LNM. Thus, 
it is important to recognize that AI may not be suitable for 
routine clinical examinations, particularly when patient 
survival is used as the primary measure of a model’s 
predictive power.

Limitations of this study

Our meta-analysis had several limitations. First, almost 
all of the 11 studies included in this meta-analysis were 
retrospective, and such studies are prone to confounding 
bias and selection bias. Our ultimate goal was to apply 
the developed imaging model based on AI algorithms to 
improve prognosis prediction. On this basis, our model 
and estimation results should be generalizable to practice. 
However, most of the included studies used internal 
model validation, which is more prone to overestimation 
and lacks generalizability. Therefore, more prospective 
studies and more external validation studies need to be 
conducted to assess the model’s performance on unseen 
data before its application in the clinic. Second, only 11 
original research articles met the selection criteria, as 
few studies have sought to predict LNM in lung cancer 
patients. We could only retrieve limited data from the 
specific studies, and the limited number of studies made it 
challenging to compare the results. Third, the classification 
performance of algorithms vary; therefore, we chose the 
highest-performing algorithm, which led to heterogeneity. 
However, this is common in meta-analyses of imaging-
based profound learning studies (38,42-45). In addition, 
only six of the models in the results of all the studies 
included in this meta-analysis provided prediction CIs, and 
the rest did not assess the variability (or margin of error) of 
the predictions, resulting in incomplete data for assessing 
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model performance. Fourth, only three studies had patients 
from multiple centers; recruiting patients from single 
centers also limited the generalizability and reproducibility 
of the results. Moreover, as almost all of the included 
studies (10/11) were from China, regional bias should be 
considered, and it could reduce the generalizability of the 
AI model outside China. Finally, the predictive performance 
of the algorithm may vary for different types of lung cancer 
LNMs (e.g., micro metastases and occult metastases), which 
must also be carefully considered.

Conclusions

Our results indicate that AI algorithm-based imaging 
accurately predicts LNM in NSCLC patients. Our 
findings provide new ideas and methods for the diagnosis 
and treatment of lung cancer patients. However, the 
high heterogeneity of the studies suggests that uniform 
AI guidelines are needed for upcoming studies. It is 
recommended that prospective studies with large sample 
sizes at multiple centers be conducted to help update 
predictive the models and make them compatible with 
new data. This will improve the performance of imaging 
models based on AI algorithms. Future studies should seek 
to explore and optimize the use of AI in diagnosing and 
treating lung cancer patients, enhancing its clinical value 
and potential.
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