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Abstract 

Leukemia is a common malignant cancer of the hematopoietic system, whose pathogenesis has not 
been fully elucidated. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides 
without protein-coding function. Recent studies report their role in cellular processes such as the 
regulation of gene expression, as well as in the carcinogenesis, occurrence, development, and 
prognosis of various tumors. Evidence indicating relationships between a variety of lncRNAs and 
leukemia pathophysiology has increased dramatically in the previous decade, with specific lncRNAs 
expected to serve as diagnostic biomarkers, novel therapeutic targets, and predictors of clinical 
outcomes. Furthermore, these lncRNAs might offer insight into disease pathogenesis and novel 
treatment options. This review summarizes progress in studies on the role(s) of lncRNAs in 
leukemia. 
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Introduction 
Leukemia is a malignant clonal disease of 

hematopoietic stem and progenitor cells, in which 
abnormally cloned leukemia cells accumulate in the 
bone marrow and other non-hematopoietic tissues 
owing to uncontrolled cell proliferation, blocked 
differentiation, and apoptosis obstruction, thus 
inhibiting normal hematopoiesis and immune 
function. Rapid advances in cell and molecular 
biology have enabled the discovery of dysregulated 
molecules associated with leukemia, suggesting that 
the disease might be related to the heterogeneity of 
cellular and molecular genetics [1-4]. Chromosomal 
abnormalities, including the appearance of 
hyperdiploid and hypodiploid characteristics, 
amplification, translocation, changes in DNA copy 
number, as well as insertion, deletion, and point 
mutations, are commonly observed in leukemia [5]. 
Moreover, modifications of transcription factors, 
tumor-suppressor genes, oncogenic mutations, and 
epigenetic changes have been reported [6]; however, 
the specific pathogenesis of leukemia remains poorly 
understood. 

Less than 2% of the human genome encodes 
proteins, with the remaining 98% considered as 
genetic byproducts. However, studies demonstrate 
that areas of the genome are transcribed as noncoding 
RNAs [7, 8]; these include various types of 
small-noncoding RNAs such as microRNAs 
(miRNAs), small-interfering (si)RNAs, small- 
nucleolar RNAs, and piwi-associated RNAs. Some 
dysregulated noncoding RNAs, particularly miRNAs, 
are well-known gene silencers [9]. Among noncoding 
RNAs, long noncoding (lnc)RNAs are a class of 
transcripts with a length >200 nucleotides and no 
protein-coding function. It was thought that lncRNAs 
lack biological functions; however, recent application 
of high-throughput sequencing and the rapid 
development of biological techniques have resulted in 
lncRNAs becoming a subject of tremendous research 
interest. Increasing evidence indicates that lncRNAs 
can regulate gene expression at multiple levels, 
including the epigenetic, transcriptional, and 
post-transcriptional stages. Additionally, lncRNAs 
are considered to be involved in the induction of 
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chromatin remodeling and nucleosome modification, 
transcriptional activation and inhibition, regulation of 
variable splicing modes and protein activity, 
generation of endogenous siRNAs, and changing the 
protein localization (Figure 1) [10-12]. Moreover, 
lncRNAs are involved in the pathogenesis of 
cancer-related diseases, and therefore represent 
potential biomarkers and therapeutic targets [11]. 
Additionally, studies on the relationship between 
lncRNAs and hematological malignancies, such as 
leukemia, multiple myeloma, and lymphoma, are 
increasing. A variety of lncRNAs with potential as 
oncogenes or tumor-suppressors have been identified 
as significantly associated with the development and 
progression of these diseases [13-15].  

This review summarizes the current knowledge 
regarding lncRNA involvement in leukemia. The data 
indicate that several lncRNAs might have clinically 
promising applications in the diagnosis, prognosis, 
and treatment of leukemia. 

Overview of LncRNAs 
LncRNAs exhibit high functional heterogeneity, 

are generally located in the cytoplasm or nucleus, and 
possess diverse biological functions and complex 
regulatory mechanisms. According to the relative 
positional relationship between protein-coding genes 

and lncRNAs, lncRNAs can be roughly classified into 
five types: intron lncRNAs, antisense lncRNAs, 
intergenic lncRNAs, UTR (untranslated region)- 
associated lncRNAs, and promoter-associated 
lncRNAs [16]. Functionally speaking, lncRNAs can 
regulate gene expression at the chromatin- 
modification, gene-transcription, and post-transcrip-
tional levels. Furthermore, mechanistically, lncRNA 
activity can be classified into four modes: signal, 
decoy, guide, and scaffold [17]. In the signal mode of 
action, lncRNAs can be associated with the 
genome-imprinting process: for example, when two X 
chromosomes are present, one is in a suppressed state, 
with this phenotype capable of being stably 
transmitted to a subsequent generation, where the 
X-inactive-specific transcript (Xist) plays an important 
regulatory role [18, 19]. The mode in which lncRNA 
functions as a decoy can be described as the binding 
of lncRNA to a protein with transcription-regulatory 
functions, such as transcription factors or nuclear 
receptors in the nucleus, in order to regulate 
transcriptional inhibition of target genes downstream. 
For example, when DNA damage occurs, p53 binds to 
the cyclin-dependent kinase inhibitor (CDKN)1 and 
activates expression of the lncRNA PANDAR, which 
blocks the expression of pro-apoptotic genes by 
binding to the nuclear transcription factor Y subunit α 

 

  
Figure 1. Mechanisms of LncRNA action: lncRNAs (indicated in red) regulate gene expression at multiple levels: (a). LncRNAs can interact with the nuclear chromatin 
remodeling complex to achieve epigenetic regulation of target loci. (b). LncRNAs can regulate transcription by acting as a decoy or guide for transcription factors (indicated in 
yellow), thereby inhibiting or promoting their binding to target promoter sequences, respectively. (c). LncRNAs can interact with Staufen homolog proteins, thereby regulating 
mRNA stability. (d). LncRNAs can modulate mRNA levels by competing for microRNA (indicated in grey) binding. (e). Translation of mRNA can be modulated by lncRNAs. (f). 
LncRNAs can directly alter protein (indicated in blue) functions. 
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(NF-YA), thus prolonging cell survival [20]. As a 
guide, lncRNA binds to a protein molecule (usually a 
transcription factor) and promotes its localization to a 
specific DNA sequence to regulate downstream 
signaling pathways and gene expression. An example 
of this is the lncRNA Xist acting as a guide to target 
gene-silencing activity in an allele-specific manner. As 
a scaffold, lncRNA binds to multiple effector 
molecules simultaneously to provide a platform for 
interaction. For example, the 3′ domain of the lncRNA 
HOX antisense intergenic RNA (HOTAIR) binds the 

histone demethylase complex lysine-specific 
demethylase (LSD)1/CoRE1-silencing transcription 
factor (REST)/REST, whereas the 5′ domain of 
HOTAIR binds Polycomb repressive complex 2 
(PRC2). The resulting interaction promotes assembly 
of selected histone-modification enzymes by 
providing a binding surface, thereby resulting in the 
chromosome being in a closed state; this results in 
gene silencing [21, 22]. In this review, we focused on 
the functions and mechanisms of lncRNAs involved 
in leukemia pathogenesis (Table 1). 

 

Table 1. Aberrant LncRNA expression in different subsets of leukemia 

Disease LncRNA Expression level in 
patients/cell lines 

Mechanism Clinical parameters and treatment responses Ref. 

AML MEG3 Downregulated Inhibits tumorigenesis in a p53-dependent and 
-independent manner 

Abnormal methylation of MEG3 confers worse OS [23, 24] 

 H19 Upregulated Possibly correlated with ID2 expression Highest in M2 AML, correlated with sex, older age, 
higher WBC counts, intermediate karyotype, 
FLT3-ITD DNMT3A mutations, lower CR rate, and 
shorter OS  

[25]. 

 UCA1 Upregulated Sponges for miR-126, miR-125a, miR-16; activates 
PI3K/AKT and JAK/STAT signaling 

Elevated in patients carrying CEBPA mutations; 
elevated in ADR-resistant pediatric AML cases 

[26-28] 

 HOTAIR Upregulated Sponges for miR-193a and modulates c-KIT expression; 
regulates LSC self-renewal 

Higher peripheral leukocyte and BM blast counts, 
lower platelet and hemoglobin counts, poor DFS and 
OS 

[29-33] 

 CRNDE Upregulated Promotes cell proliferation and cell cycle progression, 
inhibits apoptosis 

Higher in M4 and M5 than in M1, M2, and M3 patients; 
negatively correlated with total survival time. 

[34] 

 PANDAR Upregulated Interacts with NF-YA and inhibits pro-apoptotic gene 
expression 

Older age, higher BM blasts, poor karyotypes, lower 
CR rate, and shorter OS. 

[35] 

 PVT1 Upregulated Sponge for miR-1204 and regulates MYC activation Elevated in t (8;21) AML and APL. Corelated with 
high-risk clinical criteria; shorter LFS and OS 

[36-39] 

 CASC15 Downregulated Regulates SOX4 expression Elevated in t (8;21) AML, relatively better prognosis [40] 
 IRAIN Downregulated Interacts with the IGF1R promoter Higher WBC counts, blast counts and shorter RFS, OS; 

refractory response to chemotherapy 
[41, 42] 

 RUNXOR Upregulated Interacts with the H3K27 methylase EZH2 and RUNX1  Elevated in t (8;21) AML [43] 
 CCAT1 Upregulated Represses monocyte differentiation and promotes AML cell 

growth by sequestering miR-155 
Significantly elevated in M4 and M5 subtypes [36, 44] 

 CCDC26 Upregulated Regulates AML cell proliferation via c-KIT expression Older age, anemia, poor/intermediate risk, partial/no 
remission, shorter OS 

[45, 46] 

 TUG1 Upregulated Targets AURKA and induces AML cell proliferation; 
reduces miR-34a expression and contributes to ADR 
resistance 

Higher WBC counts, FLT3-ITD mutation, monosomal 
karyotype, poor-risk stratification, and worse 
event-free survival and OS 

[47, 48] 

 MALAT Upregulated Influences proliferation, apoptosis and Ara-C sensitivity by 
upregulating miR-96 

Markedly upregulated in M5 subtype, correlated with 
higher WBC and platelet counts, shorter OS 

[49, 50] 

 HOXA-AS2 Upregulated Suppresses ATRA-induced apoptosis via TRAIL; increases 
ADR resistance via the miR-520c-3p /S100A4 pathway 

 [51, 52] 

 MONC Upregulated Enhances proliferation of immature erythroid progenitor 
cells 

 [53] 

 NEAT1 Downregulated Impairs myeloid differentiation, regulates miR‐23a‐
3p/SMC1A 

 [54] 

ALL BALR-2 Upregulated Inhibits downstream glucocorticoid receptor genes FOS, 
JUN, and BIM 

Shorter OS and poor response to prednisone [55] 

 BALR-6 Upregulated Regulation of the transcriptome downstream of SP1 Highest expression in patients carrying MLL 
rearrangement 

[56] 

 CASC15 Downregulated Regulates SOX4 expression Elevated in pediatric B-ALL with t (12; 21); associated 
with relatively better survival 

[40] 

 GAS5 Downregulated Sponge for miR-222; modulates B lymphocytic leukemia 
cell tumorigenesis and metastasis; essential for 
mTOR-related inhibition of T cell proliferation 

Elevated on day 15, but decreased on day 33 after 
glucocorticoid therapy 

[57-59] 

 HOXA-AS2 Upregulated Enhances glucocorticoid resistance, upregulates HOXA3 to 
activate EGFR/Ras/Raf/MEK/ERK signaling 

Higher in pediatric prednisone-poor response ALL 
cases 

[60] 

 ZEB1-AS1 Upregulated Promotes activation of IL-11/STAT3 signaling Correlated with poor prognosis [61] 
 NEAT1 Upregulated Related to dysregulation of miR-335-3p and indirectly 

regulates multidrug-resistance genes 
 [62] 

 PVT1 Upregulated Participates in cell cycle progression and proliferation 
regulation 

 [63] 

 SNHG16 Upregulated Host of miR-124-3p and promotes ALL cell proliferation  [64] 
 NALT Upregulated Regulates NOTCH1 signaling   [65] 
 T-ALL-R-LncR1 Upregulated Inhibits formation of the Par-THAP1 complex and 

caspase-3 activation 
 [66] 

 LUNAR1 Upregulated Enhances IGF1R expression to sustain IGF1 signaling  [67] 
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Disease LncRNA Expression level in 
patients/cell lines 

Mechanism Clinical parameters and treatment responses Ref. 

 XLOC_001561 Downregulated Involved in T cell differentiation and possible 
tumorigenesis 

 [68] 

 ANRIL Upregulated Alters CDKN2A/B expression; targets EZH2, and activates 
the NF-κB pathway 

 [69, 70] 

 Linc-PINT Downregulated Induces HMOX1 transcription and reduces ALL cell 
viability  

 [71] 

 Lnc-INSR Upregulated Promotes immune suppression by enhancing Treg cell 
differentiation 

 [72] 

 ARIEL Upregulated Activates ARID5B expression, thereby upregulating 
TAL1-induced transcriptional programs and MYC 
oncogene expression 

 [73] 

 RP11-137H2.4 Upregulated Involved in proliferation, apoptosis, cell migration, and 
glucocorticoid resistance  

 [74] 

CML HOTAIR Upregulated Contributes to IM resistance by activating the PI3K/AKT 
pathway 

Upregulated in MRP1-high patients [75] 

 MEG3 Downregulated Regulates miRNA-21, miRNA-147, and the JAK/STAT 
pathway 

Lower in AP and BP than in CP patients. Lower in 
imatinib-resistant compared to imatinib-sensitive 
patients 

[76-78] 

 H19 Upregulated Required for BCR-ABL-mediated tumorigenesis A tendency toward higher WBC counts and BCR-ABL 
transcript 

[79, 80] 

 HAND2-AS1 Upregulated Host of miR-1275 and promotes CML cell proliferation Expression level in AP/BP stages was much lower 
than that in CP 

[81] 

 HULC Upregulated Sponge for miR-200a and modulates c-Myc and Bcl-2 levels Positively correlated with clinical stages [82] 
 MALAT1 Upregulated MALAT1/miR-328 axis promotes CML cell proliferation 

and imatinib resistance 
 [83] 

 NEAT1 Upregulated Essential mediator of apoptosis induced by imatinib  [84] 
 SNHG5 Upregulated Affects DR4 methylation; promotes IM resistance by 

attenuating miR-205-5p expression 
 [85, 86] 

 UCA1 Upregulated Sponge for miRNA-16 and contributes to IM resistance  [87] 
 PLIN2 Upregulated Promotes tumor growth via Wnt/β-catenin signaling  [88] 
 FENDRR Downregulated HuR/FENDRR/miR-184 interaction contributes to MDR1 

activity 
 [89] 

 BGL3 Downregulated Host of miR-17, miR-20a, miR-20b, miR-93, miR-106a, and 
miR-106b; regulates PTEN expression 

 [90] 

CLL DLEU1/2 Downregulated Host of miR-12a and miR-16-1; regulates NF-κB signaling Corelated with poor prognosis [91-94] 
 MALAT1 Upregulated Involved in tumorigenic processes No statistically significance difference between the 

prognosis categories 
[95] 

 MIAT Upregulated Initiates a regulatory loop with OCT4 in malignant mature 
B cells 

Correlated with rapid death cases [96] 

 GATA6-AS1 Downregulated Inhibits cell proliferation and enhances apoptosis in the 
caspase-9-dependent intrinsic apoptosis pathway 

Methylation of GATA6-AS1 corelated with advanced 
Rai stage 

[97] 

 TRERNA1 Upregulated Enhances protection against cytotoxicity mediated DNA 
damage 

Associated with aggressive disease markers, shorter 
time to treatment, shorter PFS and OS 

[98] 

 lncRNA-p21 Downregulated Activated by p53 and binds hnRNP-K to induce apoptosis  [99, 
100] 

 

Aberrant LncRNA Expression in 
Leukemia 

The positive or negative role of lncRNAs in 
leukemia progression is determined by their activity 
in terms of their specific roles in differentiation, 
energy metabolism, malignant proliferation, 
apoptosis, and drug resistance of leukemia cells 
(Figure 2). Here, we focused on lncRNAs that have 
been well studied in association with leukemia and 
describe the progress in this field and mechanisms 
elucidated. 

Maternal Expression Gene 3 (MEG3) 
MEG3, a putative tumor-suppressor gene 

located on chromosome 14q32, suppresses the 
proliferation of various tumor cells by directly 
regulating retinoblastoma protein phosphorylation 
and indirectly activating the p16INK4a pathway[23, 
101]. Benetatos et al. observed that, in a sample of 42 
acute myelogenous leukemia (AML) patients, 47.6% 
of patients displayed hypermethylation of MEG3, 

with MEG3 methylation associated with significantly 
reduced overall survival (OS); these findings suggest 
that this methylation status represents a useful 
biomarker for leukemia [24]. Previous studies have 
found that MEG3 plays a regulatory role in 
carcinogenesis and metastasis in chronic 
myelogenous leukemia (CML) by interacting with 
miRNA-21 [76]. Li et al. found that patients in 
accelerated and blast phases showed lower expression 
of miR-147 and MEG3. Furthermore, it was shown 
that MEG3 was capable of binding to several 
members of the Janus kinase (JAK)–signal transducer 
and activators of the transcription (STAT) pathway, 
resulting in reduced signaling. This activity regulated 
leukemia progression, suggesting a role for MEG3 
and its target miR-147 as new therapeutic targets [77]. 
Furthermore, Zhou et al. showed that MEG3 might be 
involved in imatinib resistance by regulating miR-21, 
thereby affecting cell proliferation, multidrug- 
resistance transporter expression, and cell apoptosis 
[78]. 
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Figure 2. LncRNAs involved in leukemia progression: (a). CASC15 is upregulated in RUNX1-rearranged AML. Additionally, CASC15 enhances Yin and Yang-1(YY1)-mediated 
regulation of the SOX4 promoter, thus increasing apoptosis. (b). HULC acts as a sponge for miR-200a and modulates c-Myc and Bcl-2 levels, promoting CML cell proliferation. 
ANRIL recruits PRC2 to the p15INK4b locus and silences the p15INK4b tumor suppressor gene, resulting in cell proliferation. (c) ANRIL regulates the expression of the adiponectin 
receptor (AdipoR1), a key regulator of glucose metabolism; this results in the regulation of AMPK and SIRT1 phosphorylation levels. (d). TUG1 epigenetically suppresses miR-34a 
expression by increasing EZH2 recruitment and H3K27me3 levels at the miR-34a promoter in AML cells, thus contributing to ADR resistance. (e). HOTAIRM1 acts as a sponge 
for miRNA20a/106b/125b, regulates the expression of autophagy-associated genes, and enhances PML-RARα degradation. 

 

Nuclear Paraspeckle Assembly Transcript 1 
(NEAT1) 

NEAT1 is located on chromosome 11 and 
encodes transcripts that localize specifically to nuclear 
paraspeckles [102]. Studies show that NEAT1 is 
overexpressed in several types of solid tumors 
including childhood ALL samples[103]; in addition, 
NEAT1 is associated with aberrant expression of 
miR-335-3p, resulting in indirect modulation of the 
expression of multidrug-resistant genes, including 
ATP-binding cassette subfamily A member 3 [62]. 
However, in certain types of cancers, such as AML, 
NEAT1 might act as a tumor suppressor. Zhao et al. 
showed that the expression of NEAT1 and structural 
maintenance of chromosome 1α (SMC1A) were 
decreased in primary AML patients and THP-1 cells. 
Additionally, they found elevated levels of 
miR-23a-3p, which indicate that NEAT1 binds 
miR-23a-3p to regulate SMC1A expression, thereby 

inhibiting leukemia cell proliferation and enhancing 
apoptosis [54]. In de novo acute promyelocytic 
leukemia (APL), NEAT1 levels are significantly 
reduced: Zeng et al. reported that the promyelocytic 
leukemia–retinoic acid receptor α (PML–RARα) 
fusion protein inhibits NEAT1 expression, while the 
latter is significantly upregulated in APL cells treated 
with all-trans retinoic acid (ATRA) [104]. This group 
subsequently found downregulated NEAT1 
expression in primary CML cells, which was restored 
by inhibition of BCR-ABL kinase activity [84]. 
Moreover, their results indicated that NEAT1 was 
transcriptionally regulated by c-Myc via binding to 
the NEAT1 promoter, and that splicing factor and 
proline- and glutamine-rich protein were required for 
NEAT1-mediated K562 cell apoptosis [84]. These 
results suggest that targeting NEAT1 represents a 
new treatment strategy for leukemia, and contribute 
to a more comprehensive understanding of the 
pathogenesis of this cancer. 
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HOX Antisense Intergenic RNA Myeloid 1 
(HOTAIRM1) 

HOTAIRM1 is a lncRNA located in the HOXA 
gene cluster; this lncRNA is generated by RNA 
polymerase II antisense transcription and expressed 
in the myeloid lineage. Retinoic acid induces 
HOTAIRM1 expression and thereby regulates the 
expression of genes involved in myeloid 
differentiation. Studies show that HOTAIRM1 levels 
are significantly elevated during ATRA-induced NB4 
cell lineage differentiation; in contrast, HOTAIRMI 
knockdown inhibits ATRA-induced granulocyte 
differentiation and releases cell cycle arrest in the 
G1/S phase, revealing that HOTAIRM1 can regulate 
the maturation of myeloid cells by affecting integrin 
gene expression [105]. Additionally, Chen et al. 
revealed that HOTAIRM1 acts as a miRNA sponge for 
miR-20a/106b and miR-125b. Further, downregula-
tion of HOTAIRM1 levels inhibits ATRA-induced 
PML-RARα degradation via miRNA-mediated 
pathways to suppress the expression of autophagy- 
related genes and granulocyte differentiation of APL 
cells [106]. These results suggest that HOTAIRM1 
plays an essential role in myeloid differentiation in 
leukemia. However, another study showed that in 241 
AML patient specimens, elevated HOTAIRM1 levels 
were associated with shorter leukemia-free survival, 
shorter OS, and higher cumulative incidence of 
relapse [106].  

Leukemia-induced Noncoding Activator 
RNA-1 (LUNAR1) 

LUNAR1 is a NOTCH-regulated oncogenic 
lncRNA, located on chromosome 15q26.3, and 
specifically expressed in T cell acute lymphoblastic 
leukemia (T-ALL), thereby playing a crucial role in its 
progression. The gene encoding LUNAR1 is located in 
close proximity to the insulin-like growth factor 1 
receptor (IGF1R) gene. Upon activation, LUNAR1 
recruits the mediator complex on the IGF1R promoter 
to regulate its transcription, thereby promoting T-ALL 
cell proliferation [67]. In vivo experiments involving 
the transplantation of tumor cells into mice revealed 
that tumor proliferation was blocked only in mice in 
which LUNAR1 was inactivated. This suggests that 
LUNAR1 inhibitors can potentially be used for 
targeted therapy. 

Antisense Noncoding RNA in the INK4 Locus 
(ANRIL) 

ANRIL, which is located on chromosome 9p21, 
exerts an oncogenic function through modulation of 
p15INK4b and p16INK4a expression[107]. In the 
development of B-cell precursor (BP)-ALL and AML, 
ANRIL is overexpressed, thereby aggravating 

inhibition of the p15INK4b locus. Iacobucci et al. 
compared ALL blood samples with nonmalignant 
controls and showed an apparent correlation between 
ANRIL and BCR-ABL-associated ALL nucleotide 
polymorphisms. They speculated that this association 
reflects the ability of certain ANRIL polymorphisms 
to contribute to their own transcriptional alteration 
and increased susceptibility to ALL[69]. In AML, 
ANRIL is upregulated in patients and downregulated 
after complete remission (CR) [106]. Additionally, this 
study showed that ANRIL regulated the expression of 
the adiponectin receptor and its downstream factors 
adenosine monophosphate-activated protein kinase 
(AMPK)/sirtuin 1 (SIRT1), thereby modulating 
disease progression by regulating glucose metabolism 
[108]; these findings suggest that ANRIL represents 
both a potential candidate for AML diagnosis and a 
therapeutic target. Furthermore, Song et al. showed 
that ANRIL could promote the proliferation of T-ALL 
cells by targeting enhancer of zeste homolog 2 (EZH2) 
and activating the nuclear factor kappaB (NF-κB) 
pathway, indicating that aberrant ANRIL expression 
was involved in T-ALL leukemogenesis [70]. 

Deleted in Leukemia (DLEU)1/2 
Over 50% of patients with chronic B-cell 

lymphocytic leukemia have a 13q14.3 deficiency. This 
critical deleted region comprises two adjacent 
subregions: DLEU1 and DLEU2 [109]. DLEU2 
negatively regulates cyclins D1 and E1 via miR-15a 
and miR-16-1, which play important roles in chronic 
lymphocytic leukemia (CLL) pathogenesis by 
regulating B-cell lymphoma 2 expression [92, 110]. 
Additionally, Garding et al. found that DLEU1 and 
DLEU2 were significantly demethylated at their 
respective 5′ end in almost all CLL patients, resulting 
in attenuated transcription of a series of adjacent 
sequences encoding tumor-suppressor genes [93]. 
Moreover, DLEU1 is reportedly poorly expressed in 
other solid tumors and negatively correlated with 
prognosis [111]. Therefore, its clinical application in 
leukemia treatment requires further investigation. 

β Globin Locus Transcript 3 (BGL3) 
BGL3 is located on chromosome 11p15.4 and 

negatively regulated by c-Myc-dependent DNA 
methylation. BGL3 is a host of miR-17, miR-20a, 
miR-20b, miR-93, miR-106a, and miR-106b, and acts as 
a competing endogenous (ce)RNA to alter the 
expression of the tumor suppressor PTEN. 
Additionally, BGL3 overexpression significantly 
reduces the survival of K562 cells and promotes 
imatinib-induced apoptosis [90]. These results 
indicate that BCR-ABL-mediated cell transformation 
requires silencing of the tumor suppressor BGL3, 
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thereby offering a potential strategy for treatment of 
BCR-ABL-positive leukemia. 

HOX Transcript Antisense RNA (HOTAIR)  
HOTAIR is located on chromosome 12 and is 

transcribed from the antisense strand of the 
homeobox C gene locus. HOTAIR plays a repressive 
role by interacting with and guiding various 
chromatin-modifying complexes, including LSD1 and 
PRC2, to target-gene promoter regions, resulting in 
gene silencing [112]. In hematological malignancies, 
HOTAIR regulates self-renewal of leukemia stem cells 
(LSCs) to promote uncontrolled self-renewal and 
proliferation [33]. Previous studies report HOTAIR 
overexpression in AML patients, and show that these 
elevated levels are associated with higher peripheral 
leukocyte and bone marrow blast counts and lower 
platelet and hemoglobin counts, as well as poor 
clinical prognosis [29-31]. Furthermore, HOTAIR acts 
as a ceRNA by binding to miR-193a, which targets 
c-KIT, thus modulating c-KIT expression [32]. In 
CML, HOTAIR is upregulated in patients with 
elevated levels of multidrug-resistance protein 1. In 
K562 imatinib-resistant cells, HOTAIR knockdown 
leads to higher sensitivity to imatinib via the 
inactivation of phosphoinositide 3-kinase 
(PI3K)/AKT signaling [75]. These results suggest 
HOTAIR is involved in the development of imatinib 
resistance. 

Urothelial Carcinoma-associated 1 (UCA1) 
UCA1 is located on chromosome 19p13 [113] and 

highly expressed as a proto-oncogene in a variety of 
tumors [114-118]. Additionally, UCA1 levels are 
elevated in AML and CML cell lines. The oncogenic 
effect of UCA1 is achieved by sponging miR-126, 
which precludes degradation of Ras-related C3 
botulinum toxin substrate-1(RAC1) and activates 
JAK/STAT and PI3K/AKT signaling [26]. Hughes et 
al. found elevated UCA1 levels in AML patients 
carrying CCAAT enhancer binding protein α 
(CEBPA) mutations, and that UCA1 sustained the 
proliferation of AML cells by inhibiting expression of 
the cell cycle regulator p27kip1 [27]. Additionally, they 
found that abnormally expressed UCA1 acted as a 
ceRNA targeting miR-125a, which resulted in 
upregulated hexokinase-2 (HK2) expression, a key 
enzyme involved in glycolysis. Moreover, UCA1 is 
associated with resistance to chemotherapy, with 
elevation of UCA1 expression following doxorubicin 
(ADR)-based chemotherapy. UCA1 knockdown in 
ADR-resistant HL60 cells partially reversed AML 
chemoresistance via the miR-125a/HK2 axis(Figure 3) 
[28]. Another study reported that UCA1 is capable of 
binding miR-16 to regulate MDR1 expression and 
promote imatinib resistance in CML cells [87]. These 
findings support UCA1 as a potential diagnostic 
biomarker and therapeutic target for leukemia 
treatment and reversal of drug resistance. 

 

 
Figure 3. a. CEBPA-p30 protein promotes UCA1 (indicated in red) expression in AML cells with CEBPA mutations. b. UCA1 sustains proliferation of AML cells by repressing 
the expression of the cell cycle regulator p27kip1. c. The UCA1 transcript functions as a sponge for miR-125a and miR-126, thus modulating RAC1 and HK2 expression, and 
promotes AML cell proliferation and resistance to chemotherapy. 
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H19 
H19 is an endogenous gene located on 

chromosome 11p15 [119]. H19 maintains 
hematopoietic stem cell (HSC) quiescence at the 
transcriptional and post-transcriptional levels by 
regulating IGF2–IGFR1 activity [120]. Other studies 
have identified H19 as either an oncogene or tumor 
suppressor, depending on tumor type [121-125]. Guo 
et al. reported that H19 expression is positively 
regulated by c-Myc and required for tumorigenesis, as 
H19 knockdown enhanced the sensitivity of CML 
cells to imatinib, inhibited BCR-ABL-induced tumor 
proliferation, and promoted apoptosis [79]. A 
subsequent study indicated that hypomethylation of 
the H19 differentially methylated region/imprinting 
control region might mediate its overexpression in 
CML [80]. Zhang et al. identified upregulated H19 
levels in AML patients that were correlated with 
lower CR rates and shorter OS [25]. These findings 
suggest that H19 plays different roles in different 
malignancies. Therefore, further research is needed to 
comprehensively elucidate the H19-specific 
mechanisms of action in leukemia. 

LncRNA Expression Profiles in Leukemia 
Although the study of global lncRNA expression 

in leukemia remains limited, the expression patterns 
of various lncRNAs related to leukemia tumorigenesis 
and specific subtypes have been examined through 
expression profile analysis.  

Lei et al. performed transcriptome analysis of 
lncRNA-expression profiles of AML patient samples 
and healthy controls, and identified differentially 
expressed lncRNAs, revealing that upregulated 
lncRNAs in AML were related to higher levels of 
binding to transcription factors such as STAT4, SP1 
and ELK1, and lower levels of DNA methylation. 
Additionally, they found that LOC285758 stimulates 
the proliferation of AML cell lines by increasing levels 
of histone deacetylase 2, with elevated LOC285758 
levels in patients associated with worse prognosis 
[126]. By comparing in-depth sequencing data for 
various RNA-seq libraries and integrating RNA-seq 
data from 179 AML patients, Zhang et al. showed that 
lncRNAs are associated with specific AML subtypes 
[127]. They observed that a subset of lncRNAs were 
abundantly expressed in patients with M3 subtypes, 
which are initiated following expression of the 
PML-RARα fusion gene. Schwarzer et al. revealed 
noncoding RNA stem cell characteristics as prognostic 
features shared by healthy HSCs and AML blasts 
cells, and identified lncRNA signatures specific for 
acute megakaryoblastic leukemia (AMKL), Down 
syndrome-associated AMKL, inv(16), t(8; 21), and 

mixed-lineage leukemia-rearranged samples [128]. 
Ghavazi et al. performed a comprehensive analysis of 
the lncRNA transcriptome in ETS variant 6 
(ETV6)/Runt-related transcription factor 1 
(RUNX1)-positive BP-ALL, and found a specific 
lncRNA signature comprising 596 lncRNA transcripts 
[129] . Following data integration with RNA-seq 
results from other BP-ALL cell lines, they identified 16 
unique lncRNA-expression profiles associated with 
the ETV6/RUNX1 fusion protein, including a 
potential carcinogenic lncRNA (DBH-AS1) [130]. 
Another study revealed differential lncRNA 
expression between AML and ALL patients (1168 
mRNAs and 2101 lncRNAs differed between 
leukemia subsets), with subsequent analysis of 
co-expression networks revealing single mRNAs 
potentially associated with more than one lncRNA, 
and vice versa. These results indicate that lncRNAs 
play important roles in regulating AML and ALL 
development [131].  

LncRNA expression represents a potential 
prognostic marker for leukemia, and may enable risk 
stratification in leukemia patients. Feng et al. 
identified three lncRNAs (RP11-305O.6, AC092580.4, 
and RP11-222K16.2) related to the OS of AML 
patients, with further experiments suggesting that 
RP11-222K16.2 might affect the differentiation of 
natural killer cells to promote immune escape of AML 
[132]. Tsai et al. recruited 275 newly diagnosed 
non-M3 AML patients and established a prognostic 
lncRNA score system comprising 5 lncRNAs, 
demonstrating lncRNA score as an independent 
prognostic factor for AML [133]. Garzon et al. used a 
custom microarray platform to study lncRNA- 
expression profiles in elderly patients with normal 
cytogenetic (CN)-AML, with an emphasis on 
evaluating associations with conventional mutations 
and phenotypes. This led to the identification of 
dysregulated lncRNAs associated with select gene 
mutations and clinical outcomes [134]. Additionally, 
they obtained a lncRNA score from 48 lncRNAs, with 
patients who had unfavorable lncRNA scores also 
displaying lower CR rates and shorter disease-free 
survival and OS. Because the clinical features, 
molecular abnormalities, and outcomes of older 
patients with CN-AML differ from those in younger 
adults, they also studied the prognostic value and 
biological significance of lncRNA expression in 377 
adult patients (<60-years old) with CN-AML. Their 
results revealed no overlap between the 48 prognostic 
lncRNAs found in elderly CN-AML patients and the 
24 transcripts reported in younger patients [135]. This 
might be attributable to additional biological 
differences between the two cohorts, such as 
age-dependent differences in the frequency of 
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mutations in recurrent prognostic genes. Mer et al. 
used RNA-seq analysis to detect lncRNA expression 
in 274 AML patients, finding that 33 lncRNAs were 
associated with OS[136]. A study identified 24 
lncRNA signatures showing differential expression in 
CLL relative to normal B cell controls, with an 
independent risk model based on the expression of 
lnc-KIAA1755-4 and lnc-IRF2-3 capable of 
distinguishing between three different prognostic 
groups [137]. 

Conclusions and Future Directions 
LncRNAs are a large class of transcripts that play 

important roles in biological processes in malignant 
cells. The number of identified human lncRNAs has 
increased in the previous 15 years, with many of these 
also identified in leukemia. However, an 
understanding of the roles played by lncRNAs in 
leukemia occurrence and development remains 
insufficient. In this review, we briefly describe 
lncRNAs involved in leukemia progression and the 
underlying mechanisms.  

LncRNA functions include regulation of cell 
differentiation, energy metabolism, malignant 
proliferation, and drug resistance. Future work 
should explore these functions more extensively, 
including subcellular localization to promote function 
prediction. Most lncRNAs localized to the nucleus 
modulate transcription and epigenetic modification, 
whereas those localized to the cytoplasm are likely to 
be involved in regulation at the post-transcriptional 
level. Further in-depth investigation of abnormally 
expressed lncRNAs in leukemia will enable 
elucidation of leukemia pathogenesis, and potentially 
provide feasible approaches for its treatment. 
Additionally, lncRNAs represent potential 
biomarkers for leukemia diagnosis and prognosis, 
with reports that abnormal expression of specific 
lncRNAs is related to leukemia-specific 
clinicopathological parameters. For example, 
HOTAIR and H19 correlate with poor OS in AML 
cases. Furthermore, model scores constructed based 
on differentially expressed lncRNAs obtained from 
sequencing or microarray data represent good 
prognostic predictors. Accordingly, expression of 
specific lncRNAs could represent a novel diagnostic 
biomarker and provide guidance for the prediction of 
clinical outcomes of leukemia; however, unified 
evaluation criteria based on a large sample are 
required. Prior to their use as leukemia biomarkers, 
large-scale prospective trials should be conducted in 
order to confirm their clinical usefulness and verify 
their accuracy and sensitivity as diagnostic and 
prognostic tools. 

Although numerous lncRNAs have been 
identified, their regulatory functions remain largely 
unclear. Because lncRNAs exhibit low levels of 
expression and show poor species conservation 
relative to protein-coding genes, rapidly evolving 
RNA-seq technology can be used as a faster and more 
accurate detection system. Laboratory studies show 
that siRNA-targeting technology and CRISPR-Cas9 
can effectively knockdown lncRNAs. The potential 
clinical utility of lncRNA-interference therapy should 
be explored in animal models and clinical trials in 
order to develop novel therapeutic strategies based on 
lncRNA targets in leukemia. 
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