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Abstract
While psychotic experiences (PEs) are assumed to represent psychosis liability, general population studies have not
been able to establish significant associations between polygenic risk scores (PRS) and PEs. Previous work suggests
that PEs may only represent significant risk when accompanied by social impairment. Leveraging data from the large
longitudinal IMAGEN cohort, including 2096 14-year old adolescents that were followed-up to age 18, we tested
whether the association between polygenic risk and PEs is mediated by (increasing) impairments in social functioning
and social cognitive processes. Using structural equation modeling (SEM) for the subset of participants (n= 643) with
complete baseline and follow-up data, we examined pathways to PEs. We found that high polygenic risk for
schizophrenia (p= 0.014), reduced brain activity to emotional stimuli (p= 0.009) and social impairments in late
adolescence (p < 0.001; controlling for functioning in early adolescence) each independently contributed to the
severity of PEs at age 18. The pathway between polygenic risk for autism spectrum disorder and PEs was mediated by
social impairments in late adolescence (indirect pathway; p= 0.025). These findings point to multiple direct and
indirect pathways to PEs, suggesting that different processes are in play, depending on genetic loading, and
environment. Our results suggest that treatments targeting prevention of social impairment may be particularly
promising for individuals at genetic risk for autism in order to minimize risk for psychosis.

Introduction
An increasing number of studies on the etiology of

schizophrenia and related disorders focus on psychotic
experiences (PEs) as early and potentially powerful mar-
kers of illness liability1. PEs are mild expressions of psy-
chotic symptoms that are present in about 10%2 of the

general population, and are known precursors of severe
psychotic and non-psychotic disorders3,4.
However, the etiology of PEs is unknown. Most pre-

vious general population studies examining genome-wide
association study (GWAS)-based polygenic risk scores
(PRS) have not been able to find evidence for a significant
association between increased genetic vulnerability to
psychiatric illness and PEs in the general population1,5–7.
While it has been argued that this lack of evidence may
indicate that, within the healthy population, risk manifests
through symptoms other than psychotic experiences5,7, it
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may also indicate that, in and of itself, experiencing sub-
clinical psychotic phenomena does not represent risk. The
latter premise is supported by recent studies in high-risk
samples, suggesting that PEs increase the chance of
developing a clinically significant psychiatric disorder only
when accompanied by increasing and persistent social
impairments, irrespective of the baseline severity of PEs8,9.
Severe mental disorders are often preceded by impair-
ments in interpersonal contact10,11, and the association
between subclinical psychotic symptoms and impairments
in interpersonal social functioning is well established12,13.
This latter association may also help explain why, within
the general population, apart from those with genetic risk
for schizophrenia (SCZ), individuals with genetic risk for
autism spectrum disorder (ASD) are at a considerably
higher risk for developing PEs later in life14. Social com-
municative deficits that contribute to impairments in
interpersonal functioning characterize ASD15, and it
seems probable that ASD is a vulnerability factor for the
development of PEs14,16, potentially due to an association
between social impairment and psychosis.
In this study, we tested whether the association between

genetic risk for psychiatric illness and PEs is mediated by
(increasing) impairments in social functioning, using a
Structural Equation (pathway) Model that minimized
assumptions about interactions between variables. As
associations may differ for those with an increased genetic
vulnerability to SCZ and increased genetic vulnerability to
ASD, we explored both genetic risk variants. We expected
that an increased genetic risk for SCZ and ASD would be
associated with an increased risk of PEs at age 18, and that
this association would be at least partly mediated by
(increasing) social impairments for both risk variants.
Our data came from the IMAGEN study17; a long-

itudinal study that has the unique advantage of having
followed-up individuals from the ages 14 to 18, a critical
time for the development of peer relationships as well as
the development of psychotic symptoms18–20. With this
dataset, we also had the opportunity to link measures of
reported difficulties in social functioning with fMRI
measures of brain activity while participants viewed sali-
ent social and emotional stimuli21–23. Brain activation in
response to emotional stimuli has been associated with
the severity of social impairment in ASD24,25 and SCZ
populations26.

Materials and methods
Participants and procedures
The IMAGEN study is a multi-site multi-national long-

itudinal research project17. This collaboration between eight
European sites across the United Kingdom, Ireland, France
and Germany includes 2462 14-year-old adolescents and
their parents. The study protocol was approved by the KCL
(King’s College London) College Research Ethics

Committee CREC/06/07-71 and by local ethics research
committees at each site. Parents and adolescents gave
written consent and verbal assent, respectively. Biosamples,
brain imaging, clinical characteristics, and functioning data
were collected at baseline. Behavioral assessments were
repeated at 2 and 4 years after completion the baseline. A
detailed description of recruitment and research procedures
has been published elsewhere17.
A total of 2096 IMAGEN participants (1066 females and

1030 males, M age at baseline= 14.45 years (range
12.89–16.44; SD= 0.41) had complete socio-demographic
data and no formal DSM-IV social disorder diagnosis (see
Supplementary material for dropout analyses). Table 1a
lists the demographic details of the study sample.

Measures of clinical characteristics and functioning
Social functioning was determined using the strength

and difficulties questionnaire (SDQ;27 Combining self and
parental reports, this scale provides a dimensional
assessment of emotional problems (anxiety-depression),
peer problems, conduct problems, hyperkinetic symp-
toms, and pro-social behavior. In the current study, we
analyzed responses from the peer problem domain, as this
subscale aligns most closely with the social impairments
commonly reported in schizophrenia and related psy-
chotic disorders20, but is also known to be compromised
in individuals with an autism spectrum disorder15.
Questions in the peer problem domain include “I am
usually on my own”, “I have one good friend or more”,
“Other people my age generally like me”, “I get on better
with adults than with people my age”, and “Other children
or young people pick on me”. Because, the latter item taps
into bullying, a known risk factor for the development of
PEs28, and therefore a potential confounder, this item was
removed from analyses. All items were rated on a three-
point scale, with scores ranging from ‘Not True’ to
‘Always True’. Two items were recoded so that for all
items higher scores indicated better functioning.
IQ was estimated by averaging sum scores of the WISC-

IV subscales Matrix Reasoning (fluid IQ marker) and
Vocabulary (crystalized IQ marker)29.
PEs were assessed using the community assessment of

psychic experiences (CAPE) which evaluates subclinical
psychotic experiences in the affective and non-affective
domains (http://www.cape42.homestead.com/). The
CAPE is a self-report questionnaire based on the Peters
et al. Delusions Inventory30 but with the addition of
questions on hallucinatory experiences. We used the sum
score on frequency of positive symptoms.

Measures of genetic vulnerability
IMAGEN genetic data, extracted from whole-blood

samples (~10mL) using Illumina 610Quad v1 chip, were
accessed through the IMAGEN consortium17. GWAS was
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performed at Centre National de Genotype (Evry France,
Head M Lathrop). In order to access high-quality data
combined across IMAGEN waves, QC+ genotyped SNPs
(n= 477,245, list provided by IMAGEN) were extracted
from downloaded imputed, hard-called data and filtered
for 0% missing data. Further quality control (QC) inclu-
ded exclusion of SNPs with Hardy Weinberg equilibrium
HWE P < 10–4 and SNPs with minor allele frequency
(MAF <2%). After quality control, 1834 cases were
included in our sample, totaling 463,940 SNPs available
for PRS analysis. Ten MDS (multidimensional scaling)
components were also downloaded from IMAGEN, and
were used as covariates in the analyses. MDS is a singular-
value decomposition number based on an individual-
pairwise identity by relation matrix, and is essentially
equivalent to PCA but implemented in plink. This
method is standard to generate genotype ancestry cov-
ariates. All genetic data processing and analyses were
performed using plink31. Details on (the processing of) the
ASD32 and SCZ33 summary statistics are presented in
Table 2.

Neuroimaging measure of social cognitive processing
The imaging task of interest was the Faces task17,

measuring emotional reactivity to social stimuli34. Parti-
cipants were asked to passively view short videos of either
faces that always started from a neutral position, and then
either (1) morphed to an angry expression, or (2) dis-
played a neutral movement, or (3) displayed a non-
biological control stimulus that consisted of contracting
or expanding concentric circles of contrasts roughly
matching that of the faces stimuli34.
Functional magnetic resonance imaging (fMRI) was

performed on 3T scanners from a range of manufacturers
(Siemens, Philips, General Electric, Bruker) across the
eight IMAGEN assessment sites.
A total of 1060 volumes per subject were obtained, each

containing 40 2.4 mm slices (with a 1 mm gap), with a
repetition time of 2.2 s and an echo time of 30 ms. Data
preprocessing was performed centrally at the Neurospin
centre using the SPM12 software. Time-series data were
corrected for slice-timing effects and motion, and then
nonlinearly warped to MNI space (using a custom EPI

Table 1 Characteristics of 2096 volunteers participating in the IMAGEN study

1a. Total study sample

(n= 2096)

1b. Subsample with complete data for

SEM analyses (n= 642)

Statistics

Gender ratio male/female; n (%) 1030 (49.14)/1066 (50.86) 301 (46.88)/341 (53.12) χ2(1)= 1.9, p= 0.17

Baseline age; M (SD) 14.46 (0.41) 14.44 (0.43) t=−1.33, p= 0.18

Participation rate per center; n (%)

London 262 (12.76) 103 (16.04) χ2(7)= 26.8, p < 0.001a

Nottingham 313 (15.24) 76 (11.84)

Dublin 205 (9.98) 60 (9.35)

Berlin 262 (12.76) 63 (9.81)

Hamburg 263 (12.80) 123 (19.16)

Mannheim 237 (11.54) 67 (10.44)

Paris 254 (12.37) 78 (12.15)

Dresden 258 (12.56) 72 (11.21)

IQ estimate raw score; M (SD) 38.14 (5.06) 39.53 (4.29) t= 6.30, p < 0.001

Clinical characteristics

Social functioning baseline; M (SD) 6.38 (1.37) 6.41 (1.39) t= 0.66, p= 0.51

Social functioning year 3; M (SD) 6.24 (1.29) 6.32 (1.25) t= 2.06, p= 0.04

CAPE psychotic experiences; M (SD) 11.29 (6.29) 11.30 (5.80) t= 0.04, p= 0.97

CAPE depression score; M (SD) 4.27 (2.75) 4.27 (2.61) t= -0.07, p= 0.94

CAPE negative symptom score; M (SD) 4.51 (3.59) 4.53 (3.43) t= 0.13, p= 0.89

Range social functioning= 1–8 (higher scores indicate better functioning)
Estimate IQ raw score raw score (WISC Vocabulary+WISC Matrix Reasoning), CAPE community assessment of psychic experiences (range positive: 0–43, depression:
0–17, negative: 0–30)
aFollow-up χ2 analyses indicate that participants from London (χ2(1)= 25.3, p < 0.001) and Hamburg (χ2(1)= 53.1, p < 0.001) were significantly overrepresented in the
SEM analyses
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template), and Gaussian smoothed at 5 mm full width at
half maximum.
Individual contrast maps for the ‘angry minus control’

contrast from the Faces task were created in SPM using
the general linear model with the AR noise model.
Twenty-one additional regressors of no interest were
added to the design matrix, comprising 12 motion
regressors, 3 white matter regressors and 6 nuisance
variables for the ventricles.
We then created a mask of regions thought to be

involved in social processing. First, we used the automatic
meta-analysis tool ‘NeuroSynth’ to create a reverse-
inference brain map for the term ‘social’ on the basis of
1000 fMRI studies of social functioning35. This map was
already registered to the MNI152 (2 mm) space. In order
to co-register the map to the IMAGEN functional data,
we created a warp from the MNI brain to the IMAGEN

EPI200 brain using the ANTs normalization software with
a mutual information cost function36. This warp was then
applied to the reverse inference map obtained from
NeuroSynth using nearest neighbor interpolation. For
more specific information about data acquisition and
fMRI data preprocessing, we would like to refer to refs
17,37.

Statistical analyses
Demographic characteristics of the baseline and avail-

able follow-up samples were compared using regression
analyses and χ2-tests.

Preparatory analyses
Initial analyses were conducted to explore what specific

PRS and fMRI data to include in the final integrative
structural equation modeling (SEM) pathway analysis.

Table 2 Processing of the ASD and SCZ GWAS summary statistics

GWAS summary statistics

The ASD summary statistics are based on results from a meta-analysis of 5305 trios of European ancestry from the PGC autism sample and 18,381 ASD

cases and 27,969 controls of European ancestry from the iPSYCH autism sample. A description of the PGC sample is available on the PGC web site:

https://www.med.unc.edu/pgc/files/resultfiles/PGCASDEuro_Mar2015.readme.pdf and in ref. 32. Briefly, five cohorts provided genotypes (n denote the

number of trios for which genotypes were available): The Geschwind Autism Center of Excellence (ACE; n= 391), the Autism Genome Project (AGP; n

= 2272)49, the Autism Genetic Resource Exchange (AGRE; n= 974)50, the NIMH Repository (https://www.nimhgenetics.org/available_data/autism/), the

Montreal/Boston Collection (MONBOS; n= 1396)51, and the Simons Simplex Collection (SSC; n= 2231)52.

The iPSYCH ASD sample is based on the population-based case-cohort sample iPSYCH201253, which is extracted from the birth cohorts consisting of all

children born in Denmark between 1 May 1981 and 31 December 2005. Eligible were singletons born to a known mother and resident in Denmark on

their 1st birthday. Cases in iPSYCH201254 were defined from the Danish Psychiatric Central Research Register55 with diagnosis date no later than 2012,

and the controls constitute a random sample from the set of eligible children. Cases in the iPSYCH ASD sample are defined as subjects in iPSYCH201253

having an ASD diagnosis (ICD codes F84.0, F84.1, F84.5, F84.8, or F84.9) given no later than 2013, and controls did not have an ASD diagnosis by 2013.

The samples were linked using the unique personal identification number to the Danish Newborn Screening Biobank. Genotypes are available on

14,970 cases and 26,125 controls.

Data processing and QC were conducted according to the standards employed by the PGC Statistical Analysis Group and carried out using their

pipeline Ricopili56. To minimize potential batch effects the data were processed separately in the 23 genotyping batches in the case of iPSYCH and for

each cohort in the PGC sample. Phasing was achieved using SHAPEIT57 and imputation done by IMPUTE258,59 with haplotypes from the 1000 Genomes

Project, phase 3 (1kGP3)60 as reference. Trio samples were imputed as a case-pseudo-controls design. PCA was carried out using smartPCA61,62 on

independent SNPs and unrelated samples (plink identity by state π ^ < 0.2). In iPSYCH, a subsample was taken with all parents and grandparents known

to have been born in Denmark (n= 31,500), and with European ancestry defined by the first 3 principal components (PCs). In the PGC sample a

European ancestry subsample was taken using a first 3 PCs weighted Euclidian distance from CEU+ TSI HapMap populations (±10 standard deviations).

A second PCA provided covariates for the association analyses. Association analyses were logistic regression in plink 1.9 using the imputed dosages for

each iPSYCH batch and PGC cohort. The results were subsequently meta analyzed using METAL63 (July 2010 version) employing an inverse variance

weighted fixed effect model64. We filtered the summary statistics allowing only markers with an imputation info score ≥0.7, maf ≥0.01 and effective

sample size 4 × Nca × Nco/(Nca+ Nco), where Nca and Nco are case and control Ns, respectively, at least 70% of the maximum.

GWAS summary statistics for SCZ (35k cases, 43k controls33) were downloaded from the Psychiatric Genomics Consortium (http://www.med.unc.edu/

pgc/results-and-downloads), and for Autism (18,381 cases and 27,969 controls, all European decent; unpublished) were acquired through collaboration.

We QC filtered the 1000 Genomes phase 1 imputed GWAS summary data (Autism: sample size Neff > 0.7 total, imputation INFO score ≥ 0.3; SCZ:

Ndatasets ≥ 35 out of 52 for SCZ, INFO > 0.3).

ASD and SCZ summary statistics were aligned to our IMAGEN SNP list (461,568 SNPs remaining in SCZ; 455,972 in ASD), and then LD pruned based on

P-value using plink2 --clump with an LD r2 threshold of 0.25 (final SNPs remaining 133,194 for SCZ and 129,973 for Autism). We performed polygenic

scoring with GWAS P-value thresholds 10−4, 10−2, 0.1, and 0.5 in the IMAGEN data.
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Polygenic risk scores
First, we examined which polygenic risk thresholds to

consider in subsequent analyses by exploring the asso-
ciation (R2) between SCZ polygenic risk (PRS) P-value
thresholds and PEs at age 18, and between ASD polygenic
risk (ASD-PRS) and social functioning at the same age
using linear regression analyses. To examine the unique
variance (R2) explained by the polygenic risk scores, age,
sex, research center, and ancestry (MDS) coordinates
were included as covariates and the PRS residuals were
retained for regression analyses.

fMRI processing
In order to parsimoniously capture each participant’s

fMRI response to viewing angry faces, we calculated the
principal component projection of fMRI BOLD activity in
response to viewing angry faces (vs baseline)17 in the
social cognition network. The social cognition network
was identified as the ten regions with the highest z-score
(and cluster extent) from an automatic meta-analysis of
1000 fMRI studies of social processing35, as in refs 38,39.

Structural equation modeling (SEM)
Pathway analyses were constructed to model the rela-

tionship between genetic risk, social impairment at age 14
and 18, social cognitive (brain) processing and the even-
tual emergence of PEs. Sex, research center and IQ were
added as potential contributing factors to the model. SEM
provides estimates, or path coefficients, that indicate the
direction and significance of the association between
constructs, as well as several fit indices evaluating the fit
of the proposed model.
For acceptable model fit, the established and widely

used cutoff values for SEM as described by Hu and Ben-
tler were used36. Following these rules, χ2 (chi-square)
should be non-significant (meaning that model is con-
gruent with observed data), root mean square error of
approximation (RMSEA) should be lower than 0.05, and
the comparative fit index (CFI) should be higher than
0.90. Under population error, the RMSEA value is
reported along with lower and upper bounds of its 90%
confidence interval. The standardized root mean square
residual (SRMR) is the standardized difference between
the observed and predicted correlation, and considered
acceptable with values at 0.08 or less40. The comparative
fit index (CFI) considers the number of paths in the model
and is considered good at 0.93 or above. Finally, we
considered the bayesian information criterion (BIC),
where no absolute value is indicative of good model fit,
but lower values of BIC represent a better fit. Both direct
and indirect effects (path estimates) were examined.
In our final pathway model, we began with a fully

saturated model, including IQ, sex, research center, ASD-
PRS, SCZ-PRS, fMRI data on social cognitive processing,

social impairment at age 14 and 18, and PEs to examine
their interrelationship, and removed non-significant
pathways to produce models with the optimal balance
of explanatory power and parsimony. We used a
maximum-likelihood approach, only including those with
all data points available. For sensitivity purposes, analyses
were repeated using a maximum-likelihood analysis with
missing values, and potential mediating pathways were
confirmed with a Sobel-Goodman test (SGMEDIATION).
All main analyses were conducted in STATA 14.2

(Statacorps).

Results
PRS thresholds
As shown in Table 3, the predictive value was highest

for a SCZ-PRS threshold of p ≤ 1e−2 (R2= 0.0063, t=
2.55, p= 0.010), and similar for an ASD-PRS threshold of
p ≤ 0.5 & p ≤ 1 (R2= 0.0044, t=−2.18, p= 0.030), and the
SCZ-PRS threshold of p ≤ 1e−2 & ASD-PRS threshold of
p ≤ 0.5 were used in subsequent analyses. In these ana-
lyses, MDS coordinates were included as covariates in the
prediction of PRS and the residuals were retained.

Brain areas involved in social cognitive processing
With the meta-analytic tool we identified bilateral

clusters in the dorsomedial and ventromedial prefrontal
cortex, posterior cingulate, temporal pole, and amygdala
that were significantly associated with social processing.
These ten clusters with the highest z-score (also largest in
size) were used for further analysis (see Fig. 1 and sup-
plementary material). A principal component analysis
including beta-values of the ‘angry faces minus control’
contrasts in these areas identified a single component that
explained over 50% of the variance within the ‘social brain’
network. This principal component assigned similar
weights to activity in all ten regions, and subject loadings
along this component were entered as one of the variables
in the pathway models.

Pathway model
For the main SEM model, we limited our analyses to the

642 participants (341 females) of whom a complete
baseline and follow-up dataset was available (see Table 1b
for a description of the sub sample used in SEM analyses).
Model statistics of the fitted path models are presented in
Table 4. For a visual display of all models, and correlation
matrix of all variables included see Supplementary
Material.
Model L (visually presented in Fig. 2) was the best fitting

model. The overall model (χ2(10)= 6.38, p= 0.78;
RMSEA= 0.000; 90% CI= 0.000–0.029, SRMR= 0.016;
CFI= 1.00) accounted for 12% of the variance in PEs at
age 18. The model suggested a direct path leading from
increased genetic polygenic risk for SCZ to a higher
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Table 3 Predictive value of SCZ polygenic risk scores (PRS) on psychotic experiences, and of ASD polygenic risk scores
(PRS) on social functioning scores

Predictive value of SCZ polygenic risk scores (PRS) on psychotic experiences

p-value threshold R2 variance explained t p Coefficient 95% CI

p ≤ 1e−4 0.0027 1.69 0.093 491.86 −82.97–1066.70

p ≤ 1e−2 0.0063 2.55 0.010* 2796.82 677.28–4916.36

p ≤ 0.1 0.0043 2.10 0.036* 5592.94 372.23–10,813.64

p ≤ 0.5 0.0033 1.84 0.067 10,644.87 −734.84–22,024.58

p ≤ 1 0.0032 1.82 0.070 14,820.22 −1193.02–30,833.46

Predictive value of ASD polygenic risk scores (PRS) on social functioning scores

p-value threshold R2 variance explained t p Coefficient 95% CI

p ≤ 1e–4 0.0030 −1.81 0.071 −34.98 −72.96–2.99

p ≤ 1e–2 0.0009 −.99 0.324 −138.85 −414.76–137.05

p ≤ 0.1 0.0031 −1.83 0.086 −765.77 −1588.26–56.72

p ≤ 0.5 0.0044 −2.18 0.030* −2123.26 −4037.85 to −208.68

p ≤ 1 0.0044 −2.18 0.029* −3267.24 −6203.56 to −330.92

Results based on varying SNP P-value inclusion thresholds. Psychotic experiences were measured with the comprehensive assessment of psychic experiences sum
score, and social impairments were measured with the peer problems sum score of the strength and difficulties questionnaire. To examine the unique variance (R2)
explained by the polygenic risk scores, age, sex, research centre, and ancestry (MDS) coordinates were included as covariates and the PRS residuals were retained for
regression analyses
SCZ schizophrenia, ASD autism spectrum disorder
*p < 0.05

Fig. 1 Brain regions involved in processing social (cognitive) information. An automatic meta-analysis using NeuroSynth identified a network
ofregions involved in social processing. This network overlaps with the Default Mode Network, and includedthe dorsomedial and ventromedial
prefrontal cortex, precuneus, temporal pole, and amygdala. Activity inthese regions during processing of faces was examined, and used as a predictor
of psychotic experiences
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Table 4 Model fit statistics

Model χ2, p DF RMSEA CFI SRMR BIC

Fully connected model 26.17, p < 0.001 7 0.065 (0.040–0.093) 0.879 0.030 22,063

Without PRSscz&asd → IQ 3.53, p= 0.62 5 0 (0–0.046) 1 0.012 22,054

Without PRSscz&asd → SF baseline 3.67, p= 0.82 7 0 (0–0.030) 1 0.012 22,041

Without PRSscz → SF follow-up 4.17, p= 0.84 8 0 (0–0.027) 1 0.012 22,035

Without PRSscz&asd → fMRI social 4.71, p= 0.91 10 0 (0–0.017) 1 0.013 22,022

Without PRSasd → PEs 4.90, p= 0.94 11 0 (0–0.010) 1 0.013 22,016

Without PEs → SF follow-up 5.87, p= 0.92 12 0 (0–0.014) 1 0.014 22,011

Without IQ → SF follow-up 6.09, p= 0.94 13 0 (0–0.007) 1 0.014 22,004

Without sex → SF baseline&fMRIsoc 6.91, p= 0.96 15 0 (0–0) 1 0.015 21,992

Without IQ → SF baseline 6.73, p= 0.82 11 0 (0–0.026) 1 0.014 22,018

Without IQ → PEs 8.55, p= 0.74 12 0 (0–0.029) 1 0.016 22,013

Without IQ → fMRI social 6.38, p= 0.78 10 0 (0–0.029) 1 0.016 18,299

Without sex → SF follow-up 10.73, p= 0.47 11 0 (0–0.041) 1 0.021 18,297

χ2 difference tests showed that models did not significantly worsen when removing connections up to model (M), which had significantly worse fit indices than model
(L) (p < 0.05)
PRS polygenic risk score, scz schizophrenia, asd autism spectrum disorder, SF social functioning, PEs psychotic experiences, fMRIsoc fMRI social cognition

Fig. 2 Final path model. Associations between the observed variables are represented by straight arrow lines. The double-headed arrow represents
covariance between the two polygenic risk scores. Information about all coefficients and co-variances can be found in the supplementary figure. **p
< 0.01, *p < 0.05. ASD autism spectrum disorder, SCZ schizophrenia
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number of reported PEs (standardized coefficient= 0.09,
SE= 0.04, Z= 2.47, p= 0.014). Another direct pathway
led from brain altered brain activation in response to
‘social emotional’ stimuli to PEs (standardized coefficient
=−0.10, p= 0.009), indicating that a lower brain
response in the ‘social brain’ network was associated with
more PEs. The model also revealed that the association
between ASD-PRS and a higher number of PEs at age 18
was mediated by peer problems that had evolved during
the period between ages 14 and 18 (stand. indirect coef-
ficient= 0.03, p= 0.025). In this model, social functioning
at the age of 14 did not have a direct independent effect
on the development of PEs by age 18. In addition, in our
best fitting model, IQ did not significantly contribute to
the explanation of PEs.
While a model allowing an additional direct causal

pathway from PEs to social functioning at age 18 resulted
in almost equally acceptable fit (χ2(10)= 5.28, p= 0.81;
RMSEA= 0.000; 90% CI= 0.000–0.028, SRMR= 0.015;
CFI= 1.000), this direct pathway was not statistically
significant (stand. coefficient= 0.13, p= 0.316).

Sensitivity analyses
To confirm that using a sample with complete data did

not bias our results analyses were repeated, including data
of all participants. An SEM analysis using maximum-
likelihood with missing values approach yielded largely
similar results (see Supplementary results).
In addition, a Sobel-Goodman mediation test (including

1003 individuals with available PRS, social functioning
and PE data) was employed to examine whether the
mediating effect of social functioning in the pathway from
ASD-PRS to PEs held in a simplified model. Also in these
exploratory analyses, the effect of ASD-PRS on PEs was
significantly mediated by social functioning at follow-up
(proportional mediation effect= 23.3%, p= 0.03), while
for SCZ-PRS no mediation effect of social functioning was
apparent (proportional mediation effect= 12.8%, p=
0.30).

Discussion
The present study provides initial evidence for multiple

pathways leading to the development of PEs. In our
sample, severity of subclinical PEs at age 18 was inde-
pendently predicted by (1) greater polygenic risk for
schizophrenia, (2) poorer social functioning, and (3) brain
activation in response to emotional stimuli. In our study,
all regions within the ‘social cognition network’ con-
tributed to the prediction of psychotic experiences to a
similar degree, suggesting that disruption to the overall
social cognition network may be critical to the develop-
ment of psychotic experiences.
In contrast to previous studies1,5–7, our results indicate

a small but statistically significant direct association

between PRS for schizophrenia and PEs, although they
also suggest that this is likely not the ‘single pathway’ to
PEs. There is wide heterogeneity in the presentation of
PEs, and different types of PEs (e.g., hallucinatory, delu-
sions) may have different etiologies41. There is also het-
erogeneity in presentation of the clinical disorders which
may help explain why interventions targeting the behavior
and those aimed at altering neurobiological function have
only been effective in treating subsections of patient
populations42.
We also found an indirect pathway suggesting that the

association between genetic risk for ASD and psychotic
experiences may be mediated by social impairment that
appears between age 14 and 18. This finding is consistent
with recent molecular-genetic and population-based stu-
dies that indicate genetic and familial overlap between
ASD and SCZ43–45, and with studies finding increased
psychosis rates in individuals with ASD14,46.
Collectively, our findings strengthen the idea that social

impairment is a strong predictor of PEs largely indepen-
dent of genetic risk or irregular neural emotion-
processing. The stronger association between PEs and
social impairment at age 18 than at age 14 suggests that
the period in between may be particularly important for
the development of social impairments that constitute
risk for psychosis.
Although the association between social impairment

and psychotic manifestations is well-established, the
direction of this relationship is unclear13. While the
pathway from social impairment to PEs showed sig-
nificantly better fit than a pathway from PEs to social
impairment, causality should be interpreted cautiously. It
is not inconceivable that the association between social
impairment and PEs involves a dynamic feedback loop;
while initial impairments in interpersonal contact may
contribute to the development of certain delusions, these
PEs may subsequently reinforce social impairment, fur-
ther reinforcing PEs. To better understand the potential
mechanisms underlying the association between social
impairment and PEs, further longitudinal studies are
required.

Limitations
The results of this study should be interpreted in light of

some key limitations. First, there was a relatively high level
of missing data (>30%) in our key variables of interest.
Although findings were comparable when we estimated
missing values in SEM analyses (supplementary results)
and by repeating the mediating pathways using a more
conservative mediation model, we did not want to over-
interpret our findings by imputing such a large proportion
of biological and clinical data. Therefore, our main ana-
lyses included only those individuals with all data points
available, reducing the sample size considerably.
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Second, while the overall fit of our SEM model was
good, we cannot rule out that an alternative model may
have fitted our data equally well.
Third, when testing the association between brain

activation and both genetic vulnerability and social
impairments, we examined only one aspect of the brain
network related to social cognitive processing which may
have underestimated the association. Investigations of the
relationship between structural or functional connectivity
in this network, or of brain activation on other tasks in
relation to genetic vulnerability and social impairments
could offer complementary information.
Fourth, measures of social functioning were obtained

using a relatively short assessment tool, and it may be that
other aspects of social functioning not captured with this
tool have different associations with the development of
psychotic experiences. Nonetheless, the instrument used
here captured the key problems known to be prominent
in adolescents with both an autism spectrum disorder and
those vulnerable to psychosis.
Fifth, because PEs were only assessed at age 18, we have

no data on their onset. Future studies to the potential
mechanisms underlying the association between social
impairment and PEs should include PE measures col-
lected on multiple time points and more detailed social
functioning measures.
Sixth, the reported associations between PRS and out-

come are small, accounting for only around 0.5% of var-
iance in psychotic experiences and functioning. It is
therefore important to note that these findings are solely
of theoretical interest, as they point to different potential
pathways to the development of psychosis.
Finally, it is important to note that ASD and SCZ

polygenic risk scores are not unitary constructs. To dis-
entangle the differential association between ASD and
SCZ polygenic risk scores and psychotic experiences, it
will be crucial to dissect their genetic correlation and non-
overlapping risk.
Overall, our results provide new insight about potential

etiological pathways to psychotic experiences. We found
that poor social functioning at age 18 was related to both
increased polygenic risk for ASD and more psychotic
experiences at that age indicating a cross-diagnostic role
of social impairment in psychiatric illness. Social contact
is thought to be an important source of support in times
of stress47, and the association between persistent social
disengagement and stress-regulation (a known risk factor
of psychotic symptoms48) warrants further study. Our
results suggest that treatments targeting social impair-
ment may be particularly promising for individuals at
genetic risk for autism in order to minimize risk for
psychosis.
It is also critical that future clinical studies use multi-

faceted measures to determine whether our findings can

be generalized to individuals after first hospitalization, and
thus, to determine whether the pathways as described in
our study actually lead to a clinical psychotic disorder. If
multiple pathways can be detected, these findings urge
caution in the exclusive assignment of therapy to psy-
chosis, since it is probable that different processes are in
play depending on genetic loading, or environment.
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