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Abstract

Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-
motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors
require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and
building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine
and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be
coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing
periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity
between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on
short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that
preserve coarse-grained spatial information over relatively long timescales as well.
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Introduction

An organism’s perceptual and motor systems are coordinated

via reciprocal interactions that constitute perception-action loops

[1]. These loops are most salient at millisecond to second

timescales, as in perceptual-motor interactions involved in

locomotion [2], but they also span longer timescales in support

of more complex behaviors. An illustrative example can be found

in the dance of a honey bee–the bee finds pollen and later enacts

its location for the hive [3]. Perception-action loops on short

timescales support the flight of the bee to pollen, and memory is

used to encode and express successful flight paths at later points in

time. Thus memory is used extend the perception-action loop over

the entire period of foraging and subsequent communication.

Another example can be found in tool use by crows [4]. Food can

be placed in a contraption such that crows must fashion hooks

from pieces of wire to get the food. To be successful, crows must

gather information about objects and constraints in their

environment via sensory explorations that unfold on shorter

timescales. Impressively, crows are able also to integrate and

process this information on longer timescales for the purpose of

tool construction and usage. Honey bee foraging and communi-

cation, and crow tool construction and usage, are examples of

highly intelligent skills that nonetheless appear grounded in more

basic perceptual-motor interactions.

Intelligent human behaviors may also be supported by

perceptual-motor interactions, even though the repertoire of

human goals and intentions is far richer than that exhibited by

other species. One case that is analogous to the honey bee and

crow examples, and the focus of the present study, is drawing

a visual scene from memory. Perceptual-motor interactions guide

eye movements during an initial study period, to gather visual

information for the purpose of drawing the scene afterwards.

Perceptual-motor interactions during study may be encoded to

guide movements again during drawing, which would carry

a tendency to reproduce whatever aspects of study movements are

encoded. This kind of memory is analogous to how bee

movements are memorized to locate and then communicate the

location of resources.

The present experiment and analyses were designed to examine

the role of memory in encoding and then rendering a visual scene.

Our central research question is whether drawing from memory

can be theorized and analyzed as a reenactment of visual

information gathering. Reenactment does not necessarily mean

that trajectories of eye movements during study are isomorphic

with eye and pen trajectories during drawing. Instead, reenact-

ment can be construed more generally, in that only some aspects

of the spatial and temporal extents of eye trajectories during study

may reproduced later during drawing, and some temporal and

spatial relations may undergo nonlinear transformations as

a function of memory. Evidence for reenactment via memory

would constitute perceptual-motor coordination of eye movements

during study with subsequent eye and pen movements during

drawing.

The primary alternative to perceptual-motor coordination is

that visual memory abstracts away from the specific perceptual-
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motor interactions that guide eye movements [5]. Symbolic

representation is the most commonly hypothesized and examined

form of visual memory, which seems apt for memory tasks that

encourage symbolic representation. For instance, consider experi-

ments in which participants are tasked with providing verbal

descriptions of scenes after viewing them [6], or providing verbal

answers to questions about scenes [7]. Language use may

encourage symbolic or symbolic-like encoding in visual memory,

and there is abundant evidence that memory processes in general

are task-dependent [8]. Given this evidence, we are led to ask how

visual memory operates when the task does not seem symbolic, as

in the case of encoding and then rendering a visual scene from

memory.

Evidence from previous studies suggests that, in perceptual-

motor tasks like drawing, memory is based more in perceptual-

motor encodings than symbolic encodings. For example, in

a classic study by Ballard, Hayhoe and Pelz [9], participants’

eye movements were recorded while they performed a copying

task. A model comprised of a particular configuration of blocks

was displayed on a computer screen, and participants used a mouse

to drag and drop blocks from a resource pile to copy the model.

Analyses of eye movements showed that perceptual-motor

interactions were used to offload visual memory onto the visual

display itself. The evidence for offloading was that eye movements

were made back to the model throughout the dragging and dropping

of blocks, which indicated that participants were unwilling to

symbolically encode the color and position of each block. Instead,

eye movements back to the model served as an external memory of

sorts. Tasks such as jigsaw puzzle completion and copying a picture

have yielded similar findings showing that perceptual-motor

interactions can serve memory aids [10].

Drawing from memory is different than the aforementioned

tasks because the model is not visually available at the time of

drawing. Therefore the environment cannot directly serve as an

external memory. Nonetheless, perceptual-motor interactions may

still be integral to memory, in that direct correspondences may be

encoded between scene viewing actions and subsequent drawing

actions. It is possible that, when studying an image, the eyes trace

a trajectory that follows the lines, curves, and features to be drawn

later, in the same order, placement, and orientation. A related

hypothesis has been proposed for recalling and visualizing images

from memory, rather than drawing images from memory. The

hypothesis goes by the name of scanpath theory [11,12], and the basic

tenet is that eye trajectories used to encode a scene are ‘‘retraced’’

when the scene is recalled from memory. Retracing the eye

trajectory is hypothesized to engage visual imagery and reinstate

the memory. Evidence for scanpath theory is mixed, with earlier

studies failing to show direct support [13,14], although some

indirect support was found [15]. Subsequent studies employed

more sophisticated methods and found that eye trajectories while

viewing scenes were correlated with eye trajectories while

visualizing, thinking, or talking about those same scenes [16,17].

Scanpath theory continues to be debated [18], and drawing

from memory adds a new dimension to the debate. In drawing

from memory, eye trajectories during study and pen trajectories

during drawing can be framed by corresponding physical

dimensions, thereby providing an opportunity for the trajectories

themselves to fall into direct correspondence with each other. In

fact, eye and pen trajectories are directly coordinated during the

act of drawing, when memory is not needed to bridge the gap

between studying an image and then drawing it later. For instance,

previous studies of hand-eye coordination have found direct

correspondence between eye location and arm velocity when

reaching for targets [19]. When drawing simple shapes, the eyes

tend to track where the pen touches the drawing surface. The eyes

may alternately lead or follow the pen, with a general tendency to

be drawn towards minima of tangential arm velocity [20]. Eyes

also tend to lead and follow the hands in more complex tasks like

making a sandwich [21].

In drawing from memory, our hypothesis is that the potential

for direct correspondences between eye and pen trajectories will

evoke memory encodings that link eye trajectories during study

with eye and pen trajectories during drawing. Such a linkage

would be perceptual-motor in nature, rather than symbolic. It

would also be consistent with the basic premise of scanpath theory.

A test of our hypothesis requires two issues to be addressed in

designing an experiment and method of analysis. First, to rule out

purely symbolic or purely perceptual encoding hypotheses,

trajectories during study and drawing periods must contain

correspondences that are specific to a given person studying and

then drawing a given image. Otherwise, correspondences may

stem from symbolic or spatial properties of an image, or from

general tendencies in eye movement patterns, such as a pre-

dominance of horizontal movements or movements towards the

center of the visual field.

Second, while it is possible for correspondences between

trajectories to be expressed as spatiotemporal co-location, as

hypothesized in scanpath theory, one might instead expect purely

spatial correspondences when drawing from memory. This

expectation arises because, in its final form, a sketch is purely

spatial in nature. Thus memory encodings need only support

spatial correspondences between study and drawing trajectories.

Moreover, drawing from memory may only evoke correspon-

dences at coarse spatial scales, given that fine-grained spatial

information may not be preserved in rough sketches by untrained

artists. By contrast, the most literal interpretation of scanpath

theory would require that study and drawing trajectories visit the

same locations for the same durations in the same order.

Here we present an experiment and analyses designed to

compare eye and pen trajectories at varied temporal and spatial

scales, in order to test for perceptual-motor encodings of visual

images in drawing from memory. Such encodings would support

extensions of hand-eye coordination via memory, and provide

evidence for a generalized version of scanpath theory. Natural

scenes rich in content were chosen as stimuli to support relatively

long viewing periods to gather visual information, thereby

providing us with sufficiently long trajectories for analysis. Natural

scenes also ensured that images contained features across a wide

range of spatial scales, thereby providing an opportunity for

trajectories to reflect both coarse-grained and fine-grained aspects

of scenes.

Materials and Methods

Sixteen University of California Merced undergraduates par-

ticipated in the experiment for course credit. The University of

California, Merced IRB approved this study, and each participant

signed a written consent form. Four participants were excluded

due to inability to calibrate with the eye-tracker below an error

threshold of one degree of visual angle. One additional participant

was excluded for failing to perform the drawing task properly,

leaving data from eleven participants for all analyses. Participants

were 18–22 years old, and nine of them were female. Five of them

self-identified as Asian, three as White, two as African American,

one as Hispanic, and one as Other. Seven participants self-

identified as bilingual or trilingual (all spoke English as one of these

languages). None of the participants reported being expert artists.

Hand-Eye Coordination at Multiple Scales
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Six images of natural scenes were selected from a collection of

National Geographic’s Photo of the Day website: a canal lined

with boats and buildings, a whale breaching with mountains in the

background, children in a field, a flock of birds on a large tree in

a lagoon, a carnivorous plant dotted with water droplets, and a sea

anemone against a black background (see Figures S1, S2, S3, S4,

S5, S6, S7, S8, S9, S10, S11). Each original image was cropped to

160061100 pixels in resolution, and then up-sampled to

192061200 using the Python image manipulation library, in

order to match screen resolution. The complexity of natural scenes

helped to ensure that participants needed a relatively long study

time to encode each image, thereby eliciting long eye movement

trajectories needed for analyses. The variety and novelty of natural

scenes helped to minimize the chance of practice effects and

familiarity effects. Given the complexity, variety, and novelty of

these scenes, and given that participants were not expert sketch

artists, the task of drawing them from memory was more

challenging than experiments using simple line drawings.

Each participant was fitted with the head-mounted eyetracker

so that it was snug on their head. After adjusting cameras and

focusing each camera, thresholds for detecting pupils were

automatically calibrated. Each participant then looked at each

corner of the screen according to instructions from the experi-

menter. This allowed the experimenter to see if the track was lost

in a given corner, and if so, to readjust the cameras. A nine-point

calibration was performed, followed by a nine-point validation.

Validation served to check for tracking errors as a function of

location on the screen. The experiment began only after validation

showed minimal errors across the screen, and drift was checked

and corrected if necessary between each trial. Each drift correction

was examined after data collection to ensure no major drift had

occurred during the experiment, and no large differences in error

were found.

Each participant was seated approximately 36’’ in front of a 24’’

flat panel LCD monitor (visual angle of 14 degrees). Participants

viewed each of the six images in random order for 30 seconds per

image. After each image, the screen was blanked and the

instruction ‘‘Prepare to Draw’’ appeared for 4 seconds, after

which the screen was blanked and participants were able to draw

in black and white for 90 seconds using a Wacom Graphire

digitizing pad (93 mm in height6127 mm in width, with accuracy

of 60.25 mm and an operating sampling rate of 60 Hz). The

viewing period of 30 sec was found through pilot work to be

adequate time for participants to choose and encode features of

each scene to be drawn. The 90 sec drawing period was found to

be ample time for completing a rough sketch of scene that

captured the basic features memorized. Line thickness of the

drawing was independent of pressure on the tablet, and lines could

not be erased once created. During both study and drawing

phases, monocular eye position was recorded at 500 Hz using an

Eye Link II head mounted eye tracker. Note that, unlike drawing

on paper or on a touch screen, the eyes tracked lines being drawn

on the screen, instead of the pen itself. The digitizing pad has the

advantage that the pen, hand, and arm do not occlude the image

being drawn.

The data for each trial consisted of three position time series, all

in the same XY coordinates: study eye position (XYes), drawing eye

position (XYed), and drawing pen position (XYpd). Blinks and other

artifacts, such as off-screen eye positions, were removed from the

eye position series for both study and drawing phases. Mean

amount of data discarded during the study and drawing phases

was 4.0% and 8.2%, respectively. The pen position series included

only samples when the pen was touching the pad, i.e. when lines

were being drawn. The data thus offers three potential compar-

isons: XYes 6 XYed, XYes 6 XYpd, and XYed 6 XYpd. Eye positions

were sampled every 2 milliseconds at times tes and ted during study

and drawing periods, respectively. Pen positions were sampled

every 16.6 milliseconds at times tpd. Panel A of Figure 1 shows an

example of the XYes series obtained from one trial overlaid on the

corresponding image, down-sampled to reduce visual clutter.

Panel B shows the subsequent XYpd series for this trial, rendered as

the original sketch image, with the corresponding XYed series

overlaid and down-sampled.

Results

We first tested whether the present experiment replicated the

spatiotemporal co-location between eye and pen found in previous

studies of drawing, and more generally in previous studies of hand-

eye coordination. Spatiotemporal co-location was measured by

Euclidean distance between eye and pen positions as a function of

time, D[XY(ted), XY(tpd)]. Thus a distance was computed for all

possible pairs of positions, creating a matrix D of dimensionality ted
6 tpd for each trial. Each matrix was normalized by dividing each

distance by the mean distance over the whole matrix. Normalized

values were binned as a function of temporal lag L= ted – tpd, and

averaged within each bin. Hand-eye coordination is expressed

when the mean of D[XY(ted), XY(tpd)] decreases as |L| approaches

zero.

Results replicated previous studies [20] showing that hands and

eyes tend to co-locate when engaged in tasks like drawing (Figure 2,

blue line). D[XY(ted), XY(tpd)] was minimal when ted , tpd, and

increased to an asymptote near chance co-location as ted and tpd
diverged in the range 210 sec,L,+10 sec. The symmetry of

approach towards baseline indicates that, on average, eye both led

and followed the pen in equal proportions as a function of distance

between them. This function showed the same symmetric

approach to a minimum near |L|= 0 for each individual

participant and image (see Figure S12).

Next we tested whether eye trajectories during study exhibit

spatiotemporal co-location with eye and pen trajectories pro-

duced during drawing. To align trajectories, the beginning of

each time period was set to time zero, and then XYes times were

multiplied by a factor of three to equate the lengths of

trajectories (study periods were 30 sec whereas drawing periods

were 90 sec). D matrices were computed as described above,

and Figure 2 shows the resulting averages as a function of L

(green and red lines; see Figures S1, S2, S3, S4, S5, S6, S7, S8,

S9, S10, S11 for individual participant and image results). Co-

location was not evident in comparisons between study and

drawing trajectories, in that mean spatial distance did not vary

significantly as a function of lag.

To summarize the first analysis, spatiotemporal co-location

yielded evidence for concurrent coordination between eye and

pen during drawing, but no such evidence was found for

coordination via memory between study and drawing periods.

In isolation, this null result may mean that perceptual-motor

encodings did not serve to link eye trajectories during study

with time-warped versions of these trajectories during drawing.

Alternatively, drawing trajectories may be linked to study

trajectories, but not as stretched out, temporally preserved

copies. Instead, perceptual-motor encodings of trajectories may

be purely spatial in nature, or if any temporal information is

preserved, it may be obscured by nonlinear transformations.

Whatever the case may be, results failed to provide evidence for

a simple application of scanpath theory to eye and pen

trajectories in drawing from memory.

Hand-Eye Coordination at Multiple Scales
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Spatial Allan Factor Analysis
It is possible that more complex temporal transformations might

yield evidence in Dmatrices that eye trajectories during study were

temporally related to eye and pen trajectories during drawing.

However, the end product of a drawing is purely spatial in nature,

which leads us instead to focus on the spatial configurations of

trajectories. While eye and pen may not visit the same scene

features in corresponding temporal orders and durations between

study and drawing periods, trajectories may nonetheless concen-

trate on the same features in the same locales. Our rationale for

considering purely spatial co-location is that the task of drawing

may encourage spatial alignment between study and drawing

periods, rather than temporal alignment.

Temporal information can be removed directly from the

original co-location measure by calculating D[XYes, XYed/pd] for

all pairwise points, regardless of their time stamps. However, this

simple formulation does not readily express co-location at varying

spatial scales. It is possible that spatial configurations of eye

trajectories during study are only coarsely reproduced during

drawing, because fine-grained spatial details are either forgotten,

or lost by lack of precision in drawing behaviors or measurements.

In practical terms, this means that rich scene information

hypothesized to drive eye movements during viewing is not

present or measureable during drawing. Therefore, a measurement

of co-location at varying spatial scales may be needed to reveal the

scales at which spatial correspondences become measureable in

eye and pen trajectories.

We created a multiscale measure of spatial correspondence by

adapting the Allan Factor (AF) method developed for analyzing

clustering in temporal point processes, such as neural spike trains

[22,23]. AF analysis was originally developed to distinguish time

series generated by random (Poisson) point processes from those

with fractal (i.e. multiscale) clustering. Fractal clustering is relevant

to our present aims for two reasons. First, images of natural scenes

have been shown to exhibit fractal variations in the spatial

distribution of luminance [24], so one might expect eye trajectories

to also exhibit fractal spatial variations. For instance, the dynamics

of eye movements have been reported to exhibit fractal variations

in time, in the form of long-range correlations known as ‘‘1/f

noise’’ [25,26]. However, to our knowledge, no one has reported

spatial fractal analyses of eye trajectories. The second reason why

fractal clustering is relevant is that fractal analyses like AF are

inherently multiscale, which provides us with a basis for extending

AF analysis to examine correspondences between point processes

at varying spatial scales.

First we describe AF analysis as originally formulated for

temporal point processes. Given a one-dimensional point process

spanning a given length of time Ttotal, AF analysis begins by

dividing the series into adjacent windows of duration T, where T

varies from a minimum to maximum in powers of two, i.e. Tmin

and a value less than Ttotal, such as Ttotal/4. The number of points

(i.e. events) is counted in each window, where Nk is the number of

points in the kth window of size T. Differences between adjacent

counts are calculated as

d(T)~Njz1(T){Nj(T),

and the AF value for a given timescale T is calculated as follows,

where E[] is expected value:

A(T)~

�EE d Tð Þ2
h i

2�EE N Tð Þ½ �

Poisson processes yield A(T) , 1 for all T, whereas fractal

processes yield A(T)!T. This formulation of AF is tailored for

temporal point processes, but we can extend it straightforwardly

for spatial point processes. We did this by partitioning image and

drawing spaces containing sets of XY points (Fig. 1B) into square

tiles of size S (i.e. area in pixels). Some number N of XY points fell

within each tile, and tile size S was varied analogous to window

size T. Tile counts were compared against adjacent tiles in the X

and Y dimensions, Nx and Ny, by computing differences analogous

to the one-dimensional temporal case (similar to Haar wavelets

[27]):

dx(S)~Nxz1(S){Nx(S) and dy(S)~Nyz1(S){Ny(S):
The two-dimensional AF function is then

A(S)~
�EE½dx(S)2�z�EE½dy(S)2�

4�EE½N(S)�

A(S) and A(T) have the same property whereby a Poisson process

will yield constant AF variance near unity, and fractal point

processes will yield functions that scale with S and T, respectively.

To extend the AF method further for measuring correspon-

dences between two sets of XY points, a and b, the cosines of angles

between their respective dx(S) and dy(S) vectors were computed at

each spatial scale:

Figure 1. Example data from one participant studying one image (A) and then drawing that image (B). Eye trajectories were down-
sampled to 15 Hz for the figure to reduce visual clutter. Drawing overlay (blue) shows example tiles used for Allan Factor analyses.
doi:10.1371/journal.pone.0058464.g001

Figure 2. Results of co-location analysis plotted as a function of
temporal lag. Distances were normalized by the mean distance over
all pairwise comparisons.
doi:10.1371/journal.pone.0058464.g002
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Ca,b(S)~

PMx Sð Þ

x~1

dax(S)dbx(S)

2 dax(S)k k dbx(S)k kz

PMy Sð Þ

y~1

day(S)dby(S)

2 day(S)
�� �� dby(S)

�� �� ,

whereMx(S) andMy(S) were the numbers of horizontal and vertical

comparisons at each scale, respectively. Cosines were used because

they normalize for overall counts per tile and differences between

tiles. On this measure, there is greater correspondence between

two sets of XY points at each given scale S to the extent that Ca,b(S)

approaches one, where correspondence is measured in terms of co-

location in spatial configuration. XY configurations are measured

as being dissimilar as Ca,b(S) approaches zero.

To test our hypothesis of temporally extended coordination, A(S)

functions need to be compared between study and drawing

periods. In addition, we are interested in testing whether AF

functions were anchored to the images being drawn. The task of

drawing from memory would seem to encourage eye movements

that follow the contours of visually salient features in natural

scenes. If so, the spatial AF analysis that we formulated for

comparing eye and pen trajectories should also work for

comparing trajectories with the spatial distributions of visual

quantities corresponding to salient features. It is likely that eye and

pen trajectories will also be guided by top-down factors related to

intentions, past experiences, and the like [28]. However, in this

light, the task of drawing is itself a top-down factor that should

draw attention to visually salient features of images to be drawn

[29]. To quantify these features, images were passed through

a model of visual saliency based on theories of low-level visual

processing [30]. The model takes a greyscale bitmap as input, and

produces a saliency map as output (see Figure S13). Maps were

converted to sets of XY image points, where numbers of points

were linearly related to saliency values, and set equal to numbers

of eye position samples collected per image in the drawing

condition.

A(S) functions were computed for XY points in eye trajectories

recorded during study and drawing conditions, for pen trajectories

during drawing, and for saliency maps of the six images of natural

scenes. Figure 3A shows that, on average, AF values increased

monotonically as a function of S for all four types of XY points (see

Materials S1 for individual participant and image results, Figure

S14). A(S) functions were linear in logarithmic coordinates for eye

configurations, with a exponents estimated near ,0.5 using linear

regression. This linear trend indicates fractal clustering of eye

configurations, which is consistent with clustering in the spatial

distribution of luminance values in images of natural scenes [24].

By contrast, A(S) functions for pen and saliency map configurations

were monotonically increasing but curvilinear, indicative of

clustering only at the larger spatial scales. This restricted scale of

clustering may be due to slower pen movements, reduced

resolution in pen recordings, and/or spatial smoothing in the

saliency model.

Spatial co-location was measured by computing Ca,b(S) for all

possible pairwise comparisons between XY configurations.

Figure 3B shows that co-location increased with larger scales in

all cases, and as expected, co-location was greatest for concurrent

eye and pen trajectories during drawing (see Materials S1 for

individual participant results, Figure S15). These initial results

confirm that Ca,b(S) functions capture hand-eye coordination as

originally measured by spatiotemporal co-location, i.e. D[XY(ted),

XY(tpd)]. Results also confirm that coordination via memory is not

detectable at finer spatial scales, which may be due to memory

limits or measurement error. Results also provide initial evidence

that the spatial configurations of both eye and pen trajectories are

co-located with the visually salient features of scene images at

larger scales. This evidence is consistent with the expectation that

the task of drawing from memory anchors the eyes and pen to

visually salient features to be drawn.

Spatial similarity was evident for all comparisons, but compar-

isons with two different kinds of baselines are needed to determine

the sources of similarity. Our hypothesized source of similarity is

perceptual-motor encoding that supports the coordination of eye

and pen movements across study and drawing periods. However,

we must test this hypothesis against two alternative explanations.

One alternative is that trajectories are spatially similar merely

because participants produce characteristic patterns of eye move-

ments, regardless of whether they are studying or drawing scenes,

and regardless of which scene is being drawn. As noted earlier,

characteristic patterns may include general tendencies towards

horizontal or central eye movements. These patterns could be

generated without memory to carry information from the study to

test period. The other alternative is that memory is engaged, but in

the form of symbolic encodings instead of perceptual-motor

encodings. Instead of memory for eye positions during study,

images may be encoded in terms of symbolic representations that

can be expressed linguistically, such as ‘‘there is canal running

down the middle with buildings and boats lining either side’’.

The two kinds of Ca,b(S) baseline functions are based on image

surrogates and participant surrogates, respectively. For image

surrogates, eye and pen trajectories were paired with trajectories

produced by the same participant, but for a different, randomly

chosen image. For instance, a given participant’s eye trajectory

while studying the canal scene might be compared with his/her

eye or pen trajectories while drawing the whale scene. If spatial

similarities found between study and drawing are due to general

tendencies in the shapes of trajectories, then Ca,b(S) values for

image surrogates should be the same as for original comparisons.

For participant surrogates, trajectories for the same image were

paired, but produced by different participants paired at random. If

spatial similarities are due to symbolic or purely visual encodings

based solely on the scenes themselves, then Ca,b(S) values for

participant surrogates should be the same as for original

comparisons.

Both original and surrogate baseline Ca,b(S) functions were

computed for each trial, and the latter were subtracted from the

former for targeted comparisons. Differences were summed over S

for each comparison, and T-tests were used to determine whether

these sums were reliably greater than zero (means of these sums

are shown in Figure 4). Results of statistical tests (Table 1, see also

Table S1 in Materials S1) showed that all comparisons were

significantly different from baseline with the exception of Eye(-

Study)6Pen(Draw). We conclude that each eye trajectory during

each study period was specifically reproduced in corresponding

eye and pen configurations while drawing, but only at larger

spatial scales. The finding that original Ca,b(S) functions showed

greater similar than both image and participant surrogates is

evidence that memory encodings were at least partly perceptual-

motor in nature. This conclusion is not mutually exclusive with the

possibility that encodings were also symbolic and/or visual in

nature, or that similarities were partly driven by general patterns

in eye movements.

Discussion

The drawing experiment reported herein provides evidence that

memory can serve to coordinate perceptual-motor interactions

over longer timescales than those operative in more immediate
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interactions, such as hand-eye coordinations. Drawing is a task

that evokes hand-eye coordination, as found in temporally aligned

co-locations of eye and pen trajectories produced while drawing.

Drawing from memory is a task that also evokes coordination

between study and drawing periods, but evidence of this co-

ordination was found only in terms of spatial co-location, without

temporal alignment, and only at the larger spatial scales. AF

analyses showed that the degree of coordination, as measured by

coarse-grained spatial overlap, varied as a function of condition

and measure. Temporal analyses were insensitive to these

variations.

The correspondences of drawing trajectories with study

trajectories can be interpreted as evidence for a version of

scanpath theory applied to the task of drawing visual images from

memory, rather than recalling them from memory. This version

would need to be generalized for spatial configurations of

trajectories, independent of their temporal extents. The temporal

extents of eye trajectories may be preserved in other task contexts,

such as those that emphasize the temporal ordering and/or

durations of fixations. The theory would have to explain how the

spatial and temporal properties of perceptual-motor encodings can

vary as a function of task demands and intentions. The theory

would stand in contrast to memory processes that operate in

purely visual or symbolic modes that are independent of task

context. Purely visual or symbolic representations appear to be

inadequate because surrogate baseline analyses showed that the

particularities of eye trajectories for a given study session were

reproduced during the subsequent drawing session.

It would be interesting to investigate whether current theories of

visual-motor processing might be construed to account for the

present results. For instance, Cagli and colleagues recently

reported a Dynamic Bayes Network (DBN) that simulates the

online interactions between eyes and hands of the course of

copying simple line drawings [29,31,32]. Models like these may

encode information gathered during study periods as priors on

perceptual-motor interactions that unfold during drawing. If one

views scanpath theory as a general hypothesis about the relation-

ship between memory encodings and subsequent actions, then

DBNs may be seen as computational models that capture the basic

tenets of scanpath theory, and thereby provide a means of

applying them to tasks like drawing from memory.

Finally, results suggest that perceptual-motor coordination at

multiple scales is supportive of intelligent behaviors like commu-

nication and artwork, in species ranging from honey bees to

humans. Hand-eye coordination is typically considered more

dexterous than intelligent, in that reciprocal interactions between

perceptual and motor systems are concurrent and based primarily

upon immediate timing and co-location. Behaviors become more

intelligent as memory, planning, and abstraction become more

involved, and coordination becomes more complex. In drawing

from memory, higher-order functions are modestly engaged in

a task that allows for direct comparisons between concurrent and

non-concurrent coordination. In this light, higher-order cognitive

Figure 3. Mean AF functions (left) and cosine similarities (right) plotted in logarithmic coordinates as a function of tile size, for
configuration of points from eye, pen, and image data.
doi:10.1371/journal.pone.0058464.g003

Table 1. Means of Ca,b(S) functions minus their respective
baselines, for each of the conditions shown in Figure 4.

Mean Std Error t value p value

Image X

- Eye(Study) 0.258 0.047 5.486 0.000

- Eye(Draw) 0.104 0.044 2.356 0.022

- Pen(Draw) 0.133 0.053 2.503 0.015

Eye(Study) X Eye(Draw)

Baseline:

- Image 0.140 0.052 2.707 0.009

- Participant 0.267 0.059 4.529 0.000

Eye(Study) X Pen(Draw)

Baseline:

- Image 0.059 0.063 0.932 0.355

- Participant 0.212 0.063 3.366 0.001

Eye(Draw) X Pen(Draw)

Baseline:

- Image 0.833 0.114 7.289 0.000

- Participant 0.969 0.096 10.134 0.000

doi:10.1371/journal.pone.0058464.t001
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functions may be viewed as multiscale extensions of more basic

perceptual-motor interactions.

Supporting Information

Figure S1 Individual trial examples with fixations. One

example image (A) and corresponding drawing (B) from each of

the 11 participants, with eye tracking positions down-sampled to

15 Hz to reduce visual clutter. Five of six images are shown twice,

and each image is shown at least once.

(TIF)

Figure          S2 Individual trial examples with fixations. One

example image (A) and corresponding drawing (B) from each of

the 11 participants, with eye tracking positions down-sampled to

15 Hz to reduce visual clutter. Five of six images are shown twice,

and each image is shown at least once.

(TIF)

Figure          S3 Individual trial examples with fixations. One

example image (A) and corresponding drawing (B) from each of

the 11 participants, with eye tracking positions down-sampled to

15 Hz to reduce visual clutter. Five of six images are shown twice,

and each image is shown at least once.

(TIF)

Figure          S4 Individual trial examples with fixations. One

example image (A) and corresponding drawing (B) from each of

the 11 participants, with eye tracking positions down-sampled to

15 Hz to reduce visual clutter. Five of six images are shown twice,

and each image is shown at least once.

(TIF)

Figure          S5 Individual trial examples with fixations. One

example image (A) and corresponding drawing (B) from each of

the 11 participants, with eye tracking positions down-sampled to

15 Hz to reduce visual clutter. Five of six images are shown twice,

and each image is shown at least once.

(TIF)

Figure          S6 Individual trial examples with fixations. One

example image (A) and corresponding drawing (B) from each of

the 11 participants, with eye tracking positions down-sampled to

15 Hz to reduce visual clutter. Five of six images are shown twice,

and each image is shown at least once.

(TIF)

Figure          S7 Individual trial examples with fixations. One

example image (A) and corresponding drawing (B) from each of

the 11 participants, with eye tracking positions down-sampled to

15 Hz to reduce visual clutter. Five of six images are shown twice,

and each image is shown at least once.

(TIF)

Figure          S8 Individual trial examples with fixations. One

example image (A) and corresponding drawing (B) from each of

the 11 participants, with eye tracking positions down-sampled to

15 Hz to reduce visual clutter. Five of six images are shown twice,

and each image is shown at least once.

(TIF)

Figure          S9 Individual trial examples with fixations. One

example image (A) and corresponding drawing (B) from each of

the 11 participants, with eye tracking positions down-sampled to

15 Hz to reduce visual clutter. Five of six images are shown twice,

and each image is shown at least once.

(TIF)

Figure S10 Individual trial examples with fixations.
One example image (A) and corresponding drawing (B) from each

of the 11 participants, with eye tracking positions down-sampled to

15 Hz to reduce visual clutter. Five of six images are shown twice,

and each image is shown at least once.

(TIF)

Figure S11 Individual trial examples with fixations.
One example image (A) and corresponding drawing (B) from each

of the 11 participants, with eye tracking positions down-sampled to

15 Hz to reduce visual clutter. Five of six images are shown twice,

and each image is shown at least once.

(TIF)

Figure S12 Comparison co-location plot. Plots of co-

location functions averaged for each participant (left column)

and each image (right column), separated into three comparison

conditions: XYgd 6 XYpd (top), XYgs 6 XYgd (middle), and XYgs 6

Figure 4. Ca,b(S) functions summed over S, and subtracted from image (filled bars) and participant (open bars) surrogate baselines,
with standard error bars. Cosine similarities reliably above baseline denoted by an *.
doi:10.1371/journal.pone.0058464.g004
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XYpd (bottom). The periodic pattern in some functions was likely

due to differences in sample rates.

(TIF)

Figure S13 Saliency maps of stimulus images. Saliency

heat maps for each of the six images, overlaid with example

samples from their corresponding probability distributions.

(TIF)

Figure S14 Allan Factor functions. Plots of Allan factor

functions averaged for each participant in the gaze-study (top-left),

gaze-draw (top-right), and pen-draw conditions (bottom-left), and

for each image (bottom-right).

(TIF)

Figure S15 Ca,b(S) functions. Plots of Ca,b(S) functions

averaged per participant for each of the series shown in Figure 3B

from main text.

(TIF)

Materials S1 Supplementary Materials and Methods.
File contains: Table S1 Means of Ca,b(S). Means of Ca,b(S)

functions minus their respective baselines, for each of the

conditions shown in Figure 4 from the main text.

(DOCX)
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