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Molecular motors and nuclear movements in muscle
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ABSTRACT
Muscle fibers have the particularity of containing numerous nuclei evenly distributed and
positioned next to the plasma membrane. This unique disposition is the result of sequential events
of nuclear movements that start when myoblasts fuse together and end with the clustering of few
nuclei under the neuromuscular junction. Nuclei are mispositioned in multiple muscle disorders
therefore the mechanisms of nuclear positioning can be novel targets for muscle disorders
therapies. The 2 first nuclear movements that occur upon myoblast fusion require different
microtubule motors. We performed a siRNA screen against all the microtubules motors and
quantified nuclei behavior after fusion and inside the myotube. The different motors we found to
be involved in the nuclear behaviors and the analysis of motors expression suggest a competition
between both movement mechanisms, which potentially relies on the discrepancy between
myoblast and myotube microtubules stability.
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Nuclear positioning in muscle fibers involves 4 succes-
sive nuclear movement events.1 The 2 initial steps, cen-
tration and spreading, involve the microtubule
cytoskeleton and associated motors.2,3 It is noteworthy
that the microtubule network is profoundly modified
during muscle cell differentiation as its organization
switches from being centrosome to nuclear envelope-
based.4 This rather unique feature creates an anti-parallel
array of microtubules between nuclei on which proper
nuclear movement relies. In the attempt to better under-
stand the mechanisms involved, we performed a siRNA
screen against all known microtubule motor proteins
together with live imaging of the muscle cell line C2C12
and quantified nuclear behavior during centration and
spreading movements. Our primary focus has been on
nuclear spreading and we showed that multiple motors
are involved.5 Kif5b, an ubiquitous microtubule (C) end
kinesin, is particularly important as its downregulation
affects speed, time in motion and alignment of nuclei in
the multinucleated myotube. Here, we further show the
differences between centration and spreading move-
ments after knockdown of microtubule motors affecting
these movements, and compare their respective expres-
sion during cell differentiation (Fig. 1, Table 1). Interest-
ingly, by analyzing the expression profile performed by
Chen and colleagues6 (GDS2412), we found that the

expression of several motors involved in nuclear move-
ment, and particularly Kif5b, are upregulated during dif-
ferentiation supporting their role in nuclear movements
during muscle fiber formation. We and others have
shown kif5b implication in moving the nucleus by cross-
linking and sliding anti-parallel microtubules between
nuclei as well as through its localization at the nuclear
envelope to rotate nuclei along microtubules.3,7 Interest-
ingly, Kif5b is not involved in the initial, faster centration
movement; a movement that relies almost exclusively on
the microtubule (–) end motor Dynein,2 also localized at
the nuclear envelope (Fig. 1, Table 1). After fusion, the
nucleus from the myoblast moves rapidly toward the
closest nuclei cluster in the myotube. It is therefore
tempting to propose the existence of a competition
between the mechanisms involved in centration and
spreading, a possible tug-of-war.8,9 Compliant with this
hypothesis is that absence of Dynein reduces nuclear
speed of centration but increases significantly the speed
of nuclear spreading inside the myotube (Fig. 1, Table 1).

The molecular motors involved in one nuclear behav-
ior, centration vs spreading, are usually not involved in
the other, except Dynein heavy chain, supporting a com-
plete separation between the mechanisms regulating
these movements. A particular kinesin, Kif13b also
known as GAKIN, is upregulated upon differentiation.
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However, its downregulation by siRNA induces an
increase in nuclear movement within myotubes suggest-
ing that this kinesin might act as a brake in myotubes,
even though it is a plus-end directed motor like Kif5b.
Kif13b is involved in cargo transport in several polarized
cells,10–17 it could also be involved in anchoring microtu-
bules at the cell cortex.17 Its role in nuclear movement is
yet unknown and might impact the distribution of spe-
cific proteins important for nuclear spreading. Similarly,
Kifc2 is upregulated during differentiation (although to a
lesser extent than kif13b) and its depletion increases

nuclear speed and time in motion. Initially described as a
neuron-specific kinesin,18 its elevated expression has
been observed in muscle tissues19 (and in Human Pro-
tein Atlas) and can therefore represent another level of
nuclear movement regulation in the differentiated mus-
cle cells. Kifc1 shares the same KIFC consensus sequence
with Kifc2,18 and its expression decreases during differ-
entiation and its depletion decreases nuclear speed. This
is a rather puzzling result, where depletion of a protein
that is downregulated during differentiation has a nega-
tive effect on nuclear movement. However, it can be
explained by the existence of a long lived protein whose
action is required during the first event of differentiation
or by a key role that is exerted even with low levels of
protein. Interestingly, Kifc1 is able to interact with
Kif5b20 and is found at the nuclear envelope in sperma-
tids21 and might therefore be implicated in Kif5b-depen-
dent nuclear movement in muscle cells.

Kif4, whose depletion induces a strong decrease in
nuclear spreading movement, is downregulated during
differentiation.6 However, it is noteworthy that Kif4 has
been reported to be implicated in stabilizing microtu-
bules in migrating fibroblast.22 Stable microtubules are
required for proper muscle cell differentiation,23,24 and
they are probably involved in the tug-of-war between
centration and spreading. As proposed by Mian et al.,23

the difference between a myoblast and a myotube could
reside in the differential amount of stable -detyrosinated-
microtubules. A fusing myoblast with more unstable
microtubules will have less chance to participate in an
anti-parallel microtubule array between the myoblast
nucleus and myotube nuclei thereby favoring the centra-
tion movement. In addition to this hypothesis is the exis-
tence of a preference of Kif5b for stable microtubules.25–
29 Therefore, we propose a model where the centration
movement relies on the stable microtubules originating
from the myotube nuclei that bind to the myoblast
nucleus through Dynein motor. This will pull the new
nucleus toward the myotube nuclei. Then, as soon as this
new nucleus will have stabilized microtubules, it will

Figure 1. Schematic representation of the effects of knock-down
of 16 microtubules motors on nuclear behaviors and their mRNA
fold changes after differentiation. The color coding indicates an
increase or decrease compare with a control situation as shown
on the bottom left. Spreading speed corresponds to the speed
when nuclei are in movement. Spreading TIM: Time In Motion
during the spreading movement; in control situation, nuclei
spend 55% of the time in movement. Alignment: In a control situ-
ation, 70% of myotubes have aligned nuclei. Centration speed:
nuclear speed between the site of myoblast fusion and the first
myotube nucleus.

Table 1. Values of centration and spreading speeds after silencing of the indicated motors, and their increase of expression from
myoblast to myotube.

CTR KIF13A KIF13B DYNC1H1 KIF26A KIF27 DYNC1I1 DYNC1I2 KIF1C

Centration speed
(um/min)

0.757 C/¡
0,035

0.680
C/¡0,057

0.712C/¡
0,067

0.539 C/¡
0,051

0.984C/¡
0,075

1.060C/¡
0,079

0.580C/¡
0,035

0.461C/¡
0,058

0.806C/¡
0,083

Spreading speed
(um/min)

0.289 C/¡
0,009

0.388C/¡
0,031

0.359C/¡
0,015

0.268C/¡
0,010

0.258C/
¡0,011

0.270C/¡
0,009

0.217C/¡
0,006

0.230C/¡
0,011

0.274C/¡
0,011

mRNA fold 1.000 1.004 2.233 1.212 0.725 2.098 1.769 1.126 1.394
KIF1A KIF9 KIF4 KIFC1 KIFC2 KIF5B KIF1B DCTN1

Centration speed
(um/min)

0.924 C/¡
0,099

0.809C/¡
0,086

0.957C/¡
0,072

1.024C/¡
0,081

0.640C/¡
0,069

0.831C/¡
0,047

0.617C/¡
0,039

0.566C/¡
0,047

Spreading speed
(um/min)

0.253 C/¡
0,008

0.282C/¡
0,014

0.227C/¡
0,009

0.241C/¡
0,009

0.388C/¡
0,028

0.182C/¡
0,007

0.268C/¡
0,011

0.215C/¡
0,007

mRNA fold 0.635 2.130 0.133 0.126 1.228 1.641 1.210 1.099
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create an antiparallel array of microtubules with the
other nuclei and separate from them through the spread-
ing movement (Fig. 2).
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