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Abstract

Blood-oxygenation-level-dependent (BOLD) signals in magnetic resonance imaging indirectly reflect neural activity in cortex,
but they are also detectable in white matter (WM). BOLD signals in WM exhibit strong correlations with those in gray matter
(GM) in a resting state, but their interpretation and relationship to GM activity in a task are unclear. We performed a
parametric visual object recognition task designed to modulate the BOLD signal response in GM regions engaged in higher
order visual processing, and measured corresponding changes in specific WM tracts. Human faces embedded in different
levels of random noise have previously been shown to produce graded changes in BOLD activation in for example, the
fusiform gyrus, as well as in electrophysiological (N170) evoked potentials. The magnitudes of BOLD responses in both GM
regions and selected WM tracts varied monotonically with the stimulus strength (noise level). In addition, the magnitudes
and temporal profiles of signals in GM and WM regions involved in the task coupled strongly across different task
parameters. These findings reveal the network of WM tracts engaged in object (face) recognition and confirm that WM BOLD
signals may be directly affected by neural activity in GM regions to which they connect.
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Introduction
Functional magnetic resonance imaging (fMRI) has become a
well-established technique to detect variations in neural activity
in cortex by measuring blood-oxygen-level-dependent (BOLD)
signals. These variations may arise as a result of a stimulus or
task, or multiple voxels and/or regions of cortex may exhibit
synchronized spontaneous fluctuations in a resting state, which

are then identified as functionally connected within a brain net-
work (Ogawa et al. 1992; Biswal et al. 1995; Fox and Raichle 2007).
In both cases, in the vast majority of previous studies, BOLD
signals in white matter (WM) have been consistently overlooked
and, in practice, the average BOLD fluctuations in WM have
often been considered as a nuisance covariate to be removed by
regression in order to reduce physiological noise (Behzadi et al.
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2007; Caballero-Gaudes and Reynolds 2017). In recent years, an
increasing body of evidence indicates that BOLD signals within
WM appear to reflect neural activities (Gore et al. 2019). For exam-
ple, our previous studies have shown that WM voxels exhibit syn-
chronized resting-state BOLD fluctuations within specific tracts
(Ding et al. 2013, 2016; Schilling et al. 2019; Wu et al. 2019; Li et al.
2020). Further findings were reported by Marussich et al. (2017)
and Peer et al. (2017), suggesting that segregated WM networks
can be identified using a K-clustering method or independent
components analysis based on the temporal patterns of signals
in WM voxels, and these networks closely resemble known gray
matter (GM) circuits and WM tracts. These works highlight the
relevance of taking WM BOLD signals into account in resting-
state studies because of their similar properties with those in GM.
Along this line, Ding et al. (2018) demonstrated that resting-state
BOLD signals in WM tracts are strongly correlated with signals
in specific GM areas, and these correlations can be increased by
specific functional demands. In addition to analyses that focus
on spontaneous BOLD fluctuations during rest, Mazerolle et al.
(2010) and Gawryluk et al. (2011) detected WM activation in the
corpus callosum by performing the inter-hemispheric transfer
task. However, the engaged areas reported are relatively small,
possibly due to the lower vascular volume of WM as well as
incorrect assumptions about the time courses of WM responses
that are usually incorporated into for example, general linear
models (GLM) for fMRI data analysis (Gawryluk et al. 2014). Li et al.
(2019) comprehensively measured the hemodynamic response
function (HRF) in WM using an event-related task and observed
clear task-specific HRFs with significantly delayed onsets in WM
tracts compared with activated gray matter, thus calling for mod-
ifications of standard methods of analysis of functional imaging
data. To compensate for such temporal delays, Courtemanche
et al. (2018) and Tae et al. (2014) used a set of HRFs with successive
time shifts and observed that WM activity in the corpus callosum
could be detected with increased sensitivity. These findings sup-
port the notion that neural activities are encoded in WM BOLD
signals and are detectable using appropriate methods.

In previous studies exploring the visual system, we evaluated
WM responses to simple sensory stimuli that activated primary
visual areas and produced BOLD activation in both GM and
WM relevant areas. For example, Huang et al. (2018) applied a
periodic block-design visual task (8 Hz flickering checkerboard)
and, instead of assuming any specific HRF for WM, conducted
analyses based on the power spectra of the BOLD time series
from each voxel. They observed that BOLD responses in both GM
and WM voxels that were engaged in the task were also periodic
with a strong component at the fundamental task frequency
compared to other components. Mishra et al. extended this study
by varying the frequency (2–14 Hz with a step-size of 2 Hz) of the
flickering checkerboard so as to produce different intensities of
visual responses. They observed concomitant variations in both
cortical and associated WM regions (Mishra et al. 2020), and these
variations were determined by a single task parameter. These
findings suggest strongly that the magnitudes of WM BOLD sig-
nals reflect the degree of neural activity in associated GM regions.
However, these studies have been limited mainly to low-level
visual processes, and there remains a paucity of evidence on the
neural coupling between WM and GM in response to higher-level
visual tasks in which the responses are often weaker and which
incorporate more complex cognitive processes. Here we aim to
fill this gap in experimental studies of GM–WM correlations in a
face recognition task.

There exists an extensive literature demonstrating that dis-
tinct brain regions exhibit highly reliable preferential responses

to the recognition of human faces (Gauthier et al. 1999;
Kanwisher and Yovel 2006; Doris Y. Tsao 2012). In particular,
part of the fusiform gyrus responds strongly and selectively
to human faces compared with other visual objects, and
the presentation of faces elicits a characteristic N170 evoked
potential that can be measured by electrodes at the surface
of the head (Bentin et al. 1996). Horovitz et al. (2004) designed
a parametric task derived from earlier work by Rossion et al.
(2003) by adding different levels of noise into face pictures
viewed during a scan and observed that the magnitudes
of BOLD signals in the right fusiform face area varied as a
function of the noise levels. A key finding from these studies
is that responses in GM in occipitotemporal regions engaged
in higher order visual processing can be modulated by an
external task parameter, and this conclusion was confirmed
by electroencephalographic (EEG) measurements performed
in the same study. We adapted this paradigm to examine the
GM–WM coupling under 6 different levels of face stimuli. First,
a number of activated GM clusters were identified based on
a localizer paradigm by contrasting trials showing faces vs.
cars. Second, WM tracts were reconstructed using diffusion
magnetic resonance imaging (MRI) data by first placing seeds
at activated GM clusters. Finally, the BOLD time courses within
these specific WM tracts were evaluated in terms of their
magnitudes and temporal profiles across different levels of
stimuli. Our data suggest that BOLD signals in both bilateral
fusiform GM, and the WM to which they connect, exhibit a
linear decrease in magnitudes with increasing noise in the
face pictures. There are also significant correlations of BOLD
magnitudes between activated GM areas and their connected
WM tracts across different levels of stimuli. Moreover, BOLD
fluctuations of selected WM tracts exhibit reduced magnitudes
and delayed responses compared with the GM areas to which
they connect. Our findings confirm that WM BOLD signals
produced in response to complex visual recognition processes
are coupled to those in connected GM and can be modulated by
the same task parameters.

Materials and Methods
Subjects

This study was approved by the Vanderbilt University institu-
tional review board. Written informed consent was obtained
from each subject. Twenty healthy individuals (9 M/11 F; age,
31.7 ± 6.3 years) with no histories of neurological or psychiatric
disorders were included.

Task Design

First, a localizer task as shown in Supplementary Figure 1a (see
supplementary data for details) was designed to identify GM
areas responding preferentially to face presentations. In this
task, 6 blocks of face pictures and six blocks of car pictures were
presented alternately throughout the session (365 s). Each block
lasted 20 s during which 20 pictures in succession were pre-
sented against a black background. Each picture was displayed
for 700 ms and was followed by a blank interval of 300 ms.
Blocks were spaced by 10-s of “resting-state” during which a
gaze-fixation (a white crosshair) was displayed at the center of
the screen. Following the localizer session, six runs of parametric
face recognition tasks were acquired as shown in Supplementary
Figure 1b. For each run, six blocks of face pictures were presented
and spaced by 20-s resting-state blocks. Each block consisted of
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20 face pictures to which was added a specified level of Gaussian
noise (with zero mean). Six noise levels were determined in terms
of the standard deviation of a Gaussian noise distribution (0,
0.025, 0.1, 0.5, 1, 5) as shown in Supplementary Figure 1c. The
blocks of different noise levels were presented in a pseudoran-
dom order over each run. The laser-scanned face pictures were
provided by the Max Planck Institute for Biological Cybernetics in
Tuebingen, Germany (Troje and Bülthoff 1996; Blanz and Vetter
1999), and the car pictures were obtained from the internet and
were processed to remove backgrounds, and then histograms
of voxel intensities were matched to the face pictures using a
histogram equalization method (Garg and Jain 2017).

MRI Acquisition

Images were acquired using a 3 T MRI scanner (Philips
Healthcare, Best, Netherlands) installed at Vanderbilt University
Institute of Imaging Science. Each subject was scanned in a
supine, head-first position with restricting pads placed within
the 32-channel head coil to ensure stability. BOLD-sensitive
MRI images were acquired with repetition time (TR) = 2 s, echo
time (TE) = 35 ms, SENSE factor = 2, matrix size = 80 × 80, field
of view = 240 × 240 mm2, 34 slices of 4 mm thickness with a
0.5 mm gap. Pictures of faces or cars were visually projected
onto a screen mounted in the back of the scanner and could
be viewed by subjects through a mirror mounted on the head
coil. To reconstruct WM tracts, diffusion-weighted MR images
were acquired using a multishot, echo-planar imaging sequence
with b = 1000 s per mm2, 32 diffusion-sensitizing directions,
TR = 4.5 s, TE = 84 ms, matrix size = 112 × 112 × 68, and voxel
size = 2 × 2 × 2 mm3. For both fMRI and diffusion MRI, 3 additional
volumes were acquired with opposing phase encoding directions
to estimate and correct for distortions. As anatomical references,
high-resolution T1-weighted images were acquired using a
3-dimensional magnetization-prepared rapid gradient-echo
sequence at a voxel size of 1 × 1 × 1 mm3.

fMRI Analysis

Functional MRI images were preprocessed using the DPABI (Yan
et al. 2016) and FSL (Jenkinson et al. 2012) and SPM (Friston 1994)
software. First, the images were corrected for susceptibility-
induced geometric distortions using images acquired with
opposing phase encoding directions using the Topup tool in
FSL. Second, the images were corrected for slice timing and
head motion. Third, T1-weighted images were segmented into
GM, WM, and CSF, and all these images were co-registered to
the mean BOLD image resulting from the motion correction
procedure. Fourth, the BOLD images were normalized into MNI
space at a voxel size of 3 × 3 × 3 mm3, along with the segmented
and co-registered T1-weighted images.

Following preprocessing, the signals measured for the local-
izer task (faces vs. cars) were convolved with a canonical HRF in
the context of a GLM within SPM. On a single subject level, condi-
tions were contrasted against each other to create a parametric
image that reflected the signal changes with respect to faces
compared with those of cars. On the group level, a one-sample
t-test was applied to the parametric images across all subjects
to create a map of the brain activation evoked by the faces for
the whole population. Activated voxel clusters were reported at
a threshold P < 0.05 (cluster level, two-sample t-test, family-wise
error (FWE) rate corrected) with the cluster size larger than 25
voxels.

Diffusion MRI Analysis

The raw diffusion-weighted images were first corrected for
susceptibility-induced geometric distortions using images
acquired with opposing phase encoding directions using the
Topup tool in FSL. A 3 × 3 diffusion tensor was modeled for each
pixel with multivariate linear fitting using DSI Studio software
(http://dsi-studio.labsolver.org/). For each subject, the B0 image
was co-registered to the T1 images and subsequently normalized
to MNI space using SPM. This procedure was reciprocated
and provided both forward (diffusion space toward MNI) and
backward (MNI toward diffusion space) transformation matrices.
To guide the reconstruction of tracts, the activated clusters of
each subject were transformed from MNI to the diffusion space
using the backward transformation matrix. We then performed
diffusion-based tractography by considering these GM clusters
as the seed regions to search throughout the rest of the brain
for all possible voxels that connect to the seeds, which produced
a tract density map in which the value of the density reflects
the probability that WM fibers traverse the location. These maps
were later transformed into the MNI space using the forward
transformation matrices. A population-based density map was
then computed by averaging across all 20 subjects. In MNI space,
the population-based density maps were then thresholded at
30% of their maximal values to remove weak connections and
masked with the WM mask at a threshold of 95% to exclude the
influences from adjacent GM, as well as superficial WM voxels.

Timecourse Analysis

The average time course within a task block was analyzed
assuming a 40-second inter-onset interval (IOI), the time
between the onsets of each successive block, as illustrated
in Supplementary Figure 1b. The blocks with the same noise
level were temporally aligned according to their onsets, and
their time courses were averaged across runs and subjects.
The magnitude of each timecourse was represented by the
average magnitudes for time points in the range of [4–24 s]
which approximated to the BOLD peak in response assuming
the canonical HRF of the human brain (Lindquist et al. 2009).
For WM we extended the time window to [4–30 s] to allow for
the delayed response in WM (Li et al. 2019). The relationship
between these magnitudes and noise levels was examined
using Pearson’s correlation. A permutation test was used to
examine the significance of the BOLD changes in these tracts
in response to the task. For this, the magnitudes of m voxels that
composed the tract were denoted by {Vtr} and the magnitudes
of the remaining n voxels within the WM mask were denoted
by {Vwm}. First, we calculated the difference of means between
the 2 sets: Df = mean{Vtr} − mean(Vwm). Then the 2 sets were
pooled to produce {Vall} = {Vtr; Vwm} which consists of m + n
elements. We initiated the permuation by randomly sampling
m elements from {Vall}, and calculated the difference in means
between those m elements and the remaining n elements to
produce d1. The permutation was repeated 5000 times and each
time we obtained values of the difference d1, d2, d3, . . . , d5000.
Finally, we generated the histogram of {d}, and the P value = (the
number of permutations where d ≥ Df )/5000.

The GM–WM coupling was evaluated in terms of the Pear-
son’s correlation of magnitudes or time to peak (TTP) between
activated GM clusters and the tract to which they connect across
subjects and noise levels. To eliminate subject effects, the subject
ID was regressed out from the variables before correlation. Note
that the identifications of TTP were also limited within certain
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ranges: [4–24 s] for GM and [4–30 s] for WM. For comparison,
Pearson’s correlation of magnitudes between GM clusters and 60
WM tracts were also assessed. Such tracts were defined in a WM
atlas, namely, JHU-MNI-ICBM152, proposed by Oishi et al. (2008).

Results
Brain Activation in Response to Faces and Associated WM
Tracts

Five major activated GM clusters as shown in Figure 1a were
reliably detected (P < 0.05, t-contrast, FWE corrected) across the
population by contrasting faces to cars. Each cluster was iden-
tified by the name of an anatomical structure it overlaps to the
maximum possible extent. These clusters include fusiform left
(FuL, peak MNI coordinate [−39 –48 −21]), fusiform right (FuR, 42
−51 −21), amygdala right (AmR, [18 −6 −15]), Lingual gyrus left
(LnL, [−6 −87 −9]) and a small area located at inferior frontal area
right (IfR, [48 15 30]).

Seeds were placed at each of these GM clusters as shown
in Figure 1b (gray areas), after which diffusion tractography was
used in each subject to search for the possible paths that connect
the seeds and the rest of the brain. This produced a density
map, as shown in Figure 1b (red temperature scale), where the
value of each voxel represents the probability the paths traverse
this voxel. By setting a threshold to the population-averaged
density map, a WM tract, as shown in Figure 1b (green areas),
that represents the highest connection to each GM cluster was
reconstructed. The result shows that the tracts connecting bilat-
eral fusiform areas (FuL and FuR) expands toward the posterior
area of the brain and briefly represents the temporal-occipital
path. The tract connecting the AmR is small in size, expanding
toward the parietal area of the brain. The tract connecting the
LnL represents the core of the temporal-occipital path. For IfR, the
tract was limited in an adjacent area of GM, possibly representing
a U-fiber nearby.

Time Courses and their Magnitudes in GM and WM across
Different Task Parameters

Figure 2 (row 2–6) shows the average time courses of different GM
clusters in response to faces with varying levels of noise. FuL,
FuR, AmR, and IfR exhibit decreasing magnitudes when adding
more noise to the face pictures, whereas LnL exhibits increasing
magnitudes. The average magnitude of the time course over the
IOI is shown in a scatter plot as a function of noise level for each
subject in Figure 2 (row 1), where the magnitudes of FuL, FuR,
and AmR exhibit significant negative correlations with the noise
level. In contrast, the average magnitude with respect to LnL
shows a trend toward a positive correlation with the noise levels.
The population mean of the magnitudes are superimposed on
the GM voxels that were analyzed as shown in Figure 3.

In a similar vein, the time courses of WM tracts that connect
those activated GM clusters are shown in Figure 4 (rows 2–6),
where the FuL and FuR tracts exhibit decreasing magnitudes
as the noise level increased. The other tracts, particularly the
AmR tract, showed higher variance in their time courses across
subjects, and tended to show no significant changes with suc-
cessive increases of the noise. This is further confirmed by the
scatter plots of the average magnitudes over the IOI shown in
Figure 4 (row 1), where the magnitudes of FuL and FuR tracts
significantly correlate with noise levels. The population mean of
the magnitudes are superimposed on the WM voxels that were
analyzed as shown in Figure 5.

Significance of the BOLD Change in WM Tracts in Response
to Stimuli

A permutation test was used to examine the significance of
the BOLD changes in the WM tracts in response to the stimuli.
As shown in Figure 6, most of the tracts exhibit significantly
higher (P < 0.05) magnitudes than the rest of WM voxels across
all noise levels. The FuL and FuR show nonsignificant (marked
by red triangles in Fig. 6) but a notable trend (P = 0.084 and 0.066)
toward higher magnitudes in response to the noisest face pic-
tures compared with the rest of WM voxels. A similar trend
was also observed in the BOLD signals in IfR in response to the
faces with level-1 noise. BOLD signals of AmR exhibit magnitudes
that are equivalent to the rest of WM voxels (P = 0.469) at noise
level 4. This observation is also supported by the time course
shown in Figure 4, which shows large intersubject variability as
well as magnitudes that are below the baseline. AmR showed
significantly larger signals at other noise levels.

GM–WM Coupling in Response to the Task with Varying
Parameters

GM–WM couplings were analyzed by comparing the magnitudes
of GM signals with those of WM across all 6 levels of noise.
To eliminate subject effects, subject IDs were set as a covariate
which was regressed out from the magnitudes of signals from
GM clusters and WM tracts. In Figure 7 (row 1), each scatter plot
indicates, for each subject, the BOLD magnitude (the residual
after regression) of a GM cluster for a specific noise level versus
that of its connected WM tract at the same noise level. This figure
clearly shows that the signals in all GM clusters are significantly
correlated with those in WM tracts to which they connect across
different noise levels, supporting the notion that the responses
in GM and corresponding WM are strongly coupled when the
external stimulus changes. To further examine whether such
coupling is specific to the structural relationship between GM
and WM, we performed correlations between BOLD magnitudes
of GM clusters and those of other WM tracts defined by an
atlas. Figure 7 (row 2) shows that BOLD magnitudes in GM exhibit
much higher correlations with those of the WM tracts to which
they connect compared with other WM tracts. Four out of five
bar charts indicate the largest correlation coefficients are much
greater than the second-highest.

Temporal Profiles of Coupled GM and WM

We examined the TTP of the averaged BOLD responses for GM
clusters and those of their connected tracts across noise levels.
Three out of five tracts including FuL, FuR, and LnL exhibit a
delayed peak in their averaged time courses compared with the
GM clusters to which they connect at all noise levels, as shown
in Figure 8a. We also observed that the maximal time peak was
identified as 10.53 s for FuL and 8.42 s for FuR at noise level 1,
whereas minimal TTP was identified as 6.31 for FuL/R at noise
level 6. The times to peak of the WM tracts that connect FuL
and FuR exhibit consistent patterns where maximal TTP was
identified as 14.74 s for the left WM tract and 16.84 s for the
right at noise level 1, whereas minimal TTP was identified as
10.53 s for the left WM tract and 6.31 s for the right at noise
level 6. Correlation analysis of TTP between GM clusters and the
WM tracts to which they connect was performed on a population
basis across 6 noise levels, where subject IDs were regressed out
to eliminate subject effects. Figure 8b indicates that the TTP of
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Figure 1. GM/WM areas that are involved in the task. (a) Five activated clusters (2-sample t-test, P < 0.05, FWE corrected) were distributed throughout the brain, including

the bilateral fusiform gyrus (FuL and FuR), amygdala right (AmR), lingual gyrus left (LnL), and inferior frontal gyrus right (IfR). (b) The visualization of activated GM

clusters (gray), tract density maps (red temperature) yielded by a tractography approach and placing seeds at activated GM clusters, and WM tracts (green) produced by

setting a threshold to the tract density maps.

GM significantly correlated with that of WM with correlation
coefficients of 0.604 for FuL, 0.690 for FuR, and 0.706 for LnL.

Discussion
In this study, we evaluated GM–WM relationships in responses
to a parametric face recognition task during which face pictures

with 6 levels of added noise were viewed by the participants.
We observed that bilateral fusiform areas, as well as the tracts
to which they connect, exhibit clear, task-specific BOLD signal
changes whose magnitudes vary as a function of the level of
noise in the face pictures. The BOLD signal magnitudes in five
GM areas that are involved in face recognition are significantly
correlated with the signal magnitudes in the WM tracts to which
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Figure 2. Time courses and their magnitudes of BOLD signals in activated GM clusters across 6 noise levels. Row 2–6: averaged time courses within 40-s IOI regarding

five activated GM clusters in 6 noise levels. The centerline corresponds to the mean and the shade is the associated 95% CI. The x-axis indicates the time (s) and the

y-axis indicates the magnitudes (% BOLD change). Row 1: The visualization of the average magnitude of the time course over the IOI for all subjects, plotted against the

noise levels. P < 0.05 indicates a significant correlation.
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Figure 3. Visualization of the population mean of BOLD magnitudes on GM voxels that are analyzed across 6 levels of noise.

they connect across different noise levels. Three out of these five
WM tracts exhibit delayed responses compared with the GM to
which they connect, and the times to peaks of their timecourses
are strongly coupled to those of the GM to which they connect
across noise levels.

In response to the localizer task (faces vs. cars), five GM
clusters, including bilateral fusiform, amygdala right, lingual left,
and an inferior frontal area right, were reliably activated. The
fusiform face area was first described by Sergent et al. (1992)
in a positron emission tomography (PET) study, and further evi-
dence that it was specialized for the perception of faces was
provided by various studies including EEG (Bentin et al. 1996;
Rossion et al. 2003; Nguyen and Cunnington 2014) and fMRI (Clark
et al. 1996; Wojciulik et al. 1998; Gauthier et al. 1999; Winston
et al. 2004; Kanwisher and Yovel 2006). Whether this region is
truly specialized for faces or rather reflects levels of expertise
in identifying objects (Gauthier et al. 1999) does not affect the
interpretation of our results. Compared with the fusiform, the

rest of the activated clusters in this study presumably fulfill
different roles in face recognition; for example, the amygdala and
inferior frontal area are involved in processing emotional facial
expressions (Jabbi and Keysers 2008; Wang et al. 2017; McFadyen
et al. 2019), whereas the Lingual gyrus has been considered to
be related to the processing of visual information about parts of
human faces (McCarthy et al. 1999). Taken together, the activa-
tions we identified are involved in different cognitive processes
engaged in face recognition and are in line with findings from
previous studies.

Four out of five activated GM clusters (FuL, FuR, AmR, and
IfR) exhibit decreasing magnitudes in their BOLD timecourses
as the noise level in the face pictures increased. This finding
is in agreement with previous work in which the BOLD signals
in specific GM areas were modulated by the same parameters
of the external stimuli during face recognition (Horovitz et al.
2004). It is reasonable to suppose that primary sensory areas
will show a graded response to the effective magnitude of a
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Figure 4. Time courses and their magnitudes of BOLD signals in the tracts that connect the activated GM clusters across 6 noise levels. Row 2–6: Averaged time within

40-s IOI regarding five tracts in 6 noise levels. The centerline corresponds to the mean and the shade is the associated 95% CI. The x-axis indicates the time (s) and the

y-axis indicates the magnitudes (% BOLD change). Row 1: the visualization of the average magnitude of the time course over the IOI for all subjects, plotted against the

noise levels. P < 0.05 indicates a significant correlation.
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Figure 5. Visualization of the population mean of BOLD magnitudes on WM voxels that are analyzed across 6 levels of noise.

stimulus, whereas other regions engaged in perception may
exhibit a nonlinear (even binary) response. One unexpected find-
ing is that the magnitudes of LnL responses exhibit an opposite
trend with increasing noise, which could be a feature of the
responses of lingual gyrus which, for example, is also associated
with visual snow syndrome, a condition in which people see
white or black dots in parts or the whole of their visual fields (Bou
Ghannam and Pelak 2017). A fluorodeoxyglucose PET study has
demonstrated hypermetabolism in the lingual gyrus in patients
with visual snow syndrome (Schankin et al. 2020), where the
“snow” is visibly consistent with the Gaussian noise we added
into the face pictures. One of the most important findings of this
study is that the two WM tracts that are connected with FuL and
FuR exhibit decreasing magnitudes in their BOLD timecourses
with increasing noise, suggesting that the BOLD responses of
WM can also be modulated by a high-level visual processing
task. In contrast, the magnitudes of the timecourses of AmR,
LnL, and IfR exhibit nonmonotonic patterns across 6 levels of

noises. However, BOLD signal magnitudes of all of these five
tracts are significantly higher than those from random WM vox-
els, suggesting that WM responses are task-specific and highly
dependent on the location of the tracts.

These findings may raise questions about whether WM
BOLD signals reflect information processing intrinsic to the
WM, whether they are passive reflections of communication
between GM regions, or whether they are purely vascular
couplings of no significance to neural function. By design, the
WM responses detected are less likely to be attributable to
potential confounding partial-volume effects with GM because
the images were not smoothed and the WM analysis was
limited by using a within subject-level WM mask at a tight
threshold (>95%). Moreover, fMRI and diffusion images were
corrected for distortions to eliminate possible contamination
from adjacent GM voxels that may be misclassified as WM due
to misregistration. Another common concern is that the WM
signals are associated with physiological fluctuations, such as
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Figure 6. Histograms of differences (d) of the magnitude in means between randomly sampled WM and the rest WM voxels within a WM mask through 5000 permutations.

The red asterisk indicates the observed difference (Df) in means between the voxels within the tract and the rest WM voxels. The P value was given by the potion of

permutations where d ≥ Df (the portion of blue bins to the right side of the asterisk). P < 0.05 is considered a significant level. Non-significant BOLD changes are marked

with red triangles.

cardiac and respiration cycles. However, the magnitudes of such
waveforms do not vary with the parameters of a task and thus
are unlikely to contribute to the patterns we observed.

The magnitudes of the BOLD signals in selected tracts,
whether or not they vary monotonically with the noise level,
coupled well with those of GM clusters to which they connect.
Potentially this coupling could arise from the residual effects
of the oxygenation changes in GM vasculature draining into
the WM. However, the WM receives blood almost entirely
from medullary arteries which do not provide branches to GM
(Nonaka et al. 2003) so it unlikely that blood flow out of an
activated GM area can reach WM to modulate the signal there.
We also observed that the correlation coefficients between
interconnected GM and WM structures are much higher than
those between pairs of GM and WM that are not anatomically
connected. This suggests that such coupling is dependent on
the structural relationship between GM and WM, supporting the
observation of our previous study, based on an animal model and
histology, which suggested that functional connectivity shares a
similar pattern with the structural connectivity in the GM–WM
network (Wu et al. 2019). Potentially, co-activations in response
to specific functions in WM and GM may add a new dimension
to our understanding of GM–WM connections using MRI, for
example, WM tracts reconstructed on the basis of diffusion MRI.
Particularly in studies of structure–function relations, it is often
desirable to connect functionally activated GM with long-range
WM tracts that transmit its functional signals, a mission that
is made complicated by the presence of subcortical U-fibers
at the GM–WM interface. Harnessing functional engagements

of GM and WM may allow both structurally and functionally
meaningful correspondences between GM and WM to be
established. Similarly, crossing fibers within the WM itself may
also be in principle disentangled by making use of different
functional roles of individual fiber sub-populations. Although
resolving fiber crossing based on functions necessitates high
SNR and spatial resolution in fMRI, such a capability is becoming
increasingly feasible by recent rapid advances in hardware and
pulse sequences.

Consistent with our previous finding (Li et al. 2019; Mishra
et al. 2020), we measured lower magnitudes and delayed
responses in WM BOLD timecourses. This may be partly due
to the lower vascular density and longer distances between
feeding arterioles and areas of increased oxygen use in WM.
We also observed a trend toward a decreasing TTP in FuL, FuR,
and their corresponding tracts with increasing noise levels.
Moreover, significant correlations of times to peak across noise
levels were identified for GM clusters and the WM tracts they
connect. This finding suggests that the temporal profiles, similar
to the magnitudes, of the BOLD signals can be modulated by
external tasks, and such profiles are coupled between GM and
WM across different levels of stimuli. The current study uses
a block-design task, which is powerful in terms of detection as
the responses to a series of stimuli in a block could potentially
increase the response amplitude. However, it does not allow
the measurement of transient changes in brain activity, thereby
providing little insights into the hemodynamic profile of neural
response. Improved understanding of the coupling between GM
and WM can be obtained by more accurate measurement of the



Identification of White Matter Networks Li et al. 11

Figure 7. The GM–WM coupling in their magnitudes across all 6 levels of noise. Row 1: Correlation between magnitudes of BOLD signals of activated GM clusters and

those of the WM tracts that they connect across subjects and noise levels. Note that subjects’ effects have been regressed out from the variables for correlation, and

the x and y-axis represent the residuals rather than the real value of the magnitudes regarding GM and WM, respectively. Row 2: Comparing the correlation coefficients

regarding structural connected GM–WM (the first bin) with those regarding structural irrelevant GM–WM pairs.
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Figure 8. The GM–WM coupling in their TTPs across all 6 levels of noise. (a) Time to peaks of selected GM clusters and those of the WM tracts they connect. (b) Correlation

between TTPs of BOLD signals of selected activated GM clusters and those of the WM tracts that they connect across subjects and noise levels. The centerline corresponds

to the mean and the shade is the associated 95% CI. Note that subjects’ effects have been regressed out from the variables for correlation, and the x and y-axis represent

the residuals rather than the real value of the times to peak regarding GM and WM, respectively.

temporal pattern of hemodynamic response and its underlying
brain activity. Hopefully, this could be accomplished in our future
work by leveraging event-related tasks, in which stimuli are
short-lived and well-spaced, as well as high field imaging such
as 7-T MRI, which could improve the resolutions along with the
SNR of the images acquired.

Taken together, the evidence from this study confirms that
WM BOLD signals may be evoked by a functional task and their
magnitudes vary as a function of the parameters of the external
stimuli. Furthermore, the magnitudes and the temporal profiles
coupled well across different task parameters between GM and

WM that are anatomically connected. These findings provide
additional evidence for the existence of BOLD signals in WM
related to neural activity and contribute to our understanding of
how WM and GM are engaged in the performance of a cognitive
visual task.

Supplementary Material
Supplementary material can be found at Cerebral Cortex Commu-
nications online.

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa067#supplementary-data
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