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fibroblasts of rheumatoid arthritis patients 
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Abstract 

Background:  Synovial fibroblasts (SFs) are specialized cells of the synovium that provide nutrients and lubricants 
for the proper function of diarthrodial joints. Recent evidence appreciates the contribution of SF heterogeneity in 
arthritic pathologies. However, the normal SF profiles and the molecular networks that govern the transition from 
homeostatic to arthritic SF heterogeneity remain poorly defined.

Methods:  We applied a combined analysis of single-cell (sc) transcriptomes and epigenomes (scRNA-seq and 
scATAC-seq) to SFs derived from naïve and hTNFtg mice (mice that overexpress human TNF, a murine model for 
rheumatoid arthritis), by employing the Seurat and ArchR packages. To identify the cellular differentiation lineages, 
we conducted velocity and trajectory analysis by combining state-of-the-art algorithms including scVelo, Slingshot, 
and PAGA. We integrated the transcriptomic and epigenomic data to infer gene regulatory networks using ArchR 
and custom-implemented algorithms. We performed a canonical correlation analysis-based integration of murine 
data with publicly available datasets from SFs of rheumatoid arthritis patients and sought to identify conserved gene 
regulatory networks by utilizing the SCENIC algorithm in the human arthritic scRNA-seq atlas.

Results:  By comparing SFs from healthy and hTNFtg mice, we revealed seven homeostatic and two disease-specific 
subsets of SFs. In healthy synovium, SFs function towards chondro- and osteogenesis, tissue repair, and immune sur-
veillance. The development of arthritis leads to shrinkage of homeostatic SFs and favors the emergence of SF profiles 
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Background
Chronic arthritides including rheumatoid arthritis 
(RA) are complex inflammatory disorders that primar-
ily affect the diarthrodial joints causing high morbidity 
and mortality in human patients. Cells driving patho-
genicity in the affected joints include an expanding 
mass of synovial fibroblasts (SFs) typically infiltrated by 
myeloid and lymphoid cells, which together contribute 
to the development of an invasive pannus that degrades 
the cartilage and promotes osteolysis [1, 2]. Early stud-
ies in transgenic mice have established a key role for 
TNF in driving the full pathogenic process [3, 4]. This 
was confirmed later in humans by the introduction of 
anti-TNF therapies that proved efficacious in neutraliz-
ing disease in a large percentage of RA patients [5]. Fur-
ther genetic studies in murine arthritis models revealed 
that TNF signaling in SFs mediates persistent fibroblast 
activation and promotes pro-proliferative, immune-
regulatory, and invasive characteristics. These func-
tions are both necessary and sufficient to orchestrate 
the initiation and progression of the inflammatory and 
damaging pathology even in the absence of adaptive 
immune responses [6–8] qualifying SFs as key effector 
cells and crucial therapeutic targets in chronic arthritis.

The synovial membrane, a highly specialized, mul-
tifunctional connective tissue membrane comprising 
two anatomically distinct layers: lining SFs (LSFs) and 
the recently identified CX3CR1+ lining macrophages 
[9], forms a thin outer layer adjacent to the inmost 
structures consisting of sublining SFs (SLSFs), mac-
rophages, adipose cells, nerves, and blood vessels [10]. 
SFs in the RA pro-inflammatory microenvironment 
acquire an aggressive phenotype, reminiscent of trans-
formed migratory tumor-like cells [11]. They operate as 
immune-modulatory cells by secreting cytokines and 
chemokines and mediate cartilage destruction by over-
expressing MMP1, MMP3, and MMP9 matrix metallo-
proteases [12, 13] as well as the receptor activator of 
NF-κB ligand (RANKL/Tnfsf11), which causes excessive 
osteoclastogenesis leading to bone erosions [14, 15].

Histopathological and high-resolution transcriptomic 
analysis of RA-affected joints indicated that distinct 
fibroblasts subpopulations in the lining and the sublin-
ing synovial compartments are linked to specific disease 
features. Lining fibroblasts markers include podoplanin 
(PDPN) and Lubricin/Proteoglycan 4 (PRG4), whereas 
sublining SFs are characterized by high THY1 and PDPN 
expression. The RA SF subpopulations are character-
ized by differential expression of several markers such as 
CD34, VCAM1, FAP, and pro-inflammatory mediators, 
such as CXCL12, CCL2, and IL6 [16, 17]. More recent 
studies classified the fibroblasts found in the synovial lin-
ing zone as being predominantly responsible for driving 
articular damage, whereas fibroblasts located in the sub-
lining layer express genes that function towards inflam-
mation [18, 19]. Additional recent evidence revealed 
a dominant Notch-mediated interplay of perivascular 
SLSFs with endothelial cells, establishing a positional 
gradient of Thy1high SLSFs towards Thy1low/Prg4high LSFs 
and driving tissue inflammation [20]. Although these 
studies were instrumental in providing valuable insights 
into the classification of pathogenic SF subpopulations 
and their associated functions in the RA synovium, the 
homeostatic to pathological transitions of SFs and the 
molecular networks that drive them have remained 
unclear.

We chose to analyze at the single-cell (sc) level, the SFs 
derived from the hTNFtg mouse, a highly employed and a 
proof-of-concept model of RA predicting the success of 
anti-TNF therapies in RA and other inflammatory arth-
ritides. The mice suffer from a TNF-dependent, inflam-
matory joint disease, affecting mainly the peripheral 
skeleton. The affected joints are characterized by pro-
gressive tissue degeneration and degradation, while the 
absence of the pathognomonic-for-spondyloarthritides 
anabolic events, such as the formation of osteophytes or 
the psoriatic arthritis-like feature of the nailbed attack, 
strongly suggests a RA-like phenotype. The disease is 
fully dependent on the TNF/TNFRI-dependent signal-
ing on SFs, suggesting a prototypical system to explore 
the pathogenicity of fibroblasts. In this study, we aimed 

marked by Dkk3 and Lrrc15 expression, functioning towards enhanced inflammatory responses and matrix catabolic 
processes. Lineage inference analysis indicated that specific Thy1+ SFs at the root of trajectories lead to the interme-
diate Thy1+/Dkk3+/Lrrc15+ SF states and culminate in a destructive and inflammatory Thy1− SF identity. We further 
uncovered epigenetically primed gene programs driving the expansion of these arthritic SFs, regulated by NFkB and 
new candidates, such as Runx1. Cross-species analysis of human/mouse arthritic SF data determined conserved regu-
latory and transcriptional networks.

Conclusions:  We revealed a dynamic SF landscape from health to arthritis providing a functional genomic blueprint 
to understand the joint pathophysiology and highlight the fibroblast-oriented therapeutic targets for combating 
chronic inflammatory and destructive arthritic disease.
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to uncouple and characterize the homeostatic and path-
ological functions of SFs. We undertook an integrative 
approach by combining sc transcriptomic (scRNA-seq) 
and chromatin accessibility data (scATAC-seq) to define 
the underlying molecular switches that determine the 
staging and progression of disease from healthy to early 
inflammatory and subsequent destructive synovial tissue. 
Our data reveal the early emergence and further expan-
sion of distinct pathogenic SF subtypes characterized by 
specific differentially activated pathways and regulatory 
networks emanating from a progenitor state that appear 
repressed in the normal sublining synovium. Changes 
observed in SF stranscriptomes were highly correlated to 
chromatin accessibility alterations and cellular trajectory 
inference pinpointed to novel key transcription factors 
(TFs) and target genes driving the expansion of the path-
ogenic cell profiles at specific times and locations dur-
ing hTNFtg disease progression. Lastly, alignment of our 
murine data with available human RA data uncovered a 
highly conserved core regulatory transcriptional pro-
gram, validating our modeling approach and revealing a 
set of novel biomarkers specific to TNF-driven RA. Our 
results provide a solid translational potential to prioritize 
novel molecular and cellular targets specific for the path-
ogenic transitions of synovial fibroblasts in RA.

Methods
Mice
All mice were bred and maintained on CBAxC57Bl/6J 
genetic background in the animal facilities of the 
BSRC Alexander Fleming under specific pathogen-free 
conditions.

Flow cytometry and fluorescence‑activated cell sorting
Isolation of SFs was performed from both hind paws. 
The ankle joints were dissected, and the tissues were 
disaggregated by incubation for 30 min at 37 °C in an 
enzymatic digestion medium consisting of DMEM, 
10%heat-inactivated FBS, collagenase (0.5 mg ml−1) 
from Clostridium histolyticum (Sigma, C5138) and 0.03 
mg ml−1 DNase (Sigma, 9003-98-9). Upon washing the 
cells with PBS containing DNase, they were blocked in 
1% BSA in PBS and Fc blocker (unlabelled anti-CD16/32, 
Biolegend 101302) for 10 min at 4 °C and stained with 
fluorophore-conjugated antibodies for 20 min at 4 °C 
(anti-Pdpn PE-Cy7, Biolegend 127411; anti-Thy1 A647, 
Biolegend 105318; anti-CD31 APC/Fire 750, Biolegend 
102433; anti-CD45 APC-Cy7, Biolegend 103116; anti-
Ter119 APC-A780, eBioscience 47-5921-80). After wash-
ing with PBS, cells were resuspended in FACS buffer 
(PBS, 1%BSA). Sorting of cells was performed with BD 
FACSAria III and the BD FACSDiva software, and dead 
cells were excluded by DAPI staining. Sorting gaiting for 

single-cell RNA-seq/ATAC-seq and bulk RNA-seq was 
different (Additional file 1: Fig. S1B). For sorted popula-
tions, purity and viability were determined by reanalysis 
for the target population based on cell surface markers 
immediately post-sorting. Purity was > 99% for each tar-
get population.

Histopathology and immunofluorescence
Histological H&E staining was performed on the paraf-
fin ankle joint sections as previously described [7]. For 
immunofluorescence, cryosections were probed with 
antibodies against Thy1 (Alexa Fluor 488 anti-mouse 
CD90.2 antibody, Biolegend 105315, or Alexa Fluor 647 
anti-mouse CD90.2 antibody, Biolegend 105318, both 
clone, 30-H12), Clu (polyclonal rabbit anti-human CLU/
Clusterin, LS-C331486, LSBio), Gdf10 (GDF10 polyclonal 
antibody, BS-5720R, Bioss antibodies), CD31 (APC rat 
anti-mouse CD31, 551262, BD Biosciences, clone MEC 
13.3), Notch3 (anti-Notch3 antibody, ab23426, abcam), 
Comp (anti-COMP/cartilage oligomeric matrix protein 
antibody, ab231977, abcam), CD44 (FITC rat anti-mouse 
CD44, 553133, BD Biosciences, clone IM7), Dkk3 (anti-
Dkk3 antibody, 10365-I-AP, ProteinTech), Runx1 (anti-
Runx1/AML1 antibody, ab92336, abcam), and Prg4/
Lubricin (anti-Lubricin/MSF antibody, ab28484, abcam). 
To visualize the stainings, the following secondary anti-
bodies were applied: Alexa-Fluor 647-conjugated second-
ary antibodies (anti-rabbit, A21244, 1834794; anti-rat, 
A21247, 1719171; anti-mouse:, A21235, 1868116; and 
anti-hamster, A21451, 1572558, Invitrogen) and bioti-
nylated secondary antibodies (anti-rat, BA-9400, and 
anti-rabbit, BA-1000). Images were acquired with a TCS 
SP8X White Light Laser confocal microscope (Leica) and 
with an Eclipse E800 (Nikon) microscope equipped with 
a Dxm1200F camera (Nikon). Imaging analysis was per-
formed with the ImageJ/Fiji software (NIH).

Droplet‑based single‑cell RNA sequencing
To avoid any sex bias effect in the analyses, mice of 
both genders were included to generate samples. Sorted 
live Pdpn+ CD45− CD31− Ter119− synovial cells of the 
ankle joints of WT mice at the age of 4 weeks (n = 3) and 
hTNFtg mice at 2 different stages of the disease, early at 
4 weeks (n = 3) and established at 8 weeks old mice (n = 
3), were subjected to 10X Chromium Single Cell 3’ Solu-
tion v3. The platform was used to generate targeted 3000 
single-cell gel bead emulsion per sample, loaded with an 
initial cell viability of 80%. The scRNA-seq libraries were 
prepared following the 10X Genomics user guide (Single 
Cell 3’ v3 reagent kits). After encapsulation, emulsions 
were transferred to a thermal cycler for RT. cDNA was 
purified and amplified with primers provided in the Sin-
gle Cell 3’ reagents (10X Genomics). After purification 
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with 0.6× SPRIselect beads (Beckman Coulter), cDNA 
quality and yield were evaluated using an Agilent Biona-
lyzer 2100. Using the provided enzyme fragmentation 
mix, the libraries were fragmented, end-repaired, and 
A-tailed. The products were cleaned using SPRIselect 
beads, and the adaptors provided in the kit were ligated. 
After cleaning the ligation products, libraries were ampli-
fied and indexed with unique sample index i7 through 
PCR amplification. Final libraries were double-sided 
cleaned, and their quality and size were evaluated using 
an Agilent Bioanalyzer 2100. Libraries were sequenced 
by pooling them in 1 lane on Illumina NextSeq 500 
sequencer to a depth of 100 million reads each (one lane 
75PE). The forward read included 28 bp for the 10X 
Barcode-UMI, followed by 8 bp i7 index (sample index) 
and 10 bp on the reverse read. Reads were converted to 
FASTQ format using mkfastq from cellranger v3 (10X 
genomics). Reads were then aligned to the mouse refer-
ence genome (mm10, Ensembl annotation release 91). 
The steps of read alignment, UMI counting, and aggre-
gation of individual sample count matrices into a pooled 
single matrix were performed using the 10X Genomics 
Cell Ranger pipeline (v3). Since all samples were mul-
tiplexed in the same Chromium Chip, and sequenced 
in the same lane, factors of technical variability (batch 
effect) should not be present in the dataset.

Computational analysis of single‑cell RNA sequencing data
The DoubletFinder [21] and Seurat R packages [22, 23] 
were used for doublet detection and quality control of 
the cells. Cells containing less than 500 genes or more 
than 10% of reads mapped to the mitochondrial genome 
were excluded from further analysis. Downstream analy-
sis of the data was performed using the functions of the 
Seurat package as described below. Normalization was 
performed using the NormalizeData function, with “Log-
Normalise” as the normalization method and 10,000 as 
the scaling factor. To identify the most variable genes, the 
FindVariableFeatures function was applied with mean.
var.plot (mvp) as a selection method, and the rest of the 
parameters were set to default. Scaling of gene expres-
sion values was achieved by the scaleData function. 
Principal component analysis on scaled values of most 
highly variable genes, as identified in previous steps, was 
performed by the runPCA function. To find the optimal 
number of principal components to be used during the 
step of clustering and non-linear dimensionality reduc-
tion, SVD k-fold cross-validation was performed with 
dismo R library (https://​cran.r-​proje​ct.​org/​web/​packa​
ges/​dismo/​index.​html). For cell clustering, a graph-based 
clustering approach was followed, encompassing the 
construction of a k-nearest neighbor graph of the cells 

and the utilization of the Louvain community detection 
algorithm. The FindNeighbors and FindClusters func-
tions were used to achieve that, the first with the param-
eter dims set to the range 1:25 and the second with the 
parameter resolution set to 0.6. tSNE, and UMAP non-
linear dimensionality reduction methods were used for 
cell visualization in 2D through the functions runTSNE 
and runUmap using the optimal number of PCs = 25. 
For the identification of cluster marker genes, marker 
gene detection (Wilcoxon rank sum test, adjusted p-value 
based on Bonferroni correction using all features in the 
dataset, group 1 = cells belonging to the tested cluster, 
group 2 = rest of the cells) was performed with the Find-
AllMarkers function, excluding genes that exhibited less 
than 25% of expression in both cell groups or an absolute 
value of average log fold change less than 0.25. The same 
approach was followed in both pooled and individual 
sample analysis (in this analysis, only cells belonging to 
the analyzed sample were used). A gene set overrepresen-
tation analysis was conducted using the R package clus-
terProfiler [24]. The lists of upregulated genes from each 
cluster (p-value < 0.01 and avgLFC ≥ 0.25), as identified 
in the previous step, were used as an input gene list. All 
the active genes of the dataset were considered as the 
background set of genes. “Biological processes” gene sets 
were used and obtained from the GO database. Enriched 
GO terms were considered those that showed an adjusted 
p-value < 0.05 and a gene count ≥ 3.

Sub‑clustering analysis
For the sub-clustering of the S4.a population, a new Seu-
rat object was created containing only the cells originat-
ing from this cluster. The steps of scaling, highly variable 
gene identification, PCA analysis, and clustering were 
repeated leading to the detection of two sub-clusters 
(hS4a  and iS4a). Sub-cluster labels of S4.a cells were 
transferred to the initial object containing all cells. Sub-
sequently, D.E.A was conducted using the findAllMark-
ers function. Upregulated genes for the two sub-clusters 
were selected by applying the thresholds described in the 
previous paragraph. Functional enrichment analysis of 
GO biological processes was conducted with clusterPro-
filer [24].

Trajectory analysis
RNA velocity analysis was conducted by using velo-
cyto v.0.17 [25] and scVelo v.0.2.3 [26]. In particular, to 
count spliced and unspliced reads for each sample, the 
10× velocyto pipeline was run in the filtered cellranger-
generated BAM files, while for single-cell RNA velocity 
inference, the dynamical model of scVelo was applied. 
To predict the root and terminal states of the underlying 

https://cran.r-project.org/web/packages/dismo/index.html
https://cran.r-project.org/web/packages/dismo/index.html
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Markov process, the respective scVelo functions were 
applied. The resulting root cells were used to infer the 
latent time ordering of the hTNFtg cells.

Following the results of RNA velocity analysis, the R 
package Slingshot [27] and python package PAGA [28] 
were utilized. To run Slingshot, UMAP coordinates were 
used, while clusters S2b and S5 were set as possible start-
ing points. The produced minimum spanning tree sup-
ported the existence of a pathogenic branch comprising 
S2a, S2d, S4b, and S4a.

Human scRNA‑seq gene regulatory network (GRN) 
inference
To infer GRNs from the human integrated scRNA-seq 
data, the SCENIC [29] workflow was applied in the nor-
malized expression matrix. Briefly, initially co-expressed 
genes were grouped using the arboreto python tool [30, 
31]. Next, using CisTarget [32], all the inferred groups 
that included a transcription factor (TF) were consid-
ered as GRNs, while all genes with motif evidence of the 
respective TF in their regulatory space (hg38__refseq-
r80__500bp_up_and_100bp_down_tss.mc9nr, hg38__
refseq r80__10kb_up_and_down_tss.mc9nr.feather) were 
considered as valid TF targets. Finally, each formed regu-
lon was scored in each cell, using AUCell [29].

Integration of human datasets
For the integration of human data, three different pub-
licly available datasets were used [16, 17, 19]: (1) Mizo-
guchi, F. et al. dataset: Single fibroblasts were isolated by 
flow cytometry (PTPRC (CD45)−, GYPA−, PECAM1 
(CD31)−, and PDPN+) followed by sc library genera-
tion with the Smart-Seq2 protocol. The Illumina HiSeq 
2500 platform was used for sequencing. RNA-seq expres-
sion data that support the findings of this study have 
been deposited in GEO with the primary accession code 
GSE10​9450 [16]. (2). Stephenson, W. et al. dataset: A 3D 
printed droplet microfluidic control instrument was used 
to separate single cells. Libraries were sequenced on the 
Illumina HiSeq 2500 platform. RNA sequencing data that 
support the findings of this study have been deposited in 
dbGaP with the accession code phs00​1529.​v1.​p1 [17]. (3) 
Zhang, F. et  al. dataset: Single SF were sorted (CD45−
CD31−PDPN+), libraries produced with CEL-Seq2 
protocol and sequenced on the Illumina HiSeq 2500 plat-
form. The raw single-cell RNA-seq data are deposited in 
dbGaP (dbGaP Study Accession: phs00​1457.​v1.​p1) [19].

During the first step of the analysis, human genes 
were converted into mouse homologs using the Ensembl 
Biomart and MGI database, leading to the final set of 
17,594 homologous pairs. Regarding the cells that were 
used, from the mouse dataset, only the cells originat-
ing from the pooled hTNFtg samples (3051 cells) were 

processed, while from the three human datasets, only 
the cells originating from RA patients (24,042 cells). 
Consequently, the integration strategy described in [23] 
was followed through the Seurat package. More specifi-
cally, all four datasets were processed by applying nor-
malization and most-variable-gene detection using the 
function normalizeData with default settings and Find-
VariableFeatures (method set to vst and number of vari-
able features to 2000), respectively. Anchors between all 
datasets were identified using the function FindIntegra-
tionAnchors with dimension parameter set to 30, and 
then, these anchors were utilized to integrate the four 
datasets together using the function IntegrateData. The 
final object containing all cells from both species was 
processed in a standard way, performing the steps of 
dimensionality reduction, clustering, and marker gene 
detection. The integrated clusters were defined after 
using the FindClusters function with a 0.3 resolution. 
Finally, marker gene detection was performed by using 
findAllMarkers function with the following thresholds: 
p-value < 0.01 and avgLFC ≥ 0.25. Regarding the func-
tional enrichment analysis, the upregulated genes of 
human and mouse datasets were used as an input for 
Metascape [33], significant terms and pathways (p-value 
< 0.05) were used to assess the similarities and differences 
across the datasets. (For all the comparisons between 
humans and mice described above, the final integrated 
object was split into two, one containing all human cells 
from the three different datasets and another containing 
all mouse cells from pooled hTNFtg samples.)

Integration of WT, hTNFtg, and STIA datasets
We used a publicly available sc dataset from serum trans-
fer-induced arthritis (STIA) model deposited in the Gene 
Expression Omnibus (GEO) (accession code GSE12​9087) 
[18]. For the generation of the STIA dataset, CD45-ve live 
synovial cells from the hind limb joints were isolated and 
sort purified at day 9 (n = 3 biological replicates, each 
comprised of cells from the joints of three animals) and 
captured with the 10X Genomics Chromium system [18].

The integration strategy that has been described 
before was followed employing the Seurat package. 
More specifically WT, hTNFtg, and STIA datasets were 
processed by applying normalization and most-variable-
genes detection using the function normalizeData with 
default settings and FindVariableFeatures (method set 
to vst and number of variable features to 2000) respec-
tively. Anchors between samples were identified using 
the function FindIntegrationAnchors with dimensions 
parameter set to 30, and then these anchors were utilized 
to integrate all the samples together using the function 
IntegrateData. The final object, containing all cells from 
the control and both arthritic models, was processed in 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109450
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001526.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001459.v1.p1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129087
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a standard way, performing the steps of dimensionality 
reduction and clustering. The integrated clusters were 
defined after using the FindClusters function with a 0.4 
resolution. Finally, the marker genes displayed in (Addi-
tional file 1: Fig. S6E) were selected from the supplemen-
tary material of hTNFtg and STIA analyses (Additional 
file 2: Table S1 from the current manuscript and extended 
data Fig. 6 from [18]).

Isolation of RNA and bulk 3′ RNA sequencing
Mice from both sexes were included for the generation 
of the RNA samples. Three individual RNA samples 
per condition were prepared by sorted ankle joint SFs 
(sublining/Pdpn+ Thy1+ and lining/Pdpn+ Thy1−) of 
healthy Col6a1Cre ROSA26mT/mG (4 weeks of age, 1–2 
mice/sample) [7, 34] and hTNFtg Col6a1Cre ROSA26mT/

mG mice (4 and 8 weeks of age, ankle SFs from 1–2 mice/
sample) using the RNeasy mini or micro kit (QIAGEN), 
according to the manufacturer’s instructions. The quan-
tity and quality of RNA samples were analyzed using 
Agilent RNA 6000 Nano kit with the bioanalyzer from 
Agilent. RNA samples with RNA integrity number 
(RIN) > 7 were used for library construction using the 
3′ mRNA-Seq Library Prep Kit Protocol for Ion Tor-
rent (QuantSeq-LEXOGEN™) according to the manu-
facturer’s instructions. DNA High Sensitivity Kit in the 
bioanalyzer was used to assess the quantity and quality 
of libraries, according to the manufacturer’s instruc-
tions (Agilent). Libraries were then pooled and templated 
using the Ion PI™ IC 200 Kit (Thermo Fisher Scientific) 
on an Ion Proton Chef Instrument or Ion One Touch 
System. Sequencing was performed using the Ion PI™ 
Sequencing 200 V3 Kit and Ion Proton PI™ V2 chips 
(Thermo Fisher Scientific) on an Ion ProtonTM System, 
according to the manufacturer’s instructions.

Computational analysis of bulk RNA sequencing data
The quality of the FASTQ files was assessed with the 
fastqc software (Andrews, S. (2010). FastQC: a quality 
control tool for high throughput sequence data [Online]. 
Available online at: http://​www.​bioin​forma​tics.​babra​
ham.​ac.​uk/​proje​cts/​fastqc/). Reads were aligned to the 
mm10 genome were performed with the Hisat2 aligner. 
FeatureCounts [35] was utilized for the step of read sum-
marization at the gene level. Differential expression anal-
ysis was conducted by DESeq2 [36]. For each contrast, 
differentially expressed genes were defined by applying 
the following thresholds |Log2FC| > 0.58 and p-value < 
0.05.

Droplet‑based single‑cell ATAC sequencing
Single-cell assay for transposase-accessible chromatin 
using sequencing (scATAC-seq) protocol was performed 

according to 10X Genomics instructions. Samples were 
obtained from mice of both sexes to avoid sex bias effect 
in downstream analyses. The ankle joints were dissected 
from WT mice at the age of 4 weeks (n = 3) and hTNFtg, 
at the age of 4 weeks (n = 3) and at the age of 8 weeks 
(n = 3). Briefly, after sorting of synovial fibroblasts (see 
the scRNA-seq protocol for details) and nuclei isola-
tion, the nuclei were resuspended in 1× Diluted Nuclei 
Buffer (10X Genomics). About 4600 nuclei were added in 
each transposition reaction, aiming for a targeted nuclei 
recovery of 3000 nuclei. Transposition was performed at 
37°C for 60 min. Generation of Gel beads in EMulsions 
(GEMs) using Chromium Controller (10X Genomics), 
was followed by GEM incubation and cleanup, based 
on 10X Genomics recommendations. Amplification 
of libraries was performed in a Veriti Thermal Cycler 
(Thermo Fisher) programmed at 98°C for 45 s followed 
by 12 cycles of (98°C for 15 s, 67°C for 30 s, 72°C for 20 
s), 72 °C for 1 min and hold at 4 °C. In turn, libraries 
were double-sided size selected using SPRI select reagent 
(Beckman Coulter) according to 10X Genomics recom-
mendations. Before multiplexing, libraries were assayed 
on Bioanalyzer High Sensitivity DNA ChIP (Agilent), 
for quality check and determination of fragment size. 
Quantification of libraries was performed using Qubit 
dsDNA HS Assay Kit (Thermo Fisher, Cat. No Q32851). 
Next-generation sequencing was performed at EMBL-
Genecore (Heidelberg), using the NextSeq 500 platform 
for paired-end 75-bp reads.

Computational analysis of single‑cell ATAC‑seq
The analysis of scATAC-seq datasets was conducted 
by using the ArchR suite [37]. Reads were counted 
across the genome, using 500-bp bins (tiles) to generate 
a genome-wide tile-count-matrix. Epigenetic maps of 
sorted SFs nuclei were obtained for 6679 single nuclei. 
Latent semantic indexing (LSI) [38, 39], Louvain cluster-
ing, and UMAP dimensionality reduction were applied 
as described above (see the “Computational analysis of 
single-cell RNA sequencing data” section). Gene activity 
scores were computed as the summed local accessibility 
of promoter-associated count-tiles in the proximity of 
each gene, using a distance-weighted accessibility model. 
In particular, count-tiles within 100,000 bp of a gene pro-
moter were aggregated using a distance weight e(−abs 
(distance)/5000) + e−1). To account for gene length 
biases, an additional normalization was applied (mul-
tiplication by 1/gene size, scaled linearly from 1 to 5). 
Finally, the above-weighted sum was multiplied by the 
aggregated Tn5 insertions in each tile. Gene scores were 
then scaled to 10,000 counts and log2-normalized. To 
enhance the visual interpretation of gene activity scores, 
a smoothing was applied using the MAGIC algorithm 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Page 7 of 25Armaka et al. Genome Medicine           (2022) 14:78 	

[40]. To assign scATAC-seq cluster identity, gene activ-
ity scores and scRNA-seq gene expression were directly 
aligned between the two modalities [23], by first applying 
an unconstrained integration to gain prior cluster identity 
knowledge, that was in turn used as a guide for a more 
refined constrained integration [37]. This procedure 
grouped cells into 5 major clusters, corresponding to the 
previously annotated cell types described above (syno-
vial fibroblasts, osteoblasts, chondrocytes, myoblasts/

myocytes, and vascular cells, Additional file  1: Fig. S3). 
All non-fibroblast cells were excluded from the rest of 
the analysis, resulting in a total of 6,046 SF cells that were 
re-analyzed in the same fashion. The integration process 
between scATAC-seq and scRNA-seq SFs labeled the 
scATAC-seq cells according to 9 SF subpopulations (see 
above) that were visualized in UMAP space (Fig. 1; Addi-
tional file 1: Fig. S3). To identify a robust merged peak set 
along the SF subpopulations, MACS2 [41] was applied at 

Fig. 1  Multiomic transcriptional and epigenetic single-cell analysis of SFs. A Schematic representation of the experimental workflow. We collected 
ankle synovial tissue from wt and hTNFtg mice, enzymatically disaggregated the tissue, and sorted the cells into one gate representing fibroblasts 
(CD45−, Ter119−, CD31−, Pdpn+). We profiled the cells with both sc 3′ RNA-seq and ATAC-seq using 10X technology and performed scRNA-seq, 
scATAC-seq, and cross-species integrative analyses with publicly available human RA datasets. B High-quality filtered synovial fibroblasts (n = 5903 
for the scRNA-seq and n = 6046 for the sc-ATAC-seq) projected in UMAP space and colored by cluster assignment. C Feature plots on the UMAP 
embeddings of the SFs shown in B, displaying normalized expression values (for scRNA-seq) and gene activity scores (for scATAC-seq) for Prg4 and 
Thy1 genes. D Similar to B, but cells are colored by the sample of origin. E scRNA-seq heatmap showing the average scaled expression values for 
the upregulated genes of each subpopulation (upper panel) and scATAC-seq heatmap of differentially upregulated accessible peaks (lower panel). 
F Pearson correlation of scaled expression values (RNA) and activity scores (ATAC), followed by hierarchical clustering, for the most variable genes 
identified in the scRNA-seq analysis
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two separate pseudo-bulk replicates [37]. Next, iterative 
overlap peak merging [42] was applied at the level of the 
pseudo-bulk replicates (per subpopulation), and subse-
quently at the level of SF subpopulations across the whole 
dataset, to form a single merged peak set of 158,713 
regions with a fixed length of 500 bp. In turn, peaks were 
annotated according to their respective genomic posi-
tion (promoter, intronic, exonic, distal). Using the unified 
peak set, differential accessibility analysis between cells 
was performed to identify cluster-specific and condition-
specific marker peaks (|Log2FC| > 0.58 and p-value < 
0.01). Marker peaks were further analyzed using motif 
enrichment analysis (CIS-BP database), to gain cluster-
specific and sample-specific marker motifs ( |Log2FC| 
> 0.58 and p-value < 0.05). To further gain enriched 
motifs in single-cell resolution, chromVar analysis was 
conducted [43]. Consequently, to identify “positive TF 
regulators” in SF subpopulations, TF motif accessibility 
was correlated with integrated TF gene expression across 
cells, keeping all TFs with Pearson r2 > 0.5 and p-adjusted 
value < 0.05, resulting in 30 positive regulators. Finally, 
to identify the underlying GRNs, peak to gene linkages 
were called using correlation analysis between enhancer 
peak accessibility and integrated gene expression (see 
addPeak2GeneLinks() function of ArchR R package) [37]. 
All links between genes and accessible regions with an 
annotated TF motif were marked as putative regulatory 
links between the respective TF and gene. Subsequently, 
all putative regulatory links were filtered to only keep 
genes that are upregulated in hTNFtg samples, as also 
peaks with increased accessibility in the disease samples.

Results
Multi sc‑omic analysis of hTNFtg mouse model of chronic 
inflammatory polyarthritis
To characterize disease progression and pinpoint what 
differentiates homeostasis from pathogenesis at the level 
of SF subpopulations in synovium, we integrated sc tran-
scriptomic and chromatin accessibility profiles (Fig. 1A). 
We included cells from healthy tissue (WT, 4 weeks of 
age (n = 3)), hTNFtg mice at an early disease stage dis-
playing synovial inflammation (hTNFtg-w4, 4 weeks of 
age (n = 3)), and at an established pathological stage dis-
playing pannus formation, inflammation, cartilage, and 
bone damage (hTNFtg-w8, 8 weeks of age (n = 3)) (Addi-
tional file  1: Fig. S1A). Synovial non-hemopoietic, non-
endothelial, and non-erythroid cells were sorted (CD45−, 
CD31−, Ter119−, Pdpn+) and used to generate scRNA-
seq libraries (10X Genomics, reconstitution of total 6667 
cells) (Fig. 1A and Additional file 1: Fig. S1B, C). In paral-
lel, the same cell isolation protocol was employed to per-
form single-cell transposase-accessible chromatin using 

sequencing from nuclei (scATAC-seq, 10X Genomics, 
reconstitution of 6679 single cells/nuclei). Healthy and 
hTNFtg cells were pooled in each experimental modality, 
to create a common baseline between homeostatic and 
pathogenic conditions.

Upon filtering out the non-fibroblast cells based 
on well-known transcriptomic markers as previously 
reported [18] (Additional file  1: Fig. S1C, D), we addi-
tionally refined the scATAC-seq cluster annotation 
using canonical correlation analysis (CCA) to enable the 
matching of scRNA-seq and scATAC-seq cluster identi-
ties (Fig. 1F and the “Methods” section). We focused on 
the 5903 and 6046 cells/nuclei presenting SFs characteris-
tics in scRNA-seq and scATAC-seq respectively (Fig. 1B). 
Sub-clustering analysis of SF-specific molecular maps 
resolved nine fibroblastic clusters (Fig. 1B and Additional 
File 1: Fig. S1F, G). Using as a proxy the classical mark-
ers Prg4 and Thy1 [16, 18, 19], we observed a compart-
mentalization of Prg4high (LSFs) vs Thy1+ SFs (SLSFs) 
(Fig. 1B, C). We also noted that two clusters (4 and 7) are 
mainly present in the disease (hTNFtg-w4,8) and they 
expressed both Thy1 and Prg4 genes (Fig. 1C, D). Graph-
based clustering followed by differential expression anal-
ysis (DEA) at the single-cell RNA-seq level revealed 1716 
marker genes (i.e., upregulated in at least one cluster vs 
the others), while the differential peak accessibility anal-
ysis at the single-cell ATAC-seq level identified 45,862 
marker peaks (i.e., with significantly increased accessibil-
ity in at least one SF subpopulation compared to the oth-
ers). Inspection of the aforementioned marker genes and 
peaks revealed cell specificity and shared patterns both 
at transcriptional and chromatin levels (Fig. 1E). In fact, 
high correlation coefficient scores between gene expres-
sion and chromatin accessibility were observed not only 
within clusters, but also across clusters and suggested 
some architectural/functional overlap among SLSFs and 
among LSFs and SF clusters 4 and 7 (Fig. 1F). Therefore, 
our combined-omics approach deconvolved SF varieties 
with specific patterns of gene expression and associated 
chromatin accessibility signatures, which may be used to 
further characterize RA molecular markers and deter-
mine the underlying gene regulatory networks driving its 
pathophysiology (see below).

High‑resolution maps of transcription regulation 
in homeostatic joints
To evaluate the qualitative and quantitative difference 
of each cluster per condition, we distributed and visual-
ized the cells from each sample in individual UMAPs 
(Fig.  2A, B). We further annotated the nine SF clusters 
by taking into account the inter-cluster and intra-cluster 
analysis of DE genes (Additional file 3: Table S2) and cur-
rent literature regarding fibroblast profiles [18–20, 44]. 



Page 9 of 25Armaka et al. Genome Medicine           (2022) 14:78 	

We named the clusters employing gene names: Smoc2/
Col15a1+ (cluster 0/S1), Comp/Sfrp1+ (cluster 1/S2a), 
Osr1/Nr2f2+ (cluster 2/S2b), Meox1/Clu+ (cluster 3/
S2c), Dkk3/Lrrc15+ (cluster 4/S2d), Dpp4/Pi16+ (Clus-
ter 5/S3), Prg4high/Tspan15+ (Cluster 6/S4a), Birc5/
Aqp1+ (cluster 7/ S4b), and Pxt3/Notch3+ (Cluster 8/
S5). However, for reasons of simplicity, from now on, we 
use the cluster acronyms (S1, S2a,b,c,d, S3, S4a,b and S5) 
(Fig. 2C).

We first characterized RNA expression specificities 
in healthy homeostatic joints by looking at cluster-
specific upregulated genes in WT SFs independently 
(Fig. 2B, C, D and Additional file 2: Table S1). The S4a 
SFs were devoid of Thy1 expression, and they expressed 
high levels of Prg4 (Prg4high, Additional file 1: Fig. S2A) 

along with other genes previously reported as mark-
ers of the lining phenotype (LSFs), such as Tspan15, 
Hbegf, and Htra4 [18, 19] (Fig. 2D). In WT joints, these 
LSFs were clearly demarcated from the sublining cells 
(Thy1+, Prg4low/−) because of the very limited number 
of S2d and S4b cells (Thy1+, Prg4high) (Fig. 2A, B). By 
estimating the percentage of Thy1-positive, Prg4-pos-
itive, and double-positive SF cells in each cluster per 
sample, we observed that in WT tissues, Thy1 and Prg4 
are mainly expressed on mutually exclusive SF subsets 
while in hTNFtg, Thy1, and Prg4 exhibit more coexpres-
sion specially in the disease-enriched clusters S2d and 
S4b (Additional File 1: Fig. S2A). Functional enrich-
ment analysis revealed that, in contrast to the reported 
destructive profile of the lining cluster in arthritic dis-
ease [18], in normal conditions, LSFs tend to preserve 
tissue homeostasis by uniquely performing the negative 

Fig. 2  Structural remodeling of the synovial mesenchyme in the hTNFtg arthritic joint. A UMAP representation of SFs across the three different 
samples (WT, hTNFtg/4 weeks, and hTNFtg/8 weeks as indicated). The cells are colored by cluster identities, and the marked areas highlight the 
structural dynamic changes of the intermediate and lining subpopulations in RA evolution/during disease progression. B Stacked bar charts 
showing the relative abundances (%) of clusters across samples (WT, hTNFtg 4 and 8 weeks). C Table summarizing the cluster numbers, simplified 
names, and marker genes. D Dot plot of the cluster marker genes. The color of the dot shows the intensity of expression while the size denotes 
the percentage of cells expressing the gene in each cluster and condition (WT: wt-4w; hTNFtg/4: tg-4w; hTNFtg/8: tg-8w). E Functional enrichment 
analysis indicating the enriched biological processes for each cluster across samples. Significance is noted by color, and the percentage of cluster 
marker genes included in each term is noted by size
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regulation of oxidative stress-induced cell death, as well 
as the homeostasis of mitochondrial calcium, a funda-
mental signaling modulator [45] (Fig.  2E, Additional 
file 1: Fig. S3, Additional file 3:Table S2).

Regarding Thy1+ SLSF populations, we find that S1 
transcriptional state is marked by the expression of 
Smoc2, Thbs1, Vwa1, and Col15a1 genes that encode 
matricellular proteins and the BMP co-receptor Rgma 
(Fig. 2D and Additional file 2: Table S1, Additional file 3: 
Table  S2), along with BMP/SMAD signaling pathways 
detected in the GO enrichment analysis (Fig.  2E and 
Additional file 3: Table S2). The expression of genes asso-
ciated with steroid metabolism, including the cortisone-
conversion enzyme Hsd11d1 [46], provides S1 cells an 
anti-inflammatory role.

S2 SF subtypes are characterized by common (Comp, 
Ptn, Gdf10) and divergent marker genes and func-
tions (Fig.  2D, E and Additional file  2: Table  S1, Addi-
tional file 3: Table S2). In particular, the S2a population 
is defined by the high expression of WNT modulators 
Dkk2 and Sfrp1, in accord with the GO enrichment in 
WNT-mediated responses, TGF activity, and osteo-
genesis. In addition, the specific expression of Ecrg4 
(1500015O10Rik) gene indicates a role of S2a in regu-
lating tissue repair processes (wound healing) [47]. In 
S2b, gene expression is linked to joint morphogenesis 
and reparative processes; e.g., Osr1 regulates Prg4 [48] 
and plays a pivotal role in fibroblast differentiation [49]. 
Moreover, Nr2f2 (COUP-TFII) marker gene is implicated 
in cell fate decisions of stem cells [50]. S2c SF state is 
characterized by BMP signaling pathway activation and 
osteoblast and myoblast differentiation. Characteristic 
gene expression involves the Klf5, Clu, Id1, and Meox1 
genes.

The gene expression signature of S3 indicates that these 
SFs drive processes relative to vasculogenesis and regula-
tion of type 2 immune responses and myeloid lineage dif-
ferentiation and homeostasis. S3 SFs are characterized by 
the expression of Pi16 which functions in pain and fibro-
blast/endothelial crosstalk [51], the physiological vascu-
lar normalizing modulators Sema3c [52] and Efemp1 [53, 
54], and the glucose and immune regulator Dpp4 [55] 
(Fig. 2D, E, Additional file 1: Fig. S4 and Additional file 2: 
Table S1, Additional file 3: Table S2).

Finally, S5 cells show activation of cytokines and 
chemokine pathways (Ccl7, Cxcl10, IL6, and Ptx3) and 
are associated with immune-regulatory functions includ-
ing response to IFN-beta/gamma and LIF, indicating 
a strong immunoregulatory role in the synovial mem-
brane under healthy conditions. Notably, Notch3, a gene 
recently highlighted for its role in driving SF identity in 
the perivascular/sublining layer of arthritic synovium 
[20], is also expressed in normal conditions mainly in 

cluster S5 (Fig.  2D, E and Additional file  2: Table  S1, 
Additional file 3: Table S2).

Overall, the analysis of SFs in naïve conditions high-
lights a previously underexplored functional diversity 
underlying the homeostasis of the synovial membrane.

Development of inflammatory arthritis associates 
with the transcriptional remodeling of SF populations 
and functions
We next sought to dissect the processes underlying the 
appearance and maintenance of TNF-induced patho-
logical states of SFs. The differential abundance analysis 
of hTNFtg compared to WT SFs showed not only aber-
rations in SF clusters but also revealed disease-enriched 
subpopulations (Fig.  2A, B). The proportion of S2d and 
S4b cells gradually increased from almost undetectable 
levels (2 and 0.17%) in healthy conditions to 25 and 14% 
in the hTNFtg joints of established disease (8 weeks old), 
respectively (Fig. 2A, B). Correlation analysis on the most 
variable genes (MVGs) of SF clusters highlighted a strik-
ing overlap in the transcriptional profiles of the Prg4high 
S4a and the intermediate S4b and S2d SF subpopulations 
(Additional file 1: Fig. S2A), which was already suggested 
from the patterns of selected representative marker genes 
and GOs (see Fig. 2D, E). Correlation scores were higher 
between hTNFtg cells indicating an acute and stable 
change in the particular SFs expression signatures after 
the onset of arthritis (Additional file 1: Fig. S2A). Besides 
the original observation that Thy1 and Prg4 exhibit more 
coexpression compared to WT tissues (Figs.  1C, D and 
2B, C), we also observed a striking overlap in the tran-
scriptional profiles of the Prg4high S4a SFs and the inter-
mediate S4b and S2d SFs (Additional file 1: Fig. S2B and 
Fig. 2D, E). The gain in the number of these “intermedi-
ate” and lining S4a cells was offset by the shrinkage in 
the proportion of the number of other cell types S2a, 
S2b, S2c, S3, and, to a lesser degree, S1 and S5 (Fig. 2B, 
C); these “shrunk” clusters showed a more homogenous 
signature and less DE genes between WT and hTNFtg, 
indicating common and stable functions in healthy and 
disease joints (Additional file  1: Fig. S2A, B and Addi-
tional file  2: Table  S1). However, besides some very 
unique functions in each stage of disease for each cluster 
(Additional file  1: Fig. S5-6, Additional file  3: Table  S2), 
we also noted an early and stable gain of some important 
disease-related processes. According to their de novo 
transcriptome changes during disease, the S1(Smoc2/
Col15a1+) SFs positively regulate fibroblast migra-
tion and apoptotic processes. The S2a(Comp/Sfrp1+), 
S2c(Meox1/Clu+), S3(Dpp4/Pi16+), and S5(Ptx3/
Notch3+) SFs exhibit phosphatidylinositol 3-kinase 
signaling. The S2a (Comp/Sfrp1+) SFs further show 
the positive regulation of developmental growth, while 
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S2c(Meox1/Clu+) and S5(Ptx3/Notch3+) SFs participate 
in osteoclast differentiation. S3(Dpp4/Pi16+) SFs engage 
in blood vessel remodeling throughout arthritic stages. 
The S5(Ptx3/Notch3+) SFs regulate monocyte differen-
tiation and uniquely present activation of protein kinase 
B activity, positive regulation of stress-activated MAPK 
cascade, and positive regulation of response to hepato-
cyte growth factor during arthritic disease (Fig. 2E, Addi-
tional file 1: Fig. S5A, Additional file 3: Table S2). On the 
other hand, loss of functions per shrunk cluster during 
the progression of arthritis is highlighted in S1(Smoc2/
Col15a1+) SFs, by, e.g., the disappearance of character-
istic steroid biosynthetic process, BMP signaling, and 
chondrogenesis, while in S5(Ptx3/Notch3+) SFs, the 
regulation of several cytokine responses and tissue regen-
eration were also lost. Similarly, in S2a SFs, the functions 
of Wnt regulation, epithelial-to-mesenchymal transition, 
and androgen receptor signaling are gradually reduced 
during disease. In S3(Dpp4/Pi16+) SFs, the responses to 
hypoxia, the regulation of TGFβR signaling, the develop-
ment of cartilage, and the type 2 immune responses are 
also absent from established disease. All these discrep-
ancies (loss or gain of functions) likely reflect the hypo-
populated however arthritis-reoriented SF states (Fig. 2E, 
Additional file 1: Fig. S5B, Additional file 3: Table S2).

The “expanding” S2d(Dkk3/Lrrc15+) SFs express 
highly important genes for joint pathology (Fig.  2D, E) 
including the ECM component Fbln7 [56], the matricel-
lular protein Thbs4, the vascular remodeler Cthrc1 which 
has also been proposed as a marker for embryonic pro-
genitors of SFs, fibrocartilage cells of the enthesis [57], 
and fibrotic lung fibroblasts [58]. The expression of Dkk3 
associates the murine S2d transcriptional state with the 
previously described human SC-F3 (DKK3+) SF cluster 
[19]. The S2d SFs also express Lrrc15, a recently identified 
marker for cancer-associated fibroblasts (CAFs) and acti-
vated fibroblasts [44, 59] and the TF Runx1. In accord, we 
find multiple biological processes including regulation of 
immune and redox response, cell fate determination, and 
ECM remodeling, which indicate a multi-potent tran-
scriptional signature S2d SFs.

The S4b(Birc5/Aqp1+) SFs, further to high Prg4/Thy1 
marker genes, also express Mki67, Pdgfa, Birc5, Aqp1, 
Acta2, the C1qtnf3 adipokine, and other chemokines 
such as Cxcl5, as well as several adhesion molecules. The 
functional annotation related to increased proliferating 
capacity, adhesion, and peptidase activity reinforcing 
the idea that these cells actively contribute to the inflam-
matory process in arthritis (Fig. 2D, E; Additional file 2: 
Table S1, Additional file 3: Table S2).

During TNF-mediated arthritis, the S4a(Prg4high/
Tspan15+) LSFs preserve some of their homeostatic 
marker gene identity, but also show an expansion in the 

diversity of their transcriptome, indicating that their 
reparative functions might be affected after disease onset. 
We detected markers of inflammatory response (Ccl2, 
Ccl5, Hmox1 Saa3), class I antigen presentation (H2-
K1, B2m, H2-Q7), and ECM remodeling (Mmp3, Timp1, 
Cd44) (Fig.  2D, E), in agreement with previous reports 
on arthritic LSFs [18, 19]. The expansion of LSFs is also 
accompanied with some loss of homeostatic functions 
during disease progression, such as ER calcium homeo-
stasis and response to oxygen levels (Additional file 1: Fig. 
S5B). Notably, a meticulous sub-clustering analysis of the 
S4a cluster confirmed the presence of two groups of cells 
(subclusters hS4a (homeostatic) and iS4a (inflammatory)) 
(Fig. 3A, B), where the emergence and expansion of the 
inflammatory state iS4a dominate during disease, at the 
expense of homeostatic state hS4a (Fig. 3C, D and Addi-
tional file 4: Table S3).

Interestingly, when we integrated our normal and 
hTNFtg dataset with the respective data derived from a 
previous study on mouse acute inflammatory arthritis 
(STIA), we noted a similar pattern of both expansion and 
shrinkage of SF clusters compared to normal SF statuses 
(Additional file 1: Fig. S6A-D).

We validated the expression of scRNA-seq-derived 
markers in murine joints by employing spatial detection 
by multicolor immunofluorescence. Clu (S2c, Meox1/
Clu+ SFs) and Sema3c expression (S3, Dpp4/Pi16+ 
SFs) are sparsely distributed in the sublining compart-
ment of healthy joints. In the hTNFtg joints, their expres-
sion is scattered throughout the inflammatory sublining 
synovium (Additional file  1: Fig. S7A). S2a/b-associated 
marker Gdf10 and the S2a(Comp/Sfrp1+) marker Comp 
are detected in Thy1+ cells, directly adjacent to the lining 
outermost cellular layer and closer to the cartilage (Addi-
tional file  1: Fig. S7A,B). Consistent with the scRNA-
seq results, the S5(Ptx3/Notch3+) marker Notch3 is 
restricted to a smaller Thy1+ SLSF subpopulation, colo-
calizing around the vascular cells (CD31+) in WT joints. 
The Notch3 expression remains limited to perivascular 
areas in the hTNFtg joint (Additional file  1: Fig. S7A). 
Interestingly, Notch3+ cells (S5− Ptx3/Notch3+ cluster) 
and Gdf10+ and Smoc+ cells (S2a-Comp/Sfrp1+ and 
S2b-Osr1/Nr2f2+ clusters) are excluded from the inter-
face of pannus/cartilage-bone junction (Additional file 1: 
Fig. S7A,B).

A specific spatial trend was identified for Dkk3/
Lrrc15+ (S2d) and Birc5/Aqp1+ (S4b) intermediate SFs. 
As indicated by the transcriptomic analysis, their marker 
a-SMA (Acta2) is absent from the healthy synovium, and 
it is exclusively detected in the pericytes of WT joints. 
Consistent with the RNA expression, CD44 expression 
is present in both the sublining and lining compartments 
of healthy synovia (Additional file 1: Fig S7B). However, 
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in disease, a-SMA, CD44, Prg4, Dkk3, Mik63, and Runx1 
proteins are detected at the interface of the invasive syn-
ovial tissue and the articular bone, indicating a distinct 
localization of the intermediate S2d(Dkk3+/Lrrc15+) 
and S4b(Birc5/Aqp1+) clusters. Notably, their distri-
bution is evident at both sublining and lining compart-
ments. Finally, we validate in  situ the expansion of high 
Prg4-expressing SFs (S4 clusters) in the diseased joints 
(Additional file 1: Fig. S7C).

Collectively, all the above findings establish detailed 
molecular, functional, and anatomical maps outlining the 
dynamic and diverse effects of the development and pro-
gression of the pathogenic SF states in arthritic mice.

Bulk markers of the inflammatory expansion of SFs 
in TNF‑mediated arthritis
Taking advantage of our scRNA-seq results, we looked 
for reliable arthritic marker gene expression in whole 

tissues. We performed bulk RNA-seq on sorted LSFs and 
SLSFs. LSFs (CD31−, CD45−, Ter119−, CD90−, Pdpn+) 
and SLSFs (CD31−, CD45−, Ter119−, CD90+, Pdpn+) 
derived from naive, and 4w and 8w diseased mice—addi-
tionally marked by a SF-specific GFP marker (see the 
“Methods” section)—showed a clear separation (Addi-
tional file 1: Fig. S8A). Bulk RNA-seq DEA and compari-
son with DEA performed on scRNA-seq data (see above) 
revealed commonly identified genes and confirmed that 
more differences in gene expression is detected between 
lining (L) and sublining (SL) SFs in healthy animals (WT) 
compared to hTNFtg counterparts (Additional file 1: Fig. 
S8A-C and Additional file 5: Table S4), further suggesting 
that SFs tend to lose their sharp healthy bi-modal (lin-
ing vs sublining or Prg4 vs Thy1 compartmentalization) 
character in arthritic tissues (see Fig.  1C, D, Additional 
file  1: Fig. S2A). We confirmed this by calculating bulk 
fold changes (FCs) between LSF and SLSF and show how 
genes we established as S4a marker genes fit with a LSF 

Fig. 3  Sub-clustering analysis of S4a SFs revealed a homeostatic and an inflammatory state of LSFs. A UMAP representation of the identified 
lining sub-clusters. Cells belonging to the homeostatic group (hS4a) are colored in blue, while cells belonging to the inflammatory group (iS4a) 
are colored in red. C Barplot showing the relative abundances of cells in each sub-cluster in healthy conditions and during disease progression. C 
Feature plots of selected genes showing differential patterns of expression in the two sub-clusters. D Dot plot of shared and specific enriched GO 
biological processes in the two sub-clusters.
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signature in bulk data. In contrast, S2d and S4b genes are 
more equally expressed in both states, and the remaining 
clusters tend to be defined by genes upregulated in the 
SLSF state (Additional file 1: Fig. S8D). Corroboratively, 
we found that more genes of sc cluster S4a are detected 
as bulk LSF markers, more genes representative of S5, 
S2b, and S2b are bulk markers of SLSFs, while a bal-
anced number of S2d and S4b markers are found in LSF 
and SLFs bulk DE gene (DEG) lists (Additional file 1: Fig. 
S8E). Interestingly the genes co-differentially expressed 
in sc and bulk (see Additional file  1: Fig. S8C) consti-
tute a robust list of marker genes characterizing SL and 
L SFs and is also highlighting genes marking the inter-
mediate (I) state (Additional file  1: Fig. S8F, Additional 
file  5: Table  S4). Focusing on genes showing significant 
FC between LSF and SLSF in healthy (WT) or patho-
genic (hTNFtg-4w and hTNFtg-8w) joints in the bulk data 
(Additional file  1: Fig. S8G), we propose potential diag-
nostic genes, which may be used as a panel to test disease 
status by performing qPCR on sorted SFs obtained from 
biopsies.

Development of arthritic pathology depends on activated 
epigenomic states and distinct gene regulatory networks 
in SFs
To identify the pathogenic molecular master switches 
that remain repressed in healthy joints and are activated 
in arthritis, we also analyzed scATAC-seq data to find 
condition- and cell type-specific chromatin signatures 
and explored what TF and target genes are controlled 
at the epigenomic level (see the “Methods” section). 
Accessible chromatin patterns recapitulated the sig-
nificant expansion of the SFs subpopulations S2d(Dkk3/
Lrrc15+) and S4b(Birc5/Aqp1+) upon disease progres-
sion (Fig.  4A, B). We performed a two-level analysis of 
open chromatin regions (OCRs). To avoid a potential 
pitfall due to the very low number of S2d(Dkk3/Lrrc15+) 
and S4b(Birc5/Aqp1+) cells in WT and given the inher-
ent sparsity of scATAC-seq, we determined OCRs in the 

joint dataset (WT with hTNFtg cells). We first identified 
differential accessibility patterns across the union of all 
accessible regions (n = 158,713), and we found 50,636 
peaks (Fig.  4C) showing SF subtype-specific patterns of 
accessibility. In particular, more regions defining inter-
mediate (S2d, S4b) and lining (S4a, Prg4high/Tspan15+) 
cells were evident (Fig.  4C, D). Second, we highlighted 
striking gains in DNA accessibility upon disease (more 
accessibility in hTNFtg than in WT) at 27.9 and 49.8% of 
cluster-specific loci for S2d and S4b (Fig. 4D). By deter-
mining peak-to-gene linkages (Fig.  4E and the “Meth-
ods” section), we established that many gene regulatory 
links (genes associated with given OCRs) appeared con-
served across conditions (Fig.  4E) and that most genes 
did not display noticeable changes at the chromatin level, 
in agreement with the observation that a large major-
ity of the OCRs remain stable (see Fig.  4D, left panel). 
In contrast, for the OCRs that change upon disease, we 
reveal 1,786 and 8,807 region-to-gene associations that 
distinguish healthy and hTNFtg SFs (Fig.  4E). Impor-
tantly, many of the upregulated genes in intermediate 
cells in disease show a parallel gain in accessibility at 
the linked open regions. For example, up to 40% of the 
genes upregulated in hTNFtg SFs, according to scRNA-
seq, also showed significant chromatin opening in at least 
one of the associated OCRs (Fig. 4F, 61 of 151 genes for 
cluster S4b). For the genes commonly exhibiting scRNA-
seq and scATAC-seq increase, we find chromatin open-
ing at a larger proportion of their associated regulatory 
regions compared to the genes that are not differentially 
expressed but show chromatin opening (Fig.  4G). We 
conclude that key pathogenesis driver genes are robustly 
activated only when cells simultaneously open at least a 
certain number of key regulatory regions associated with 
these genes. Overall, these results are consistent with the 
idea that chromatin remodeling of SFs is determinant in 
the formation of inflammatory arthritis.

Upon performing DNA motif analyses to determine 
which TF might control the cell-type or disease-specific 

Fig. 4  scATAC-seq recapitulates the structural remodeling of the synovial mesenchyme in the hTNFtg arthritic joint. A UMAP representation of 
SFs across the three different samples (WT, hTNFtg/4 weeks, and hTNFtg/ 8 weeks as indicated). Cells are colored by cluster identities, and the 
marked areas highlight the structural dynamic changes of the intermediate and lining subpopulations during disease progression. B Stacked 
bar charts showing relative abundances (%) of clusters across samples (WT, hTNFtg 4 and 8 weeks). C Upper panel: schematic representation of 
the marker peak detection procedure. Lower panel: heatmap showing the column Z-score of normalized accessibility of 50,636 marker peaks, 
across SF subpopulations and disease states (WT, hTNFtg). D Upper panel: schematic representation of the disease-specific marker peak definition. 
Left panel: stacked bar chart depicts the proportions of stable and hTNFtg-specific marker peaks. Center panel: heatmap showing the column 
Z-score of normalized accessibility of 7,799 disease-specific marker peaks (WT, hTNFtg), across SF subpopulations. Right panel: bar chart depicts 
the distribution of regions with an increased opening in disease vs WT across clusters. E Heatmap showing the column Z-score of normalized 
accessibility and integrated gene expression of 52,133 peak-to-gene links across WT and hTNFtg SF subpopulations. Upper panel: peak-to-gene 
links that are shared between conditions. Middle panel: peak-to-gene links that are unique to hTNFtg cells. Lower panel: peak-to-gene links that 
are unique to WT cells. F Stacked bar chart depicting the number of disease-specific marker genes (described in E, middle part) exclusively found 
in scATAC-seq data (red), shared between modalities (purple), and exclusively found in scRNA-seq data (gray). G Bar chart depicting the number of 
regions per gene with gains in accessibility detected in disease.

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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regulatory regions and associated genes (Fig.  5A, Addi-
tional file  1: Fig. S9A), we highlighted cluster-specific 
groups of TFs dominating during disease: e.g., GATA 
family of TFs that regulate mesenchymal stem-cell dif-
ferentiation transition (discussed in [60]) is linked to 
S2b (Osr1/Nr2f2+) while C/EBP family of TFs linked 
to S5(Ptx3/Notch3+) cluster, are involved in many pro-
cesses including cell differentiation, inflammation, aging 
(discussed in [61, 62]). In contrast, S2d(Dkk3/Lrrc15+) 
and S4b(Birc5/Aqp1+) intermediate subpopulations are 
associated with Nfatc, which is known to play a central 
role in bone and joint remodeling during RA pathogen-
esis [63]. The S4a(Prg4high/Tspan15+) and S4b(Birc5/
Aqp1+) clusters are linked to a combination of TFs 
including the chromatin remodeling mediators Smarcc1, 
Bach1/2, and the pro-inflammatory effectors Junb/d, Rel, 
and Nfkb (Fig. 5A, Additional file 1: Fig. S9B). TF binding 
sites (TFBS) that appear in diseased cells (within peaks 
found to be more accessible in hTNFtg SFs) revealed Rel, 
Nfkb, Junb/d, and Runx1 TFBS (Fig.  5A). We corrobo-
rated this finding by inferring the co-accessibility scores 
of regulatory regions modeled per-cell by employing cis-
Topic [64] (Additional file  1: Fig. S9C,D). We identified 
12 topics that show distinct contribution probabilities 
along the SFs (Additional file 1: Fig. S9E, F). In particular, 
topic 12 matches S4a(Prg4high/Tspan15+) subpopulation, 
topic 5 matches S4b subpopulation, and topic 8 matches 
S4b(Birc5/Aqp1+) and S2d(Dkk3/Lrrc15+) subpopu-
lation (Additional file 1: Fig. S9E, F). Motif analysis was 
applied on the regions defining these topics and con-
firmed that the intermediate and lining states are con-
trolled by master regulators including Klf, Dlx, Creb3, 
Runx1, and Nfkb (Additional file 1: Fig. S9G).

We resolved true “positive TF regulators” by establish-
ing which TFs show a high correlation between motif 
accessibility and TF mRNA expression at a single-cell 
resolution [39] (Fig.  5A, Additional file  1: Fig. S9A). 
The most deviant TFs were detected in the expanding 
intermediate and lining clusters (S2d(Dkk3/Lrrc15+), 

S4b(Birc5/Aqp1+), S4a(Prg4high/Tspan15+)) and to a 
lesser degree in the S5 subpopulation (Fig.  5B). While 
we noticed stable high deviation scores for a subset of 
TF regulating the Prg4high lining cluster (Dlx, Lhx, and 
Lmx), we highlighted notable changes in TF regulatory 
programs (regulons) in disease for the intermediate and 
lining cells S4a(Prg4high/Tspan15+), S4b(Birc5/Aqp1+), 
and S2d(Dkk3/Lrrc15+) (compare healthy joint vs early 
and established disease states). These regulons are oper-
ated via the TFs Nfkb, Rela, Relb, Rel, and Runx1 (Fig. 5B, 
D and Additional file  1: Fig. S9B). Although the other 
Thy1+ sublining clusters show lower deviation scores 
and less dynamic changes, we noted that they are con-
trolled via Klf, Cebpd, Ar, and Nr3c1 TFs. We validated 
these findings by verifying that the underlying expression 
scores of the TFs Ar and Runx1 as well as the genes they 
control (gene regulatory networks (GRNs)) parallel the 
motif deviation patterns (Fig. 5C, D, Additional file 1: Fig. 
S10A, B and Additional file 6: Table S5).

A defined trajectory yields pathogenic SFs in diseased 
joints
We next questioned which cells give rise to the emerg-
ing S2d, S4b, and S4a SF states in disease. We performed 
cellular trajectory analysis and traced the cells along an 
underlying Markov process to determine their respec-
tive latent time and identify plausible root cells. Root 
properties were mainly found in the S2b (Osr1/Nr2f2+) 
state cells albeit cells in S5(Ptx3/Notch3+), S4b(Birc5/
Aqp1+), S1(Smoc2/Col15a1), and S3(Dpp4/Pi16+) SFs 
also exhibited a root-like potential (Fig.  6A, Additional 
file  1: Fig. S11A, B). Regardless of the origin, the cells 
transitioned via S2b, S2d, and S4b and always ended in 
the area of S4a(Prg4high/Tspan15+) (Fig.  6A, Additional 
file  1: Fig. S11B). Consistent with the TNF depend-
ence of our murine arthritic model and the RNA veloc-
ity analysis outcome, we detected high activity scores 
for “response to TNF” S2b (Osr1/Nr2f2+) and S5(Ptx3/
Notch3+) as well as for the expanded S2d, S4a, and S4b 

(See figure on next page.)
Fig. 5  Integrative analysis of scATAC-seq and scRNA-seq infers putative arthritic regulatory programs. A Heatmap showing the motif enrichment 
p-adjusted values of each SF subpopulation, for each disease state (WT, hTNFtg as indicated). Motif enrichment analysis was performed within 
the disease-specific marker peaks depicted in Fig. 4D (right panel). The color signifies the magnitude of the enrichment (−log10 (p-adjusted 
value), hypergeometric test). B Heatmap showing the motif deviation Z-scores of positive TF regulators across the SF subpopulations and samples 
(WT: wt-4w; hTNFtg/4weeks: tg-4w; and hTNFtg/8 weeks: tg-8w). TF gene expression is positively correlated with motif TF accessibility (Pearson 
correlation > 0.5, p-adjusted value < 0.05). C Expression dot plot of positive TF regulators shown in B. The color of the dots shows the intensity of 
expression, and the size denotes the percentage of cells expressing the gene in each cluster and condition. D Violin plots of regulon gene signature 
scores across SF subpopulations and samples (wt, hTNFtg/4 & 8 as indicated). Top panel: gene signature of 23 Ar-regulated genes with significantly 
increased expression and chromatin accessibility in sublining clusters. Peaks are enriched with the Ar motif. Bottom panel: gene signature of 181 
Runx1-regulated genes with significantly increased expression and chromatin accessibility in intermediate and lining clusters. Peaks are enriched 
with the Runx1 motif. E Multimodal feature plots of Ar and Runx1 including scATAC gene activity (ATAC—gene activity scores), scRNA expression 
embedded to scATAC cells (ATAC—gene integration scores), and scATAC TF motif activity (ATAC—motif deviation scores). *NP1 full name: 
NP_0322962_LINE6262_NP_0322962_I_N2. *NP2 full name: NP_0322962_LINE1459_NP_0322962_I_N31
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Fig. 5  (See legend on previous page.)
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clusters (Additional file  1: Fig. S11E, upper panel). We 
further identified that a subset of S4b (Birc5/Aqp1+) 
cells adjacent to S4a(Prg4high/Tspan15+) showed activa-
tion of Cdk1 and Ccnb1 genes (Fig. 2D) and preferential 
expression of G2/M phase markers (Additional file  1: 
Fig. S11D) indicating that proliferation partially explains 
the increased abundance of the aforementioned cells in 
hTNFtg mice.

To understand potential functional relationships within 
the inferred cellular process, we reconstructed tran-
scriptome dynamics considering the DE status and cell 

position in the proposed continuum. First, we focused on 
a subset of genes showing both cluster and disease speci-
ficity. The 848 genes isolated from 2,322 inter-cluster DE 
genes (Additional file  7: Table  S6) were affected during 
the transition of cells into the intermediate (S2d and S4b) 
and pathological lining states (S4a) (Fig.  6B). A total of 
107 of these genes, which were also identified by scVelo as 
drivers of the differentiation process thanks to their high 
likelihood gene scoring (Additional file 7: Table S6), were 
certified to play crucial roles in the progression of disease 
(GO analysis, Additional file 8: Table S7). Assignment of 

Fig. 6  Inference of SF trajectories in the arthritic joint by RNA velocity analysis. A RNA velocity analysis recapitulating cell transitions and dynamic 
relations between SF clusters in the hTNFtg samples. Large panel: the UMAP highlights the existence of a pathogenic branch comprising S2d 
- S4b - S4a. Small panel: RNA velocity analysis in WT and hTNFtg samples. B Overlap of differentially expressed genes with scVelo driver genes, 
indicates genes potentially related to disease progression. In the first heatmap (left), avgLogFC values for DE genes, as calculated from inter-cluster 
and intra-cluster comparisons in each sample, are shown. In the second heatmap, binary values signify upregulation (orange) or downregulation 
(purple) of those genes in the hTNFtg vs WT comparison. In the third heatmap (right), genes are ranked according to the likelihood to drive the 
underlying cellular process. In the fourth heatmap (center), the scaled expression of the 107 overlapping genes is plotted. Cells are ordered by 
latent time values, after an S2b cell was set as the root of the trajectory. The gene expression patterns reveal a transcriptional gradient along the 
latent time axis in the hTNFtg SFs. C scATAC-seq semi-supervised trajectory analysis supports the existence of the aforementioned pathogenic 
branch. The color indicates the cellular fate across the inferred trajectory. D Heatmap showing the integrated gene expression activity (left panel) 
and the TF motif deviation (right panel) of positive TF regulators along the pseudotemporal ordered cells in the S2b- S2a - S2d - S4b - S4a branch. 
TFs gene expression is significantly correlated with TF motif deviation across the cell trajectory. E Binary heatmap of disease-related TFs and genes 
epigenetically primed for disease activation. Purple denotes that the TF regulates the gene, while white denotes a lack of regulation. The barplot 
summarizes the percentage of genes regulated by each TF
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those genes in three main categories—early, intermedi-
ate, and late activation based on the output of hierarchi-
cal clustering of the gene expression scores—revealed the 
structure of the transcriptional pattern driving cellular 
changes from the initial to the final state, highlighted by 
genes such as Runx1, Cd44, Tnfaip3, and Tnfaip6, Icam1, 
or Inhba (Fig. 6B, Additional file 7: Table S6).

Pseudo-temporal ordering of the cells recapitulated at 
the epigenetic level the pathogenic transitions observed 
with scRNA-seq (trajectory inference from scATAC-
seq datasets [37]) (Fig.  6C). We then sought to detect 
functional relationships and highlight regulators/TFs 
that drive the differentiation during pathogenicity. We 
analyzed the transcriptome dynamics considering the 
DE status and cell position in the proposed continuum 
and motif accessibility (see the “Methods” section). In 
accord with the regulon analysis, we found that Runx1 
denotes a “switch” activating the expansion and develop-
ment of disease-specific S2d(Dkk3/Lrrc15+), S4b(Birc5/
Aqp1+), and S4a(Prg4high/Tspan15+) subpopulations 
and directly drives 27 of the 107 genes we defined as 
essential to arthritogenicity (the “Methods” section and 
Additional file 8: Table S7), while TFs like Rel, Nfkb2, and 
Dlx3 are key effectors of this process (Fig. 6D). Together, 
these results suggest that the expansion of the S2b-S2a-
S2d-S4b-S4a branch upon TNF expression commands 
arthritis development and influences cell fate choices via 
specific sets of pathogenesis induced genes.

Arthritogenic potential is epigenetically primed at the root 
of SF trajectory
We next assessed whether the choice in SF cells trajectory 
could be epigenetically primed for disease-promoting 
activity. We first examined which genes are transcrip-
tionally inactive in the S2b SFs, the main root-cluster of 
our defined pathogenic lineage in both WT and hTNFtg 
samples. We focused on those transcripts that were acti-
vated at later cell states of the trajectory (S2a, S2d, S4b, 
S4a), and were also upregulated in hTNFtg SFs, compared 
to the naïve conditions. We then opted for genes that 
their promoters show a significant opening in the root 
state of the particular lineage (S2b (Osr1/Nr2f2+)), end-
ing up to a cohort of 51 “primed” genes (Additional file 1: 
Fig. S12A, B). Most of these genes showed an enrichment 
of scATAC-seq signal in their linked distal regulatory 
elements (data not shown). These putative enhancers 
(peak-to-gene links) might be engaged in boosting the 
transcriptional activity of these genes when the arthrito-
genic TNF is present. Further exploration of the positive 
regulator analysis revealed that the previously identified 
disease-important TFs (Nfkb2, Rela, Relb, Runx1, Creb3, 
Nfe2l2, Bach1) preferentially target the regulatory 
regions of these genes (Fig.  6E, Additional file  1: Fig. 

S12C-enrichment analysis), indicating the high potential 
for these already opened sequences to initiate transcrip-
tional circuits operating in disease initiation and progres-
sion. Notably, NFkB components substantially underlie 
the transcription of the most primed genes (Additional 
file  1: Fig. S12C). Functional enrichment further sup-
ported that the primed genes are heavily involved in 
inflammatory response, arthritis-promoting functions 
(Ccl2, Cxcl5, Sphk1) and, interestingly, Wnt pathway 
(Bmp2, Rspo3, Cd44) and stem cell differentiation (Sox5, 
Nrp2, Cdk6) (Additional file 1: Fig. S12D). Conclusively, 
our analytic approach assigns an epigenetic prospective 
in arthritogenesis, underlined by both the inflammatory 
activity and the plasticity of the specific SF subclusters.

Common transcriptional modules control SFs in human RA 
and murine hTNFtg inflammatory arthritis
We integrated the previously generated scRNA-seq 
data from synovial biopsies of RA patients (H) [16, 17, 
19], with our hTNFtg scRNA-seq dataset (M) (see the 
“Methods” section). We found that cells of both spe-
cies align particularly well in the newly defined UMAP 
space. Unbiased graph-based clustering identified seven 
sub-populations (H1-H7; M1-M7) (Fig.  7A, Additional 
file  1: Fig. S13A-C). Correlation heatmap of the MVGs 
between human (H) and mouse (M) clusters revealed 
significant similarities in SF expression programs in the 
two species, albeit for cluster 2 that contains human 
SLSFs and only few mouse cells derived from the SLSFs 
that we described above (Fig.  7A). The mouse SLSF 
populations S1(Smoc2/Col15a1), S2a(Comp/Sfrp1+), 
S2b(Osr1/Nr2f2+), S2c(Meox1/Clu+), S3(Dpp4/Pi16+), 
and S5(Ptx3/Notch3+) located principally to clusters 3 
and 4 and matched previously annotated human sublin-
ing cell expression profiles (Fig. 7B, Additional file 1: Fig. 
S13D). Cluster 1 and, to a lesser extent, cluster 7 brought 
together the human and murine lining Prg4high cells 
(Fig. 7B, Additional file 1: Fig. S13A). They also contain 
a previously under-appreciated proliferative mixed lin-
ing/sublining SF state (see below), fitting with the idea of 
their cellular expansion in diseased joints. Cluster 5 con-
tains the bulk of the mouse S2d(Dkk3/Lrrc15+) SLSFs 
and M5 is linked to human cells in both clusters 5 and 
6, suggesting that both human clusters (H5 and 6) likely 
acquire the “intermediate” arthritis-specific profile previ-
ously identified in hTNFtg SF states (Fig. 7B, Additional 
file 1: Fig. S13A, D).

Functional inter-species similarities were confirmed via 
GO and pathway enrichment analyses of marker genes 
and co-clustering of (H) and (M) groups (Additional 
file 9: Table S8 and Additional file 10: Table S9). We high-
light conserved functions and processes of SLSFs in reg-
ulating vasculogenesis, cell proliferation, muscle tissue 
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development, bone and tissue renewal (clusters H3, M3, 
H4, and M4) (Fig.  7C). We demonstrate that M5 and 
H5 clusters are marked by pathogenic RA features such 
as metalloproteinase secretion, collagen catabolic pro-
cesses, and bone destruction signaling pathways, further 
supporting the similarities with the S2d(Dkk3/Lrrc15+) 
SFs in hTNFtg model. Clusters 1, 6, and 7, which contain 
SFs from the lining synovial compartment that were pre-
viously acknowledged for their destructive properties, 
display pro-proliferative pathways but also appear to reg-
ulate immune-related and adhesion/migration pathways 
(Fig. 7C). In addition, key marker genes show reasonable 
levels of conservation between mouse and human data 
(Fig. 7D). As expected, the analysis of the more human-
specific cluster 2 revealed less shared features, and sig-
nificantly highlighted common functions associated 
with translation and ribosome assembly. The human H2 

SFs further exhibit regulation of ossification, epithelial 
cell proliferation, and autophagy. On contrary, the gene 
expression of mouse M2 SFs points out functions asso-
ciated with post-translational modifications and apop-
totic cell death compared to H2 SFs (Additional file  9: 
Table S8, Additional file 10: Table S9).

At the regulatory level, analysis of human and mouse 
data using the SCENIC algorithm [29] allowed the infer-
ence of common TF regulons across species. Briefly, we 
first identified co-expressed genes to formulate putative 
regulatory links and retained only those with a direct 
motif relationship between genes and TFs. Finally, we 
scored each regulon in each cell using AUC analysis (see 
the “Methods” section). We then preserved all the com-
mon and conserved TFs operating in datasets from the 
RA patients and arthritic mice. We identified the mouse 
regulatory modules (clusters of TFs) by applying pairwise 

Fig. 7  Integrative analysis of SFs from hTNFtg murine model and human RA pathology. A Integration of 24,042 RA patients’ SFs (3 different studies: 
Zhang et al. (2019), Wei et al. (2020), and Stephenson et al. (2018)) and our 3,051 hTNFtg SFs identified 7 SF clusters. UMAPs for the pooled human 
(downsampled to 3,051 cells) and mouse datasets, cells are colored by cluster identity. B Correlation heatmap (average expression of most variable 
genes) between human and mouse SF clusters. C Heatmap illustrating the significance of the selected enriched functional terms and pathways in 
human and mouse datasets. D Feature plots of selected marker genes commonly expressed between homologous human and mouse clusters of 
SF subpopulations
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Fig. 8  Shared Gene Regulatory Networks in SFs of hTNFtg mice and human RA. A Regulatory network analysis in mouse and human datasets 
reveals 17 shared regulons. Correlation and clustering analysis in the hTNFtg propose organization of those shared regulons in 3 main modules. B 
The activity of regulons AR, RUNX1, and DLX3 is depicted in a UMAP of the human data. C Summary table for the GO enrichment analysis in the 
target genes of the modules shown in A. For each module, the TFs can be found in the second column. In the third column, commonly enriched 
GOs for mouse and human regulons in each module are presented followed by their respective p-values
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correlation between the motif deviations of the mouse/
human conserved TFs, and applied hierarchical cluster-
ing, as previously described [65]. This approach iden-
tified three main regulatory modules defining lining, 
intermediate, and sublining states and demonstrate a 
substantial overlap across species (Fig. 8A). Regulons are 
governed by Ar, Dlx3, and Runx1 TF activities (Fig. 8B) 
and GO enrichment analysis of TF and downstream 
genes (Fig.  8C) indicated the modules shared function-
alities in both species: module one (Ar) controls multi-
potent functions of the main core of SLSFs; module two 
(Runx1) conducts functions reflecting a rather inflam-
matory profile, consistent with the intermediate profile 
of our hTNFtg SLSFs. Interestingly, we find up to 25 of 
the 107 core mouse genes as target genes in human cells 
(Additional file  11: Table  S10), highlighting the transla-
tional potential for genes like Tnfaip3 and 6, Tlr2, Lrrc15, 
and Bmp2. Of note, module three (Dxl3) exhibits less 
acknowledged functions, which should be related to the 
lining SF profile of human and mouse SFs (Fig. 8C, Addi-
tional file 11: Table S10).

In conclusion, our integrative approach establishes 
shared mouse-human SF subsets with highly similar 
chromatin and transcriptional programs and functional 
characteristics.

Discussion
In normal joints, the SFs facilitate joint maintenance by 
sustaining the quality of synovial membrane and syno-
vial fluid. However, in RA, the synovium is progressively 
compromised due to unresolved inflammation, and this, 
ultimately, leads to loss of joint function. The mecha-
nisms underlying the synovial homeostasis or sustenance 
of inflammation in RA still remain poorly defined. Pre-
vious studies originally segregated the SFs (lining and 
sublining) according to their transcriptional profiles and 
spatial distribution during acute murine arthritis, which 
corresponded well to respective RASF profiles. In this 
study, we created a blueprint of synovial fibroblast pro-
files in both homeostasis and TNF-mediated chronic 
arthritis by uncovering, at a single-cell level, their tran-
scriptomic profiles, their spatial distribution, and the 
underlying regulatory networks that characterize the 
transition to TNF-mediated arthritic pathology.

We report here for the first time that the normal syn-
ovium exhibits different SF states which reflect the com-
plexity of the SF tissue, serving different functions to 
maintain homeostasis. The Thy1− LSFs regulate lining 
layer size through apoptotic and migrative properties. 
According to their specific transcriptomic signature, 
LSFs directly respond to wounding, whereas the mecha-
nisms to regulate mitochondrial calcium levels possibly 
contribute to the proper signaling alertness. Owing to 

their mesenchymal origin, normal SF sublining states 
segregate by their responses to growth factor and differ-
entiation signals such as WNT, BMP, and TGFbeta. In 
line with the variety of elicited responses and the diver-
sity of observed states, our GO analysis was essential to 
fully appreciate the related functionalities and the tran-
scriptional regulators of SLSF (Thy1+) clusters regarding 
angiogenesis control (Pi16/Dpp4+ cluster (S3)), osteo-
genic processes (Comp/Sfrp1+ cluster (S2a)), chondro-
genesis, and muscle development (Smoc2/Col15a1(S1)). 
By exhibiting decreased cellular proportions during the 
arthritic process, each SLSF subtype loses some homeo-
static functions and acquires activated characteristics, 
indicating significantly complicated networks operating 
during arthritogenic process. Concomitantly with the 
shrinkage of the stably present SLSFs, we observed the 
emergence of arthritis-specific Thy1+ SF subpopula-
tions (Dkk3/Lrrc15+ and Birc5/Aqp1+), accompanied 
by expansion of Prg4high/Thy1-LSFs. The Dkk3/Lrrc15+ 
arthritic SF profile (S2d) is defined by the two markers 
that had been individually described and recently linked 
to emerged pathological states of fibroblasts in RA [19] 
and other inflammatory and cancerous human condi-
tions, respectively [44, 66]. The Birc5/Aqp1+ (S4b) 
expanded cluster additionally share a high Prg4 expres-
sion pattern and other features with lining Thy1− SFs 
(Prg4high/Tspan15+ (S4a)), and it is partly marked by 
Dkk3. All these emerged SFs share highly inflammatory 
and destructive properties, while the Birc5/Aqp1+(S4b) 
SFs are further characterized by high proliferative and 
DNA imprinting capacity, indicative of the structural 
and epigenetic changes reported for RA [67–69]. In line 
with this, a recent elegant study analyzing the inflamma-
tory memory of SFs as a possible mechanism to explain 
flares in RA, identified arthritis-“primed” SLSFs (Thy1+) 
functioning in a mixed inflammatory/destructive mode 
upon arthritogenic restimulation [70]. Therefore, while 
previous studies highlighted the expansion of SLSFs 
and the distinct divergence of functions for Thy1+(SL) 
and Thy1-(L) SFs in arthritic disease, our compara-
tive analysis indicates not only the structural and func-
tional rearrangements but also the expansion of defined 
transcriptional SFs states commencing early in arthritic 
synovium and acting in dual inflammatory/destructive 
manner.

The observed expansion of specific SF states in 
arthritic mice could be suggestive of a TNF-mediated 
pattern of SF differentiation during disease develop-
ment. This hypothesis is advocated by the lineage infer-
ence showing the major differentiation queue towards 
the emergence of these disease-specific clusters starts 
from the root fibroblast state Osr1/Nr2f2+ (S2b) SFs. 
The differentiation program always aims towards the 
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Prg4high SF state, indicating the fate of SLSFs (Thy1+) 
as a continuum towards LSFs (Thy1−) in disease. This 
transcriptional trajectory is in line with the expansion 
of the inflammatory lining profile (iS4a-Fig. 3) and indi-
cates the Dkk3/Lrrc15+ (S2d) and Birc5/Aqp1+ (S4b) 
profiles as an intermediate stage in the progressive 
expansion and differentiation of the destructive SFs. 
The mouse/human integrative analysis identified that 
the DKK3/LRRC15+ SFs did exhibit significant expres-
sion similarities between species. In line with previous 
observations, they acquire an intermediate signature 
lying between the sublining/perivascular Notch3+ 
and the Prg4high lining SFs in both human and murine 
(STIA) arthritic synovium (Additional file  1: Fig. S14, 
generated with publicly available datasets described 
in ref [20]). Interestingly, previous evidence for the 
origin and the emergence of common activated fibro-
blast states among tissues and human diseases includ-
ing RA, suggested a different dominant root for the 
emergence of activated Lrrc15+ fibroblasts, that origi-
nate from Pi16+ or Col15a1+ fibroblasts [44]. In our 
system, the corresponding main clusters (Dpp4/Pi16+ 
(S3) and Smoc2/Col15a1+ (S1)) contribute less to the 
predicted roots of inferred trajectory. This likely indi-
cates alternative activation pathways, which might be 
imprinted by the tissue and the specific arthritogenic 
signals (TNF) during hTNFtg disease. The heterogene-
ity of RA, the complex inflammatory cytokine network 
defining the cellular interactions, and the still-limited 
knowledge on whether and how the evolving SF states 
drive the pathogenicity and the destructive nature of 
arthritis, signifies the necessity for future targeted cell-
fate mapping and functional studies.

The species-shared transcriptional modulators of 
the expansion of arthritic intermediate SFs are the 
NFkB pathway components NFkB1/2, RelA, and RelB, 
all well known as key regulators of inflammatory pro-
cesses including inflammatory arthritic diseases [71, 
72]. Notably, we had already addressed the SF-specific 
NFkB mediated responses in the development of TNF-
mediated murine arthritis in a recent paper showing 
mechanistically how a major NFkB activator, the IKK2 
kinase, acts as a dual modulator of arthritis through 
both the inflammatory and the death responses of SFs 
[6]. Owing to its robust upregulated expression in inter-
mediate SF states, the Runx1 emerged in our analysis as 
another essential master regulator of DKK3/LRRC15+ 
SFs in both species. Besides hematopoiesis, Runx1 has 
been associated with osteochondral differentiation 
(along with Runx2 and 3) and fibroblast activation [73]. 
Consistently, Runx1 has been recently proposed as a 
dual inflammatory modulator and even an epigenetic 
modifier, depending on the context [74–80]. Runx1 has 

also been suggested as an important player in the con-
text of RA and RASF pathogenicity in a study showing 
that an RA-associated SNP located in a super-enhancer, 
formed 3D contact with the promoter of RUNX1 gene 
in cytokine-stimulated RASFs. Authors further demon-
strate that the knockdown of RUNX1 expression leads 
to the abrogation of the inflammatory output of stimu-
lated RASFs and, therefore, revealed a crucial link of 
inflammatory gene expressions, epigenomic modula-
tions in RUNX1 and RA susceptibility loci [81]. Our 
study strengthens this initial discovery and confirms the 
RUNX1 as a promising disease-paramount pathway that 
requires further studies.

By uncoupling the transcriptional cues with the unre-
alized epigenetic potential of the SFs, we also highlight 
genes such as Sphk1 and Pla2g2e, the targeting of which 
had been previously shown to ameliorate modeled TNF-
mediated arthritis [82, 83]. Similarly, the predicted ECM 
protein Tenascin C provides TLR-mediated amplification 
of inflammatory signaling in SFs and in murine models 
of RA [84]. Therefore, our analyses also dictate for pre-
viously underexplored gene targets in arthritis, such as 
Rspo3 (effector molecule of WNT pathway) or Ddit4 
(hypoxia-induced, regulator of mTOR1 activity). In light 
of our and other lab results, additional studies are neces-
sary to elucidate whether all the shared features among 
human RA and murine models and the predicted epige-
netic potential depend solely on arthritogenic TNF sig-
nals and occur directly or indirectly, possibly through 
the secondary induction of Notch and/or other signaling 
pathways [70, 85].

Conclusions
To date, this study is the first to compare the homeo-
static and pathologic heterogeneity of SFs. Our analyses 
allowed to identify crucial sets of TFs and GRNs that 
cooperate to rewire SF identities and functions dur-
ing the onset and progression of inflammatory arthritis. 
The alignment of our findings with the human context 
revealed a largely shared gene regulatory landscape that 
potentiate the added predictive value of our studies in 
prioritizing novel fibroblast-targeted diagnostic and 
druggable pathways for RA. Hence, our multiparamet-
ric data will serve as a key resource to the field for the 
formation and validation of additional novel mechanis-
tic hypotheses on the pathogenic pathways operating in 
inflammatory arthritis.
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