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Abstract
Background: In the past decade, fatigue has been regarded as one of the main fac‐
tors impairing task performance and increasing behavioral lapses during driving, even 
leading to fatal car crashes. Although previous studies have explored the impact of 
acute fatigue through electroencephalography (EEG) signals, it is still unclear how 
different fatigue levels affect brain–behavior relationships.
Methods: A longitudinal study was performed to investigate the brain dynamics and 
behavioral changes in individuals under different fatigue levels by a sustained atten‐
tion task. This study used questionnaires in combination with actigraphy, a noninva‐
sive means of monitoring human physiological activity cycles, to conduct longitudinal 
assessment and tracking of the objective and subjective fatigue levels of recruited 
participants. In this study, degrees of effectiveness score (fatigue rating) are divided 
into three levels (normal, reduced, and high risk) by the SAFTE fatigue model.
Results: Results showed that those objective and subjective indicators were nega‐
tively correlated to behavioral performance. In addition, increased response times 
were accompanied by increased alpha and theta power in most brain regions, es‐
pecially the posterior regions. In particular, the theta and alpha power dramatically 
increased in the high‐fatigue (high‐risk) group. Additionally, the alpha power of the 
occipital regions showed an inverted U‐shaped change.
Conclusion: Our results help to explain the inconsistent findings among existing stud‐
ies, which considered the effects of only acute fatigue on driving performance while 
ignoring different levels of resident fatigue, and potentially lead to practical and pre‐
cise biomathematical models to better predict the performance of human operators.

K E Y W O R D S

brain dynamics, electroencephalograms, fatigue, longitudinal assessment

1  | INTRODUC TION

Fatigue behind the wheel is assumed to be a crucial factor in 
the failure of drivers to avoid automobile crashes, which can 

lead to accidents, injuries, and fatalities (Fairclough & Graham, 
1999; Hanowski, Wierwille, & Dingus, 2003; Sexton, Thomas, 
& Helmreich, 2000). Especially during long‐term, monotonous, 
or nighttime driving, (acute) fatigue (or drowsiness) frequently 
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occurs, reducing drivers' performance. Hence, a comprehensive 
understanding of drowsy driving is an urgent necessity to enable 
researchers to develop drowsiness countermeasures for real‐life 
applications. Many imaging biomarkers relevant to drowsiness, 
such as eye closure, eye blinking (Caffier, Erdmann, & Ullsperger, 
2003),	and	head	nodding	(Ji,	Zhu,	&	Lan,	2004),	have	been	used	to	
monitor the cognitive state of drivers. However, false alarms are 
likely to occur, since these facial attributes are not always accom‐
panied by drowsiness (Horne & Reyner, 1999).

In the past few decades, several studies have reported that 
drowsiness‐related behavioral lapses are accompanied by spectral 
changes	in	electroencephalograms	(EEGs;	Davidson,	Jones,	&	Peiris,	
2007;	Huang	 et	 al.,	 2016;	 Kecklund	&	Akerstedt,	 1993;	 Lin	 et	 al.,	
2010;	Makeig	 &	 Inlow,	 1993;	Makeig	 &	 Jung,	 1995;	 Peiris,	 Jones,	
Davidson,	&	Bones,	2006).	Thus,	many	EEG-based	drowsiness	moni‐
toring and detection technologies have recently been developed for 
driving	applications	(Huang	et	al.,	2016;	Lin,	Huang,	Chuang,	Ko,	&	
Jung,	2013;	Wang	et	al.,	2014).	The	previous	literatures	have	shown	
that brain oscillations in the alpha (8–12 Hz) and theta (4–7 Hz) bands 
are associated with driving lapses or with fluctuations in task perfor‐
mance	under	drowsiness	(Huang	et	al.,	2016;	Huang,	Jung,	Chuang,	
Ko,	&	Lin,	2012;	Jung,	Makeig,	Stensmo,	&	Sejnowski,	1997;	Lin	et	al.,	
2010; Lin, Nascimben, King, & Wang, 2018). Another researcher re‐
ported significant increases only in theta power, frequency of theta 
bursts, and length of EEG theta activity episodes between alert and 
poor/drowsy performance, during prolonged driving, or with pro‐
gressive deterioration of drivers' vigilance levels (Seen, Tamrin, & 
Meng, 2010).

Additionally, analyzing the ratio of theta power to alpha power 
suggests that alpha activity gradually decreases and is replaced 
by increasing theta activity during microsleep episodes (Boyle, 
Tippin,	 Paul,	 &	 Rizzo,	 2008;	 Daniel,	 1967).	 However,	 alpha,	
(theta + alpha)/beta, and alpha/beta power were observed to trend 
upward as driving error increased (Campagne, Pebayle, & Muzet, 
2004; Taniguchi & Takaoka, 2001) or as fatigue gradually occurred 
(Eoh,	Chung,	&	Kim,	2005;	Jap,	Lal,	Fischer,	&	Bekiaris,	2009;	Lal	&	
Craig, 2001; Schier, 2000; Simon et al., 2011). Furthermore, sev‐
eral	 studies	 (Glass	&	Riding,	1999;	Ota,	Toyoshima,	&	Yamauchi,	
1996)	 have	 noted	 that	 alpha	 power	 follows	 a	 biphasic	 trend	 (an	
inverted U‐shaped curve) as behavioral performance (or arousal 
level) decreases in some situations. As mentioned above, EEG re‐
sults, especially in the alpha band, varied across studies. One pur‐
pose of the present study is to find the crucial factor that results 
in these inconsistent findings.

Most previous studies were conducted within well‐controlled 
settings. For example, each participant was instructed to maintain 
an alcohol‐ and caffeine‐restricted diet for 1 day before each ex‐
periment and required to complete a questionnaire about his or her 
sleeping habits; all participants had normal work and rest schedules, 
got enough sleep, and had not stayed up late at any time in a period 
of several days before the experiment. However, in the real world, 
individual daily physiological states are likely to be less uniform. 
There is still no subjective measurement for long‐term tracking of 

participants' fatigue state on a daily basis. Hence, it remains unclear 
how to incorporate changing fatigue levels into a brain–behavior 
model for real‐world applications.

There is literature showing that varying levels of fatigue in 
humans can induce homeostatic changes in the brain (Shenoy, 
Krauledat,	Blankertz,	Rao,	&	Muller,	2006).	Therefore,	we	hypoth‐
esize that varying levels of fatigue may confound the observed rela‐
tionship between brain dynamics and behavioral performance, thus 
affecting drowsiness detection mechanisms. In this study, we aim 
to investigate the effect of different fatigue levels on the brain–be‐
havior relationship in driving. A longitudinal study was performed 
using an integrated daily sampling system (DSS) to track the fatigue 
states of multiple participants; the data were acquired from subjec‐
tive reports (questionnaires), such as the Karolinska Sleepiness Scale 
(KSS) and the Fatigue Visual Analog Scale (FVAS), and from actig‐
raphy conducted daily over a 20‐week period. Actigraphy, which is 
integrated into the DSS alongside the questionnaires, can continu‐
ously monitor the rest/activity cycles of the subject to assess fatigue 
levels, which is expressed by an effectiveness score. According to 
the effectiveness scores from actigraphy, fatigue states were di‐
vided into three different levels (high, reduced, and normal risks). 
All participants were scheduled to conduct the sustained attention 
task on three occasions at each of three levels of fatigue in order 
to explore the effect of different fatigue levels on simulated driving 
performance and corresponding informative EEG features. Finally, 
we established brain–behavior models (i.e., the relationship between 
EEG dynamics and task performance) that take into account differ‐
ent levels of fatigue for drowsy driving applications.

2  | MATERIAL S AND METHODS

2.1 | Subjects

Seventeen healthy subjects (13 males and four females) aged 
22.4 ± 1.5 years were recruited to participate in this study. All sub‐
jects were right‐handed, had normal or corrected‐to‐normal vision, 
and were not taking any medications known to affect cognitive 
function. None of the subjects had a history of central or periph‐
eral neurological impairments, brain injury, alcohol abuse, diabetes, 
or drug addiction. The Institutional Review Board of National Chiao 
Tung University, Taiwan, approved the study. All subjects were first 
given an orientation session describing the procedures for the ex‐
periment and their responsibilities during the long‐term study, and 
they were informed about the experimental materials, features, and 
processes and required to read and sign a consent form before the 
experiments.

2.2 | Experimental equipment

2.2.1 | Actigraphy monitoring device

A Fatigue Science Readiband actigraph (Fatigue Science) was is‐
sued to each participant during the study. The Readiband is a 
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wrist‐worn actigraphy device that objectively and automatically 
characterizes sleep timing, duration, and quality, as well as an es‐
timated percentage effectiveness score based on the patented 
Sleep, Activity, Fatigue, & Task Effectiveness (SAFTE) model (Kaida 
et	 al.,	 2006).	The	SAFTE	model	has	been	validated	 in	 independ‐
ent laboratory studies and operational human factors investiga‐
tions (Hursh et al., 2004; Van Dongen, Baynard, Maislin, & Dinges, 
2004). Effectiveness scores describe how cognitive effectiveness, 
reaction time, and fatigue risk are affected by sleep quality, sleep 
quantity, and sleep/wake timing. The model uses sleep data to cal‐
culate an effectiveness score.

The SAFTE model mathematically simulates the main physi‐
ological processes that determine the level of fatigue (i.e., defi‐
ciency in performance effectiveness) at any given point in time. 
It contains a circadian process that represents the way in which 
the body clock influences both performance and circadian regula‐
tion, as well as a sleep‐reservoir process that represents the way 
in which recovery sleep is affected by bedtime, wake time, sleep 
quality, sleep quantity, sleep debt, the circadian timing of sleep, 
and any type of sleep fragmentation (waking up during the night). 
The SAFTE model provides real‐time effectiveness scores and de‐
termines when fatigue levels will reach a point where safety and 
performance are at risk.

2.2.2 | Self‐reporting questionnaires

Self‐reporting questionnaires, including the Karolinska Sleepiness 
Scale (KSS) and the Fatigue Visual Analog Scale (FVAS), were imple‐
mented to enable subjects to record their psychometric responses 
to fatigue, sleep, and stress. The KSS has been used extensively to 
measure subjective sleepiness and was originally validated with am‐
bulatory EEG (Akerstedt & Gillberg, 1990; Kecklund & Akerstedt, 
1993). The KSS was administered to participants on a daily basis to 
record subjective sleepiness. Participants indicate which level best 
reflected the psychophysical state they had experienced in the last 
10 min. The KSS is a ten‐point scale (1 = extremely alert; 3 = alert; 
5 = neither alert nor sleepy; 7 = sleepy but no difficulty remaining 
awake; and 9 = very sleepy, great effort to keep awake, fighting 
sleep; Akerstedt & Gillberg, 1990).

The FVAS has proven to be a simple yet effective tool (Lee, Hicks, 
& Ninomurcia, 1991). It is a sliding scale from “not at all fatigued” to 
“extremely fatigued.” For this experiment, the participant responded 
by placing a cursor on a line, and the device translated the location 
of the cursor to a number from 0 to 100.

2.2.3 | Virtual reality scene

Virtual reality (VR)‐based monotonous highway driving experiments 
were performed in a driving simulator that mimicked realistic driv‐
ing situations in a dark, sound‐reduced room. The VR scenes simu‐
lated driving at a constant speed (100 km/hr) on a four‐lane divided 
highway, with the car randomly drifting away from the center of 
the cruising lane to the left or right side with equal probability to 

simulate driving on nonideal road surfaces or with poor alignment. 
The road was straight and uniform. Moreover, there was no traffic or 
other stimuli appeared in the VR scene, simulating a driving situation 
that	is	likely	to	induce	drowsiness.	The	scenes	were	updated	at	60	
frames per second.

2.2.4 | EEG acquirement

During the experiment, EEG activity was recorded by the SynAmps 
system	(Compumedics	Ltd.)	using	a	64-channel	scalp	electrode	array	
(Ag/AgCl electrodes) with a unipolar reference at the mastoid. The 
EEG electrodes were placed according to a modified international 
10–20 system. Contact impedance between EEG electrodes and the 
cortex was calibrated to <10 kΩ. The EEG data were recorded with 
a 32‐bit quantization level at a sampling rate of 1,000 Hz and pre‐
processed with a 50‐Hz low‐pass filter and a 0.5‐Hz high‐pass filter.

2.3 | Experimental paradigm

Each participant was provided a wrist‐worn actigraph and trained in 
its use and how to operate the system and log daily data. Beginning 
at the orientation session, the participants were required to wear 
the Readiband continuously during the entire study period (i.e., 
20 weeks) in order to objectively and automatically monitor their 
daily sleep patterns, rest‐activity cycle, and fatigue. Within an hour 
after awakening each morning, subjects were instructed to complete 
the self‐reporting questionnaires, including the subjective measures 
of fatigue/sleepiness and stress. Additionally, the effectiveness score 
(ES, 0%–100%) displayed on the Readiband was registered manually. 
The ES, an actigraph‐based sleep/wake score, was estimated by a 
biomathematical model of alertness (Hursh et al., 2004) built into 
the Readiband. In this study, we defined the normal group as having 
a daily effectiveness score near the MEAN + standard deviation (SD; 
The MEAN and SD were calculated over approximately 1 month). 
Subjects	with	effectiveness	scores	lower	than	the	MEAN−SD were 
considered the high‐risk group. Those with effectiveness scores lying 
between the normal and high‐risk ranges were categorized as the 
reduced group. Participants were asked to wear the actigraph con‐
tinuously for the duration of the study.

The data from the Readiband were automatically uploaded to a 
server which was maintained by the researchers in this laboratory. 
All the participants received notifications (by text message) to re‐
port for experimental trials within 12 hr if their conditions fit the 
experimental requirements. If it was not possible for a given par‐
ticipant to come in for testing within that period, or if there was a 
scheduling conflict in the laboratory, he or she was re‐evaluated the 
following day to determine whether he or she was still classified in 
the same readiness category after another night. If not, monitoring 
continued until an appropriate or high‐risk, reduced, or normal state 
was reached again.

Because we wished to conduct the experimental sessions 
with participants under well‐rested, sleep‐deprived, and sleep‐re‐
stricted states as they naturally occur in the real world, we could 
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not predetermine or counterbalance the times when participants 
were scheduled for testing because we could not control when they 
would experience those states. To accommodate this limitation in‐
herent in observational research, we tested each participant in 2‐
week windows in whatever state he or she happens to be in for the 
first three experimental sessions, and for the remainder of the ex‐
perimental sessions, they were scheduled when their sleep patterns 
and subjective states were in the states yet to be tested.

Figure 1a shows the time sequence of the experiment ses‐
sion, from the morning measurement of fatigue to the end of the 

experiment. In this session, the participants conducted the sus‐
tained attention task experiment (Figure 1b). The program simu‐
lated driving a car at a certain speed (100 km/hr) on the highway 
at night, and the car automatically drifted away from the cruising 
lane to the left or right side with equal probability; participants were 
instructed to steer the vehicle back to the cruising lane as fast as 
possible after becoming aware of the deviation. If the participants 
did not respond to the lane‐perturbation event, for example, if they 
fell asleep, the vehicle could hit the left or right curb within 2.5 and 
1.5 s, respectively.

F I G U R E  1   Experimental session paradigm. (a) The timeline of the experimental session. The KSS score, FVAS score, and ES were 
recorded at three time points. One point was in the morning, and the other two points were immediately before and after the experiment. 
Note that the experiment was conducted within 12 hr (usually within 8 hr) after the subject was notified by text message. (b) Event‐related 
lane‐keeping tasks. The solid black arrows represent the driving trajectory. The empty circle represents deviation onset. The double circle 
represents response onset. The circle with a cross represents the end of the response. The driver's RT is the time interval from deviation 
onset (empty circle) to response onset (double circle). The end of the response (circle with a cross) means that the driver has steered the car 
back	into	the	original	lane.	The	next	deviation	begins	at	8–12	s	after	the	end	of	the	previous	response	(adapted	from	Huang,	Jung,	&	Makeig,	
2007)
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The vehicle would then continue to move along the curb until it 
returned to the original lane. Each lane‐departure event was defined 
as a “trial” that included three critical moments: “Deviation onset” is 
the moment when the car starts to drift away, “response onset” rep‐
resents the moment when the participant perceives the drift and be‐
gins to steer the car back to the cruising lane, and “response offset” 
is the moment when the car returns to the center of the cruising lane 
and the participant ceases to rotate the steering wheel. The next 
lane‐departure event occurred 8–12 s after the “response offset.” 
Reaction time was defined as the interval between deviation onset 
and response onset in a trial. In the interest of creating driving con‐
ditions likely to induce fatigue, there were no other vehicles or stim‐
uli that might disturb the driver's attention. Participants' cognitive 
states and driving performance were monitored via a surveillance 
video camera and the vehicle trajectory throughout the experiment.

2.4 | Data analysis

The	recorded	62-channel	EEG	signals	were	first	inspected	to	remove	
bad EEG channels and then down‐sampled to 250 Hz. To observe 
the fluctuation in EEG signals at specific events, we extracted the 
continuous	62-channel	EEG	signals	 into	9-s	epochs,	time	locked	to	
2 s before and 7 s after each deviation onset. The epochs contami‐
nated by noise signals (muscle activity, blinking, eye movement, or 

environmental noise) were eliminated manually to minimize their in‐
fluence on subsequent analysis.

Independent component analysis (ICA; Bell & Sejnowski, 1995, 
Makeig,	Bell,	 Jung,	&	Sejnowski,	 1996)	was	 applied	 to	decompose	
EEG signals into temporally independent time courses correspond‐
ing to brain and nonbrain sources using EEGLAB (Delorme & Makeig, 
2004).	The	62-channel	EEG	signals	were	separated	into	62	indepen‐
dent components, based on the assumption that EEG signals at the 
sensors were linear mixtures of activation of distinct brain and non‐
brain sources whose time courses were statistically independent.

To identify comparable independent components across sub‐
jects, we grouped components from multiple subjects into compo‐
nent clusters based on their scalp maps, equivalent dipole locations, 
and baseline power spectra of component activations (Delorme & 
Makeig,	2004;	Jung	et	al.,	2001).	The	time	courses	of	activation	for	
the components of interest were selected and transferred into the 
frequency domain by the fast Fourier transform (FFT). The dynamic 
changes, defined as tonic changes in the EEG signals, were measured 
from the cruising period before the deviation onset in each epoch.

The average power spectra were then obtained by averaging 
across time points to obtain a mean baseline. For each channel in 
each session, the tonic power spectra of all epochs (trials) were 
sorted by their RTs and then normalized by subtracting the mean 
power spectra of the “alert trials” with the shortest RTs (lowest 10% 

F I G U R E  2   The estimating regression 
between subjective questionnaire scores 
(KSS & FVAS) and objective fatigue 
measurement (ES) at three time points in 
the day (morning, before the experiment, 
and after the experiment). The value on 
the X‐axis is the ES, and the values on the 
Y‐axis are the KSS and FVAS scores.  
** p‐value <.01
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of all RT‐sorted trials). Finally, to identify the trend of tonic power 
spectra in different levels of fatigue, we sorted all trials (epochs) by 
reaction time for each level of fatigue.

2.5 | Statistical analysis with hierarchical 
linear modeling

In this study, longitudinal daily data (103–151 days) and experimental 
session	data	(6–9	experiments)	were	collected	from	17	subjects	over	
the course of a semester. We used these data to find the association 
between subjective questionnaires and objective sleep measure‐
ments. Such diary and session data recorded over prolonged peri‐
ods, nested within participants and experimental test sessions, are 
naturally multilevel data. Therefore, a multilevel modeling approach 
was needed. Using multilevel random coefficient modeling (Nezlek, 
2001; Woltman, Feldstain, MacKay, & Rocchi, 2012), we applied 
level 1 analyses to model the within‐subject variability of the data 
recorded repeatedly over extended time periods and level 2 analy‐
ses to model variability across subjects over time.

This approach has been used to illustrate the daily relationship 
between mood and sleep across 2 weeks (Mccrae et al., 2008). 
Multilevel analysis was conducted using mixed models in SPSS 

software to distinguish between‐ and within‐individual sources. 
Specifications for the multilevel models were selected following 
Peugh and Enders (2005) to determine the best‐fitting model for the 
variables in this study.

There are two levels in the random coefficient regression model. 
The level 1 model refers to the within‐person or individual change 
model (i.e., repeated measurements over time) and describes the 
longitudinal changes in each individual (i.e., the variation within the 
individual over time). The level 2 model estimates the average within‐
person initial status and rate of change over a predictor variable.

3  | RESULTS

3.1 | Relationship among objective and subjective 
measures of fatigue

Figure 2 shows the relations between objective sleep information 
measurement (X‐axis) and subjective questionnaires (Y‐axis; gray 
lines, individual regression; black lines, group mean) during different 
sessions. In each row of the figure, one graph shows the objective 
measurement (ES) and a subjective questionnaire (KSS or FVAS) in 
the morning on the day of the sustained attention task, another one 

F I G U R E  3   Comparison of averaged 
values of subjective questionnaire (KSS 
& FVAS) scores among three different 
fatigue level groups (high‐risk, reduced, 
and normal groups) at three time points in 
the day (morning, before the experiment, 
and after the experiment). Standard 
deviations are also shown. *p‐value <.05, 
**p‐value <.01
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(PreKSS or PreFVAS vs. ES) shows the values immediately before 
the sustained attention task, and the third reflects the measure‐
ments immediately after the sustained attention task (PostKSS or 
PostFVAS vs. ES). The whole dataset was collected from 17 subjects 
over the course of a semester (20 weeks) in this study. The coef‐
ficients γ10 and γ00 from the univariate mixed model regression used 
to predict the ES after experiment preparation represent the slope 
and intercept, respectively. The coefficient γ10 is the overall mean 
slope across subjects and sessions, and γ00 is the overall (grand) 
mean intercept across subjects and sessions.

The subfigures in the left column of Figure 2 show the signifi‐
cant linear decreases in KSS (γ10	=	−0.07,	standard	error	[SE] = 0.01, 
p < .01; γ00 = 11.70, SE	 =	 0.86,	 p < .01; in Figure 2a), PreKSS 
(γ10	=	−0.08,	SE = 0.017, p < .01; γ00 = 12.97, SE = 1.398, p < .01; in 
Figure 2c), and PostKSS (γ10	=	−0.09,	SE = 0.022, p < .01; γ00 = 13.23, 
SE = 1.515, p < .01; in Figure 2e). The subfigures in the right column 
of Figure 2 show the significant linear decreases in FVAS (γ10	=	−0.8,	
SE = 0.125, p < .01; γ00 = 115.97, SE = 10.477, p < .01; in Figure 2b), 
PreFVAS (γ10	=	−0.83,	SE	=	0.136,	p < .01; γ00	=	129.67,	SE	=	11.699,	
p < .01; in Figure 2d), and PostFVAS (γ10	=	−0.91,	SE	=	0.166,	p < .01; 
γ00	=	134.61,	SE = 14.184, p < .01; in Figure 2f). These results show a 
clear correlation between subjective measurements (KSS and FVAS) 
and objective measurements (ES).

In Figure 3, the three fatigue groups including the high‐risk (red 
bars), reduced (yellow bars), and normal (blue bars) groups are com‐
pared in terms of KSS, FVAS, PreKSS, PreFVAS, PostKSS, and 
PostFVAS. Except the values of PreFVAS between high‐risk and re‐
duced groups, the significant differences among all three fatigue 
groups can be explored as shown in Figure 3 (p < .05). It is worth to 
note that the significances between high‐risk and normal groups are 
always small (p < .01). The results show that the subjective question‐
naire (KSS & FVAS) scores are significantly different across the three 
different fatigue levels.

3.2 | Comparison of task performance between 
different levels of fatigue

The comparisons of normalized reaction time among three fatigue 
groups are shown in Figure 4 (vertical axis, normalized reaction time; 
horizontal axis, red, high‐risk group; yellow, reduced group; blue, 
normal group). The reaction times were normalized by dividing the 

F I G U R E  5   The trends of averaged 
component power spectra in the delta, 
theta, alpha, and beta bands from the 
frontal components among three different 
fatigue groups (high‐risk, reduced, and 
normal groups) with increasing normalized 
RTs. Note that the EEG power shown in 
this figure was calculated from the EEG 
data recorded in the 3 s prior to the onset 
of lane deviation

F I G U R E  4   Comparison of normalized RTs of trials of lane‐keeping 
task among three different fatigue groups (high‐risk, reduced, and 
normal groups). Standard deviations are also shown. The significantly 
longest RTs were in the high‐risk group. *p‐value <.05
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mean shortest reaction times (lowest 10% of all reaction times) of 
alert trials of the respective experiment. A significant difference in 
normalized reaction time was found between the high‐risk group and 
the normal group (SE = 0.105, p‐value = .014, using the Bonferroni 
adjustment for multiple pairwise comparisons in hierarchical linear 
modeling). The mean normalized reaction time significantly differed 
between the reduced group and the normal group, with SE = 0.078, 
p‐value = .015. Nevertheless, there was no significant difference in 
the mean normalized reaction time between the reduced group and 
the high‐risk group. Regarding the behavioral performance results, 
the normalized RTs increased with increasing fatigue levels (normal, 
reduced, and high‐risk).

3.3 | Brain–behavior relationships across different 
levels of fatigue

Figures	5	and	6	show	the	comparison	of	frontal	and	occipital	trends	
among the three different fatigue groups, respectively. Figures 5a–d 
and	6a–d	show	the	relation	between	prestimulus	EEG	log	power	in	
the delta, theta, alpha, and beta bands and normalized reaction time 
(Y‐axis, power in dB; X‐axis, RT‐sorted index and the correspond‐
ing normalized reaction time; Color: red, high‐risk state; yellow, in‐
termediate state; blue, normal state). EEG data were collected from 
17 subjects in 143 half‐hour sessions, and both measures (EEG log 
power and normalized reaction times) were smoothed using a win‐
dow of 10% of trials.

Figure 5a shows that there was a dramatic monotonic power in‐
crease in the delta band as normalized reaction time increased in the 
high‐risk and intermediate group. In addition, the delta band power 
in the frontal regions showed an inverted U‐shaped change that was 

observed only in the normal group. Figure 5b shows that there was 
a monotonic power increase in the alpha band as normalized reac‐
tion time increased in the intermediate group. The alpha band power 
of the frontal regions showed an inverted U‐shaped change only in 
the high‐risk group. As shown in Figure 5c, the theta band power in 
the high‐risk group dramatically increased with normalized reaction 
time. The theta band power in the intermediate group increased with 
normalized reaction time.

Figure	6a	shows	that	there	was	a	dramatic	monotonic	increase	
in delta band as normalized reaction time increased in the high‐risk 
group.	Figure	6b	shows	that	there	was	a	monotonic	power	increase	
in the alpha band when normalized reaction time increased in the 
normal and intermediate group. In addition, the alpha band power 
of the parietal regions showed an inverted U‐shaped change only in 
the	high-risk	group.	In	Figure	6c,	the	theta	band	power	in	the	high-
risk group dramatically increased with normalized reaction time. The 
theta band power in the intermediate group increased with normal‐
ized reaction time.

Figures 7 and 8 show the comparisons of different bands power 
elevations relative the baseline across three different fatigue levels 
group in frontal and occipital area, respectively. In each band, all tri‐
als were divided into two segments based on RT (RT <2‐s and >2‐s).

In Figure 7, the power of all bands (delta, theta, alpha, and beta) 
in different levels (high, reduced, and normal risks) is not significantly 
different among three fatigue level groups in section trials with RT 
<2‐s. In section trials with RT >2‐s, the power increase (p < .05) in 
high‐risk group was significantly different from reduced and normal 
groups, especially in theta and delta bands. Additionally, the alpha 
and theta power in reduced group was significantly higher (p < .05) 
than those in normal group.

F I G U R E  6   The trends of averaged 
component power spectra in the delta, 
theta, alpha, and beta bands from the 
occipital components among three 
different fatigue groups (high‐risk, 
reduced, and normal groups) with 
increasing normalized RTs. Note that 
the EEG power shown in this figure was 
calculated from the EEG data recorded 
over the 3 s prior to the onset of lane 
deviation
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In Figure 8, the power of all bands (delta, theta, alpha, and 
beta) in different levels (high, reduced, and normal risks) is also 
not significantly different among three fatigue level groups in 
section trials with RT <2‐s. In section trials with RT >2‐s, the 
power increase (p < .05) in high‐risk group was significantly dif‐
ferent in delta, theta, and alpha bands from reduced and nor‐
mal groups. Additionally, the alpha and theta power in reduced 
group were also significantly higher (p < .05) than those in nor‐
mal group.

4  | DISCUSSION

This study compares the power spectra between groups with dif‐
ferent levels of fatigue to identify informative EEG features that 
can reflect different subjects' cognitive states. In the experiments, 
each subject conducted a sustained attention task (cruising on the 
highway) at different fatigue levels, as characterized by EEG signals, 
subjective questionnaires (KSS and FVAS), and objective sleep meas‐
urements (ES), to clarify the effect of real‐world fatigue on simulated 
driving.

4.1 | Effect of fatigue on psychometric 
responses and task performance

Figure 2 shows the comparisons between daily subjective question‐
naires and objective sleep measurements. The ES describes how 
cognitive effectiveness, reaction time, and fatigue risk are affected 
by sleep quality, sleep quantity, and sleep/wake timing. The relations 
between subjective questionnaires and objective sleep measure‐
ments across days can be observed in these experimental results. 
Both KSS and FVAS scores were significantly correlated with ES. The 
relation between KSS and ES was found to be a negative correlation, 
with KSS decreasing 0.03 units per unit of ES (0–100 scale). A similar 
pattern could be found in FVAS, which decreased 0.12 units per unit 
of ES. The findings lead us to believe that ES can be a reliable and 
objective index of fatigue levels to classify different fatigue states.

Figure 3 shows that the mean values of KSS, FVAS, PreKSS, 
PreFVAS, PostKSS, and PostFVAS across sessions in the high‐risk 
group were significantly higher than those in the normal group. 
The difference in questionnaires between the high‐risk and normal 
groups is obvious. However, the mean values of KSS, FVAS, PreKSS, 
PreFVAS, PostKSS, and PostFVAS across sessions in the reduced 

F I G U R E  7   Comparison of the △power 
in the delta, theta, alpha, and beta bands 
from the frontal component among three 
different fatigue groups (normal, reduced, 
and high‐risk groups). Standard deviations 
are also shown. The Wilcoxon rank‐sum 
test was applied to determine significant 
differences. *p‐value <.05, **p‐value <.01
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group were also different from those in the high‐risk and normal 
groups.

This study further compared behavioral performance (RT) across 
different levels of fatigue. We hypothesize that poor behavioral per‐
formance may appear at higher fatigue levels (high‐risk group). As the 
results show in Figure 4, the highest normalized reaction time is in the 
high‐risk group because the performance of subjects in the high‐risk 
group was influenced easily by factors such as activity, rest, and sleep.

In this study, we divided fatigue levels into three different groups 
by ES. The experimental results show that the high‐risk group had 
higher sleepiness and fatigue scores than any other group, as reported 
on subjective questionnaires (KSS & FVAS; Lin et al., 2018). With re‐
spect to driving behavior, we also found that subjects in the high‐risk 
group had the longest latency to respond to the deviation stimuli 
during the driving tasks as shown in Figure 4. Therefore, we found 
that there was a negative correlation between ES and fatigue level.

4.2 | Effect of fatigue on brain–behavior 
relationships

According to the above results, in the reduced and normal groups, 
we found that theta and alpha band power increased, especially in 

occipital and frontal regions, as behavioral performance (RT) dete‐
riorated. The theta band power in the occipital area increased sig‐
nificantly in the high‐risk group compared with the reduced and 
normal groups as behavioral performance deteriorated. In addition, 
an inverted U‐shaped relationship was observed in the alpha band.

Previous	literature	(Huang	et	al.,	2012,	2016;	Jung	et	al.,	1997;	
Lin et al., 2010) indicates that theta band power increases with lon‐
ger RTs during simulated driving. This upward tendency was not 
very clear in the normal group, whose RTs were also shorter than 
those of the high‐risk group because subjects in the normal group 
were not likely to feel drowsy. In the high‐risk group, however, we 
confirmed that theta band power in the occipital region clearly in‐
creases with RTs. This result not only agrees with the findings in 
previous	studies	(Huang	et	al.,	2012,	2016;	Lin	et	al.,	2010)	but	also	
reveals that there are different brain–behavior relationships in dif‐
ferent fatigue groups. In addition, alpha band power in the occipital 
region has had mixed results in previous studies. Most of the litera‐
tures	(Huang	et	al.,	2012,	2016;	Lin	et	al.,	2010)	indicate	that	alpha	
band power in the occipital region increases with longer RTs, but 
there	are	other	publications	(Glass	&	Riding,	1999;	Ota	et	al.,	1996)	
reporting that alpha band power in occipital region has an inverted 
U‐shaped relationship with RTs. What we know is there have been 

F I G U R E  8   Comparison of the △power 
in the delta, theta, alpha, and beta bands 
from the occipital component among 
three different fatigue groups (normal, 
reduced, and high‐risk groups). Standard 
deviations are also shown. The Wilcoxon 
rank‐sum test was applied to determine 
significant differences. *p‐value <.05,  
**p‐value <.01



     |  11 of 12HUANG et Al.

different alpha band power results in different studies and experi‐
ments. In our research, we found that alpha band power increased 
with longer RTs in the normal and reduced groups. However, in the 
high‐risk group, we found a U‐shaped relationship between RTs and 
alpha band power, which indicates a sleep onset point according to 
previous research. From our video data, we found that the subjects 
in the high‐risk group usually fell asleep, which means that they en‐
tered stage 1 sleep when RTs reached a certain length. Many pre‐
vious studies obtained different results in different experiments. In 
the current research, we further divided subjects' fatigue states into 
three different levels and explored the brain–behavior relationships 
across all three. Therefore, our study can explain the contradiction 
among previous studies in terms of different fatigue levels. Different 
fatigue states would cause different brain–behavior relationships in 
the real world, instead of well‐controlled settings.

Through the experimental results, this study illustrated that the 
brain–behavioral relationships varied depending on the levels of fa‐
tigue. In the high‐risk group (high‐fatigue level), theta band power 
was also a suitable feature for fatigue detection, rising as RT dete‐
riorated in occipital and frontal regions. Hence, theta band power 
should be suitable for assessing drivers' vigilance levels under high‐
risk conditions. Furthermore, in the reduced and normal groups (me‐
dium and low fatigue levels), the alpha band power fluctuations in 
the occipital area were more sensitive than the theta band power 
fluctuations and may be an even better feature for detecting fatigue. 
In addition, it is important to note that this study is different from 
previous studies in that it takes different fatigue levels into account. 
Thus, the present study explains the conflicting results of previous 
studies and can explore more precise brain dynamic features to pre‐
dict subjects' fatigue states and behavioral performance.

5  | CONCLUSION

This study recorded daily measurements of participants' naturally 
occurring sleep timing, duration, and quality, as well as their subjec‐
tive perceptions of fatigue/sleepiness, and interpreted real‐world 
fatigue during simulated driving. The study identified the informa‐
tive EEG features that reflect different fatigue levels. Furthermore, 
it established brain–behavior models that take fatigue into account; 
such models could be applied to help prevent drowsy driving.

This study also shows that the EEG spectra of trials were signifi‐
cantly different among the three different levels of fatigue and iden‐
tifies the proper EEG features in specific brain regions for general 
fatigue detection. Such findings might lead to practical applications 
in an adaptive fatigue detection system for effectively and accu‐
rately assessing the cognitive state of human operators in daily life.
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