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Abstract

Vascular Ehlers Danlos (vEDS) syndrome is a severe multi-systemic connective tissue disorder charac-
terized by risk of dissection and rupture of the arteries, gastro-intestinal tract and gravid uterus. vEDS is
caused by mutations in COL3A1, that encodes the alpha 1 chain of type III collagen, which is a major
extracellular matrix component of the vasculature and hollow organs. The first causal mutations were
identified in the 1980s but progress in our understanding of the pathomolecular mechanisms has been
limited. Recently, the application of more refined animal models combined with global omics approaches
has yielded important new insights both in terms of disease mechanisms and potential for therapeutic
intervention. However, it is also becoming apparent that vEDS is a complex disorder in terms of its molec-
ular disease mechanisms with a poorly understood allelic and mechanistic heterogeneity. In this brief
review we will focus our attention on the disease mechanisms of COL3A1 mutations and vEDS, and
recent progress in therapeutic approaches using animal models.
� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CCBY license (http://creativecom-

mons.org/licenses/by/4.0/).
Introduction

Mutations in collagen and collagen processing
enzymes cause archetypical extracellular matrix
(ECM) disorders such as osteogenesis
imperfecta, Alport Syndrome and the Ehlers
Danlos Syndromes [1–3]. These genetic multi-
systemic diseases are rare, often debilitating and
for many of them there are no treatments beyond
management of symptoms. There is therefore an
urgent need to unlock the molecular mechanisms
of these extracellular matrix diseases from gene to
patient level. Moreover, common non-coding and
rare coding variants in collagen genes can be asso-
ciated with and occur in sporadic forms of disease
such as those coding for collagen IV in intracerebral
haemorrhage [4,5]. This is a powerful illustration
r(s). Published by Elsevier B.V.This is an op
that investigating rare genetic collagen disorders
stands to inform on common disease forms. More-
over, as reduced collagen levels occur in many
degenerative disorders [6,7], and uncontrolled col-
lagen deposition is a defining feature of fibrosis
[8], increased understanding of collagen biology
and genetic variants in collagen will have significant
impact on addressing these major health problems.
Recently technological advances with more refined
animal models have provided windows of opportu-
nity to address thesemajor challenges. Here we will
provide a brief review on vascular Ehlers Danlos
Syndrome (vEDS) and the mechanisms ofCOL3A1
mutations that have uncovered mechanistic hetero-
geneity and potential mechanism-based
treatments.
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Ehlers-Danlos syndromes

The Ehlers-Danlos syndromes comprise a
genetically heterogeneous group of heritable
connective tissue disorders that share several
characteristics such as soft and hyperextensible
skin, abnormal wound healing, easy bruising and
joint hypermobility [2]. Additional clinical features
that differ among the EDS subtypes include fragility
of soft tissues, blood vessels and hollow organs,
and involvement of the musculoskeletal system.
Mutations in genes coding for fibrillar collagens
(type III and V and to a lesser extent type I) are
found in the more prevalent forms of EDS, such
as vascular and classical EDS, but additional rare
EDS subtypes are caused by mutations in genes
coding for a series of matrix-related molecules. Cur-
rently, 13 distinct EDS subtypes are recognized,
with mutations found in 20 different genes [9].
With an estimated prevalence of 1:20,0000–

50,000, the autosomal dominant vEDS (OMIM #
130050) is considered one of the most severe
EDS subtypes as affected individuals are at risk
for life-threatening ruptures of medium- and large-
sized arteries, the gastro-intestinal tract, the gravid
uterus and other internal organs such as the liver
or the spleen. Consequently, life expectancy of
vEDS patients is reduced by multiple decades to
�50 years [10]. Other features include easy bruis-
ing, thin and translucent skin with increased venous
visibility, acrogeria, characteristic facial features
(large eyes, periorbital pigmentation, small chin,
sunken cheeks, thin nose and lips and lobeless
ears), spontaneous pneumothorax, talipes equino-
varus, congenital hip dislocation, small joint hyper-
mobility, tendon and muscle rupture, gingival
recession and gingival fragility and early-onset vari-
cose veins.

Collagen III, processing and fibril
formation

Type III collagen is the second most abundant
fibrillar collagen and is associated with collagen I
in all soft tissues, in particular those with elastic
properties including dermis, blood vessels, and
gastro-intestinal tract where it can make up 10–
30% of collagen content [11]. Collagen III provides
structural support to tissues, influences cell beha-
viour and function through binding cell surface
receptors such as integrin (e.g. a1b1, a2b1), and
plays important roles in wound healing, angiogene-
sis, development and cell differentiation [12,13].
Other binding partners include other ECM mole-
cules such as proteoglycans (e.g. Serpin F1, dec-
orin), collagens (e.g collagen I, V) and fibronectin
[12]. Like all mammalian collagens, it is a large pro-
tein of >300 nm in length with a molecular
weight >300 kDa, which has severely hindered
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detailed structural analysis. While diffraction-
based approaches and those using short peptides
provided critical fundamental insight into the basis
of D-banding and triple helix structure and stability
[14,15], the impact of sequence variation in a full
length-molecule has only very recently been inves-
tigated using atomic force microscopy [16]. This
revealed, surprisingly and in contrast to data from
short peptides, that proline content did not correlate
with local flexibility of the protein. It also confirmed
that collagen III has varying flexibility determined
by sequence variation, and that the N-terminal
region has the highest structural flexibility, in partic-
ular the matrix metalloprotease (MMP) binding site,
which plays an important role in ECM remodelling,
causing the high bending flexibility of this region of
collagen III [16]. Collagen III adopts a flexi-rod struc-
ture in which in silico domain mapping suggested
that the rigid domains align with functional domains
such as the two hemostasis domains [12]. One of
these domains contains a single binding motif for
von Willebrand Factor [17] that mediates platelet
adhesion, with bruising being a very well charac-
terised feature of vEDS [12]. The second hemosta-
sis domain binds the platelet receptor glycoprotein
VI [12,18] and integrin a2b1 that are involved in pla-
telet binding and hemostasis [19]. The biding sites
for integrin a2b1, heparin, vWF, decorin and fibro-
nectin are also involved in angiogenesis [12].
Collagen III forms a homotrimer, containing three

a1(III) a-chains encoded by the COL3A1 gene on
chromosome 12. The a-chains comprise of three
structural domains with N-terminal and C-terminal
propeptides that flank a triple helical collagenous
domain (Fig. 1). This collagenous domain is
characterized by the collagen Gly-Xaa-Yaa repeat
in which every third residue is a glycine, and Xaa
and Yaa can be any amino acid but are often
proline and hydroxy-proline. These glycines are
critical for triple helix formation as only the
smallest amino acid can fit in the internal space of
the triple helix, and are most frequently affected in
collagen disorders due to missense mutations
[1,20]. In a very elegant and landmark paper, David
Hulmes and colleagues revealed that the C-
propeptide has the shape of a flower with a stalk,
base and three petals [21]. The petals are critical
for a-chain recognition to commence trimerization,
whereas the base then stabilizes the trimer [21].
Remarkably despite identical amino acid
sequences, one a-chain adopts a different confor-
mation to enable efficient packing of the three a-
chains, also providing insight into the basis of a-
chain composition for respective collagen homo-
and heterotrimers [21].
Like all secreted and transmembrane proteins,

collagen III is folded in the endoplasmic reticulum
(ER) (Fig. 1). In the ER collagen a-chains undergo
extensive post-translational modification that are



Fig. 1. Overview of collagen III protein domain structure and processing by N- and C-proteinases to generate triple
helical collagen III that forms heterotypic fibrils with collagen I. Collagen secretion contains several key stages
including expression and folding in the ER where the nascent a chains are post-translationally modified by
hydroxylation of proline and lysine residues, as well as of glycosylation and galactosylation of hydroxylysines. In the
ER the collagen specific chaperone HSP47 binds to collagen III and plays key roles in collagen folding and transport
to Golgi by binding TANGO1 and collagen. HSP47 is recycled from the Golgi back to the ER. In the Golgi and ECM,
collagen III undergoes cleavage of the N- and C-propeptide, and the triple helical collagen III then forms heterotypic
fibrils with collagen I.
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required for its folding and solubility. For triple helix
formation to occur peptidyl prolyl cis–trans
isomerases such as cyclophilin B and FK506
binding protein 22 (FKBP22), and FK506 binding
protein 65 (FKBP65) convert all proline residues
to the trans form [22]. FKBP22 shows substrate
specificity as it binds collagen III (and VI and X)
but not collagen I, II or V [23], but appears to act
post prolyl hydroxylation (see below) [24], and
mutations in or absence of FKBP22 cause
Kyphoscoliotic EDS [2]. These prolines can then
be hydroxylated by prolyl 4-hydroxylase (P4H) and
prolyl 3-hydroxylase (P3H) that provide thermal sta-
bility to the triple helix [25]. P4Hs hydroxylate proli-
nes in the Yaa position of the Gly-Xaa-Yaa repeat
and are tetramers consisting of 2 a and 2 b units
in which the enzyme PDI (protein disulphide iso-
merase) is the b sub-unit. Mammals express three
P4H isoforms, P4Ha1-3, and they hydroxylate
almost all prolines in the Yaa position [26]. The clin-
ical and functional importance of prolyl 3-
hydroxylation became apparent from mutations in
the CRTAP gene (cartilage-associated protein) that
cause recessive forms of osteogenesis imperfecta
[1]. CRTAP forms a complex with cyclophilin B
and P3H1 to hydrodroxylate prolines, and mam-
mals express three P3H isoforms (P3H1-3). Inter-
estingly while in the network forming collagen IV,
3

10% of the total hydroxyl-proline can be 3-
hydroxylated, in fibrillar collagen only a few 3-
hydroxylated prolines occur (e.g. 1–2 residues for
collagen I, 3–6 in collagen V and XI) [26,27].
Remarkably, and indicating collagen specificity, in
mammals collagen III does not undergo 3-proline
hydroxylation although in chicken it does, indicating
this modification has been lost in evolution [27].
Hydroxylation of lysine residues at the Yaa position
of the Gly-Xaa-Yaa repeat is mediated by lysyl
hydroxylases (LH1-LH3), important for formation
of intermolecular collagen crosslinks, and these
lysines can then be glycosylated and galactosylated
by galactosylhydroxylysyl-glucosyl transferase and
galactosyl transferase, respectively [28]. The impor-
tance of lysyl hydroxylation for EDS is clearly illus-
trated by the fact that mutation in the PLOD1
gene, encoding LH1, cause kyphoscoliotic type 1
Ehlers-Danlos syndrome [2]. Similarly to 3-prolyl
hydroxylation, the levels of hydroxylated lysine is
much higher in collagen IV as compared to collagen
I and III, and LH3 does not hydroxylate lysine in col-
lagen I and III [24]. In addition, LH1 and LH2 also
have substrate specificity with LH1 hydroxylating
collagens I and III, but not collagen II, IV and V.
For a more in-depth review on post-translational
modification, folding of collagen and its quality con-
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trol please see these excellent reviews
[1,3,24,26,28,29].
Concomitantly with these modifications, three

Proa1(III)-chains associate in the ER via their C-
propeptides which then initiates triple helix
formation in a zipper-like fashion in a C- to N-
terminal direction. Collagen folding requires
chaperones including the collagen specific
chaperone heat shock protein 47 (HSP47) that
binds and stabilizes collagen in the ER and during
transit to the cis-Golgi, where HSP47 dissociates
and is recycled back to the ER [30] (Fig. 1). Recent
data uncovered that HSP47 has multiple roles in
collagen processing, some of which can be collagen
type specific, including in collagen secretion, lateral
assembly, and triple helix formation [31]. HSP47
aids the translocation of collagen from the rough
ER via the ERGIC (ERGolgi Intermediate Compart-
ment) to the Golgi for secretion to the ECM, by act-
ing as an anchor between the TANGO1 protein and
collagen to allow packaging of collagen in secretory
vesicles (Fig. 1) [32]. For an in depth review on the
secretion of large cargo proteins we refer the reader
to [33].
Folded collagen in the Golgi then undergoes

cleavage with cleavage of the C-propeptide by
procollagen C-proteinases (which are identical to
the BMP-1/tolloid proteinase) that is required for
fibrillogenesis (Fig. 1) [22]. The N-propeptide is
cleaved by procollagen N-proteinases, that are
identical to the A Disintegrin And Metalloproteinase
with Thrombospondin motifs (ADAMTS) pro-
teinases ADAMTS 2, ADAMTS 3 and ADAMTS
14 proteinases (Fig. 1) [22]. For collagen III this
cleavage is not always complete [34]. This ulti-
mately results in the formation of proteins that have
uninterrupted triple helices flanked by telopeptides
that self-assemble into fibrils (Fig. 1). These fibrils
are composed of more than one collagen type,
which is referred to as heterotypic fibrils; for exam-
ple collagen III associates with type I collagen form-
ing heterotypic type I:III collagen fibrils.
Collagen III mutations in vEDS

vEDS is caused by heterozygous mutations in the
COL3A1 gene and to date >500COL3A1mutations
have been reported (https://www.le.ac.
uk/genetics/collagen/). About 65% of mutations
substitute glycine residues in the canonical triplet
repeats of the proa1(III) triple helix domain, and
about 25% are splice site variants that result in in-
frame exon skipping. A small proportion results in
short in-frame deletions or insertions (Table 1).
Because procollagen III is a homotrimer, the
synthesis of an equal amount of normal and
mutant a1(III) chains results in seven-eighths of
the homotrimers being abnormal (containing either
one, two or three mutant a-chains). In 2001,
Schwarze and coworkers reported the first
COL3A1 haploinsufficiency mutations [35], and
4

since then �5% COL3A1 mutations have been
identified that lead to introduction of a premature
termination codon and mRNA instability [10].
In terms of genotype-phenotype correlations,

null-mutations are associated with a delayed onset
of complications by two decades and a reduced
penetrance, and complications seem to be limited
to vascular events [10,36]. Other genotype-
phenotype correlations recently emerged from stud-
ies in larger cohorts of vEDS patients [10]. Individu-
als with in-frame exon-skipping splice site variants
tend to have the lowest median survival, followed
by glycine substitutions within the a1(III)-triple heli-
cal domain by a bulky residue (arginine, aspartic
acid, glutamic acid, valine), while those with small
residue substitutions for glycine (alanine, serine,
cysteine) present milder phenotypes. Missense
variants in the C-propeptide of the proa1(III) chain,
and substitutions in the Xaa and Yaa-positions in
the triple helical domain can be associated with mild
signs of vEDS and arterial fragility [37]. Among the
latter group, substitutions of glutamic acid by lysine
were recently shown to be associated with a skin
phenotype that is more similar to that seen in clas-
sical EDS (skin hyperextensibility, delayed wound
healing, joint hypermobility), combined with
gastro-intestinal and vascular fragility [38]. The
crystal structure of the C-propeptide also provided
insight that most severe mutations in this domain
are located at the petal-base region interface, the
petal tips and the base region, and affect intrachain
disulfide bonds, interchain interactions or stability of
the hydrophobic core [21]. Mutation at the surface
not involved in these interactions and thus folding
or trimerization tended to be milder mutations [21].
A few individuals have been identified with bi-
allelic COL3A1 variants; they had a severe vEDS
phenotype, associated with neuronal post-
migrational disorder (polymicrogyria) [39–42]. It
should however be noted that the molecular basis
for these genotype-phenotype correlations remains
poorly defined.
Collagen III variants in the general
population and other diseases.

To date (September 30, 2021) 1904 variants in
COL3A1 have been submitted to the Clinvar
database (https://www.ncbi.nlm.nih.gov/clinvar), of
which 489 have been classed as pathogenic and
22 as likely pathogenic. For those for which a
diagnosis was provided this included vEDS,
polymicrogyria with VEDS, or familial thoracic
aortic aneurysm and aortic dissection. Other
variants, including those affecting glycines and a
frameshift mutation, have also been reported in
sporadic thoracic aortic aneurysm [43], illustrating
the importance of collagen III in sporadic disease
and that investigating rare genetic formsmay inform
on and apply to mechanisms of at least some cases
of sporadic disease.

https://www.le.ac.uk/genetics/collagen/
https://www.le.ac.uk/genetics/collagen/
https://www.ncbi.nlm.nih.gov/clinvar


Table 1 COL3A1 mutations in vEDS. The data presented for the different types of mutations is based largely on [10,37].

Mutation type Prevalence Effect on

protein

Age at

diagnosis

Genotype-phenotype

Glycine mutations 65% Collagen III

structural

abnormality

�34 years Severity is increased with substitution of glycine

with larger charged amino acids. Most severe

phenotype after splice site mutation

In frame splice site mutations 25% Collagen III

structural

abnormality

�25 years Most severe phenotype and lowest median age of

survival

Null mutations 5% �50%

Reduction of

collagen III

�46 years Mild phenotype and high median age of survival

Other missense mutations

(insertions, deletions, C- and

N-terminal mutations etc.)

5% Collagen III

structural

abnormality

�45 years Mild phenotype and high median age of survival

5

The intolerance to mutations in COL3A1 is also
apparent from data in the gnomAD database
(https://gnomad.broadinstitute.org/) containing
exome sequence information of 125,000
individuals (individuals with severe paediatric
disease and their first degree relatives are
excluded) [44], which shows that to date 516 mis-
sense variant have been observed, compared with
an expected 851.7 variants based on sequence
length (Z = 4.09, observed/expected ratio = 0.61
(90% confidence interval: 0.56–0.65). Strikingly,
compared to the expected�94 loss of function vari-
ants, only 4 are reported. These data clearly illus-
trate the pathogenic impact of variants in COL3A1
and intolerance to loss of functionmutations. Exam-
ination of the data does reveal additional potential
loss of function alleles are present with 3 variants
predicted to generate a stop codon, 4 frameshift
variants, 3 spice acceptor variants and 2 splice
donor variants. Furthermore 7 missense variants
have been classed as pathogenic/likely pathogenic,
of which 6 affect glycine residues distributed across
the triple helix, and one Proline variant in the N-
propeptide. Other missense variants that remain
unclassified or have conflicting classification are
distributed across the protein. Overall, the poten-
tially pathogenic variants in gnomAD illustrate the
variable clinical severity of the disease, while those
many unclassified variants illustrate our limited
knowledge regarding the effect of variants on colla-
gen biology. This directly impacts on patient man-
agement and illustrates the need for molecular
analysis of variants to aid their stratification and
increase much needed understanding of the
genotype-phenotype relation.
Other diseases. Bi-allelic variants in COL3A1

have been identified in patients with brain defects
with and without vEDS [13,40,42]. The patients
can develop frontoparietal polymicrogyria, with
migration defects, and aneurysmal brain haemor-
rhage, that were similar to those observed in
patients with mutations in G protein-coupled recep-
tor 56 (GRP56) that binds collagen III. To date the
5

mechanism(s) remain unclear but these data do
support a role of collagen III in neuronal migration.
Given the vascular defects COL3A1 mutations

cause in vEDS, it is no surprise that over the last
30 years multiple sequencing and genetic
association studies have been undertaken to
interrogate if mutations occur in COL3A1 or if
common variants are a risk factor for vascular
diseases, respectively. This revealed COL3A1
mutations have been detected in families with
abdominal and thoracic aorta aneurysm [45–47],
but also in apparent sporadic abdominal aortic
aneurysm in which an altered collagen I/III ratio
was also observed [46], and thoracic aorta aneur-
ysm [43]. However, no association was found for
common variants in genome wide association stud-
ies for aneurysm formation [48]. This supports a role
for rare coding-variants with a large effect in a small
percentage of cases but not common (non-coding)
risk variants with a small effect size.
Genetic analysis of three common variants in

COL3A1 in a cohort of Chinese stroke patients
suggested an association with stroke recurrence
and prognosis [49]. However, no association with
stroke risk was detected in a large genome wide
meta-analysis covering �500,000 patients [50].
While this may reflect difference in ethnicity of study
population, and different clinical trait (e.g. stroke
prognosis versus occurrence of stroke), given the
limited analysis it is important to independently
replicate these findings. Other diseases including
fibrotic disorders, cardiomyopathy, diabetic
nephropathy, cancer (e.g. glioma, breast cancer)
have been associated with collagen III as they are
characterised by altered collagen I and III levels
(For a more in depth overview see [13]).
Finally, analysis of the Tsk2/+ mouse model

(Table 2) also suggests a role in systemic
sclerosis. In this model, a missense mutation in
the N-propeptide of a1(III) results in a phenotype
similar to systemic sclerosis [51]. While genome
wide association studies have not identified genetic
association withCOL3A1 [52], this does not rule out
that some rare coding variants in the N-propeptide

https://gnomad.broadinstitute.org/


Table 2 Col3a1 mouse models. Only original references are provided except in case whereby there is some debate
regarding the nature of the mutation.

Model Genotype-Method Phenotype Reference

Col3a1�/� Targeted deletion Col3a1 promoter and exon 1 5% survival after birth, major skin

lesions, vascular rupture,

abnormal fibril organization.

[53]

Col3a1+/� Mild phenotype, normal life span,

aortic lesions, reduced collagen

III, elevated MMP9 levels.

[55]

Col3a1+/�

(Col3a1m1Lsmi/+)

Targeted deletion (Col3a1 promoter and exon 1–39)- in

frame deletion exon 33–39 upon subsequent analysis.

Mild phenotype, aortic dissection,

reduced collagen III. 30% lethality

at 3 month

[56]

Col3a1Tg-G182S/+ Overexpression of Col3a1 transgene harbouring glycine

substitution (Gly182Ser)

Thin and fragile skin, open

wounds, vascular fragility,

reduced collagen III, abnormal

fibril organization

[57,58]

Col3a1G209S/+ CRISPR glycine substitution Vascular phenotype, sudden

death due to aortic rupture,

abnormal fibril organization,

median survival 400 days

[51]

Col3a1G938D/+ CRISPR glycine substitution Vascular phenotype, sudden

death due to aortic rupture,

abnormal fibril organization,

median survival 45 days.

[51]

Tsk2/+ (Col3a1

C33S/+)

ENU mutagenesis, missense mutation in N-terminal

propeptide

Tight skin (increased ECM

deposition), thick collagen fibrils,

model of systemic sclerosis

[60]
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may contribute to some cases of systemic sclerosis.
In depth sequencing analysis of a large patient
cohort would address this mutation and may further
establish the clinical importance of N-propeptide
variants and collagen III.

Animal models

Investigating animal models has been and will be
critical to disentangle the disease mechanisms of
vEDS and developing more refined animal models
has underpinned recent mechanistic insights. The
first generated Col3a1�/� mouse model had skin
lesions with open wounds, and analyses of the
heart and aorta showed a significant reduction or
absence of collagen fibrils in the media of the
aorta [53] (Table 2). The wall of arteries consists
of an endothelium, that forms the tunica intima
and is surrounded by layers of vascular smooth
muscle cells (vSMC) that form the tunica media.
The media is surrounded by the adventitia which
contains several cell types including fibroblasts
and is rich in ECM. In between the vSMC layers
are elastic lamella and collagen fibrils, that are
secreted by the vSMC [54] into the ECM and pro-
vide elasticity and tensile strength, respectively.
Interestingly, in the adventitia of mutant mice,
the collagen fibrils in the adventitia had larger
diameters [53]. As the majority of the adventitial
collagens is collagen I, this provided in vivo evi-
dence that collagen III regulates collagen I:III fibril
formation. Surprisingly based on the severity of
vEDS, Col3a1+/� mice have a normal life span
6

and showed no overt phenotypes [53,55]. How-
ever, reduced collagen III content in aorta and
bowel and reduced wall strength was detected,
and aortic lesions progressed with age, indicating
biomechanical differences [55]. These data were
confirmed in a second mouse model which was
generated by a spontaneous mutation [56]. While
the exact nature of the mutations remains debated
with reports of both a null allele and in-frame dele-
tion leading to a truncated transcript [56,57],
heterozygous mutant mice present with aortic dis-
section, and increased lethality at 4 months of age
and therefore recapitulate vEDS phenotypes
(Table 2). It should be noted that these mice do
not develop skin, gastrointestinal defects nor is
cardiac function altered [56].
In contrast to these mice with deletions, which

represent the minority of mutations identified,
recently, three mouse models have been reported
that express Col3a1 glycine mutations. Col3a1Tg-
G182S mice transgenically express a Col3a1
Gly182Ser mutation and develop fragile thin skin
with severe open wounds, and fragility of the
aorta, although no spontaneous arterial or
intestinal rupture was observed [58]. These mice
therefore phenocopy some vEDS features,
although it should be noted that they express colla-
gen III at supra-physiological levels. Most recently
CRISPR was used to generate Col3a1G209S/+ and
Col3a1G938D/+ mice that exhibited vascular pheno-
types found in vEDS patients including sudden fatal
aortic ruptures, and the more C-terminal mutation
had a more severe phenotype with lower survival
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rate (Table 2) [51]. These data support the human
genetic data of more severe phenotypes being
associated with C-terminal triple helix mutations.
Finally, the Tsk2/+ (tight skin 2) model was

identified from a ENU mutagenesis screen in the
1980s and has been characterised for its skin
phenotype that resembles systemic sclerosis with
tight skin, increased collagen I deposition and
fibrosis, and thicker collagen fibrils [51]. As
observed in patients, the mice also develop auto-
antibodies [59], and these phenotypes are due to
a missense mutation in the N-terminal pro-peptide
of collagen III (Cys33Ser) [51]. In contrast to vEDS
the skin of thismousemodel was thickened, and the
mutations lead to increased collagen III levels [51],
which could explain the very different clinical pheno-
type. To date, no analysis of vascular defects has
been reported. The mechanism of this mutation is
intriguing as transgenically increased wild type col-
lagen III levels in another mouse model does not
cause overt defects [58]. Does it have additional
effect beyond increased collagen levels? This nicely
illustrates the lack of understanding of how mis-
sense mutations in collagen III act, and the need
for more detailed analysis to unpick this complexity.

Disease mechanisms of vEDS

Extracellular and intracellular defects

While the association between collagen III and
vEDS has been known for more than four
decades [61,62], the molecular and cellular mecha-
nisms by which COL3A1 mutations cause vEDS
remain poorly understood. A key approach to help
bridge this gap has been the biochemical and cellu-
lar analysis of dermal fibroblast cell cultures from
vEDS patients [63]. They greatly express collagen
III, are physiologically relevant given the skin defect
in patients, and may shed some light on the vascu-
lar defects as fibroblasts are important in the adven-
titia of blood vessels. Thus, while dermal fibroblasts
may not recapitulate vSMC defects, they may be
informative for adventitial fibroblasts.
Initial investigations by Pope and colleagues

uncovered significantly reduced collagen III
secretion in dermal fibroblasts from patients [61]
and since then lower extracellular collagen III levels
are accepted as a defining feature of vEDS, also
observed in tissues such as aorta and skin of
mouse models harbouring missense mutations
[51,57]. The reduced extracellular levels can reflect
reduced collagen III expression as seen with non-
sense mutations (Fig. 2) but COL3A1 glycine muta-
tions can also cause a reduction in other collagens,
including collagen I [58]. Mechanistically, it is possi-
ble that the reduced bioavailability of collagen III can
delay fibrillogenesis and/or leads to degradation of
collagen I, but may also reflect reduced secretion
of collagen I [64], although this needs to be further
determined. Given the direction of the triple helix
formation one can predict a more severe effect of
7

C-terminal mutations. This is supported by an
almost complete failure of fibroblasts harbouring
variants (glycine mutations and exon-skipping vari-
ants) at the C-terminal end of the triple helix to
secrete type III collagen (Fig. 2). The non-
secreted type III procollagen can be sequestered
in the rER (which can appear dilated) where it is
overmodified and very slowly degraded [63], see
also below. In contrast, there is less clear evidence
of intracellular retention for N-terminal mutations,
suggestive of rapid intracellular degradation [65].
As mentioned above, for C-propeptide mutations
milder mutations were not predicted to interfere with
triple helix folding or trimer formation, in contrast to
severe mutations (the latter located at the petal-
base region interface, the petal tips and the base
region) [21].
Electron microscopy analysis on skin samples of

patients revealed altered collagen fibril diameter
[66,67], which was also observed in mice deficient
for Col3a1 and those that transgenically express a
Col3a1 glycine mutation with variable fibril diame-
ters and a preponderance for thicker fibrils [53,58].
In patient skin biopsies more C-terminal triple helix
mutations have been associated with smaller colla-
gen fibril diameters (65–80 nm versus 93 ± 7.5 in
wild type) [68], in contrast to a more variable fibril
diameter (85–120 nm) for N-terminal triple helix
mutations [67]. This is supported by the observation
that collagen fibrils with a higher collagen III:I ratio
tend to be thinner, and that fibrils with more collagen
I have a larger diameter [69,70], indicating incorpo-
ration of collagen III limits fibril diameter. Interest-
ingly, the association of altered collagen I:III ratio,
reduced collagen III or increased collagen I levels
with sporadic aortic aneurysm formation [71] and
the recent important identification ofCOL3A1muta-
tions in patients with sporadic thoracic dissection
[43], underscores the clinical relevance of collagen
III in both genetic and sporadic vascular disease
including aortic aneurysms. It also supports that
increased mechanistic insight into vEDS can repre-
sent a gateway to understanding the molecular
basis of some cases of sporadic aneurysm
formation.
Extracellular matrix stability and function are

controlled by the activities of the ECM proteases
such as matrix metalloproteinases (MMPs).
Interesting in this regard is the increased
expression of MMP9 in the aorta of Col3a1+/�

mice [72,73]. In addition, enhanced sensitivity of
secreted collagen III to proteases leading to
reduced levels has also been put forward as a
mechanism [74]. MMP levels have been associated
with many ECM disorders and increased MMP
activity could therefore lead to further damage to
an already weakened ECM caused by secretion of
mutant protein and/or reduced extracellular colla-
gen III (Fig. 2). However, the involvement and rela-
tive contribution of these processes to the disease
mechanisms, the cell types and tissues in which



Fig. 2. Potential disease mechanisms. Compared to wild type (WT), nonsense COL3A1 mutations lead to reduced
secretion of wild type collagen III and extracellular levels of wild type collagen III causing fibrillar defects (interrupted
fibrils). Missense mutations lead to expression of mutant collagen (distorted helix) that can be secreted and/or lead to
intracellular accumulation of collagen in the ER, that can result in altered proteostasis indicated by ER enlargement.
Therefore, both altered proteostasis and reduced secretion may occur simultaneously. The impact of COL3A1
mutations ion the ECM include reduced collagen III levels, and presence of mutant collagen III that may lead to
disruption of the collagen network. This can be coupled with matrix turnover and degradation mediated, at least in
part, by higher MMP levels. Furthermore, elastin defects occur with reduced levels of fibrillin 2. These ECM defects
have been proposed to cause via an as yet unknown mechanism activation of ERK signalling. While ER enlargement
is regularly observed, the nature of the altered proteostasis remains poorly defined. The multisystemic nature of vEDS
also leaves the door open for cell and mutation specific effects, which represent an important gap in our knowledge.
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they occur, and the extent to which they apply to all
mutations remain unclear.
These matrix defects can be accompanied by

dilation of the ER in the skin of patients
[63,66,67], as well as in the vasculature of mice
with a glycine mutation [51] suggesting collagen
III intracellular accumulation. However, this has
not been consistently observed as transgenic
mouse models did not show any signs of ER
stress in dermal fibroblasts [58]. Accumulation of
mis- or unfolded protein can lead to ER stress
(for a detailed review on ER stress, we refer the
reader to these excellent reviews [75,76]) a
response that aims to restore ER homeostasis
by upregulating the expression of ER-resident
chaperones to increase protein folding capacity
and protein degradation pathways, while reducing
global protein synthesis. However, chronic activa-
tion of the Unfolded Protein Response (UPR)
can activate apoptotic pathways and has been
associated with numerous disorders [76,77].
Importantly, elegant analysis has revealed that
for metaphyseal chondrodysplasia type Schmid
(OMIM # 156500), caused by mutations in
COL10A1 coding for collagen X, the ER stress
and not the matrix defects are the proximal molec-
ular mechanism [78]. Moreover, ER stress has
8

also been associated with other collagen and
ECM disorders such as osteogenesis imperfecta
due to mutations in collagen I and COL4A1/2
related disorders [3,76]. The evidence for intracel-
lular effects and UPR activation caused by intra-
cellular retention is less clear for vEDS, which
may reflect allelic heterogeneity, potentially cou-
pled with cell type dependent mechanisms. vEDS
analysis of dermal fibroblasts has indicated some
signs of ER stress, including expression of C/
EBP homologous protein (CHOP; a marker of
chronic UPR) and activation of apoptosis [79,80],
although a systematic in-depth analysis of the
UPR was not reported. Elegant work by Bächinger
and colleagues also showed that in a bacterial
expression system, glycine COL3A1 mutations
caused a delay in protein folding [81]. Recent
RNA Seq analysis on fibroblasts indicated pertur-
bation in genes that help maintain ER homeosta-
sis, including downregulation of those involved in
proteasomal degradation, formation of disulphide
bonds during protein folding, and heat shock pro-
teins that act as chaperones. However, it should
be noted that activation of the classical UPR was
not reported [82,83] (Fig. 2). Overall, this
describes in dermal fibroblasts an environment
whereby COL3A1 mutations can affect ER
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homeostasis via accumulation of collagen III, with
dysregulated proteasomal degradation and a
multi-faceted cellular response to these mutations.
The absence of a classical UPR was also

observed in dermal fibroblasts of transgenic
Col3a1Tg-G182S/+ mice with no increased dilation of
the ER or UPR activation [58]. This could theoreti-
cally reflectanallelic effect asERdilatation hasbeen
related to mutation severity with more C-terminal
mutations having a larger ER and reduced collagen
III secretion [67]. In addition, increased expression
of wild type Col3a1 was used as control [58] which
could have increased chaperone levels by elevating
protein folding demand as daily flux of collagen
expression and secretion are matched with that of
ERchaperones [84]. In themousemodelswith agly-
cine mutation in the endogenous Col3a1 genes ER
enlargement was observed by electron microscopy
in the adventitial fibroblasts but no ER stress or
UPR activation was detected via RNA Seq analysis
of aorta [51]. It remains unclear if there were any
signsof alteredproteostasis in theabsenceof a clas-
sical UPR/ER stress, as observed in patient fibrob-
lasts [82,83]. Furthermore, the bulk RNAseq on
entire tissue such as aorta may miss cell-specific
mechanisms in adventitial fibroblasts, which
showed signs of ER dilatation (a marker of ER
stress), compared to vascular smooth muscle cells.
Taken together this supports the existence of

mechanistic heterogeneity within vEDS due to the
allelic nature of the mutation with potential cell and
tissue specific responses to the mutations, which
we also observed inCol4a1mutant mice [85]. While
the matrix defects due to reduced levels of collagen
III and/or the presence of mutant collagen III are
well-established, the impact and presence of pro-
tein misfolding is much less clear. These mutually
non-exclusive mechanisms may both contribute to
the disease but currently it remains unclear if the
ER stress is cause or effect and, even if present,
contributes to the pathogenesis. A systematic
detailed molecular analysis of an allelic series of
mutations across different disease-relevant cell
types is needed and would fill this important knowl-
edge gap.
Downstream mechanisms

While reduced collagen III levels in the ECM, the
secretion of mutant collagen III and ER stress
represent upstream molecular mechanisms, their
downstream effects and how they cause vEDS
remain poorly defined. The mutations cause
vascular fragility associated with increased
circumferential wall stress but unchanged arterial
stiffness, measured as pulse wave velocity, and
elastic properties of the vascular wall (Young’s
modulus) [86]. Morphologically, the mutations lead
to reduced intima-media thickness [51,86] but do
not affect internal diameter [86]. While mouse mod-
els support a contribution of reduced collagen levels
9

[53], given the ECM composition of the vascular
wall whereby collagen accounts for �13–18%
[87], other factors likely play a key role in this vascu-
lar dysmorphology. The nature of these remains
unclear but alterations in cell behaviour and sig-
nalling (see also below) are likely candidates.
Whether these are in response to the reduced
levels of collagen III, secreted mutant collagen III
and/or proteostasis disruption is an important
knowledge-gap. The biomechanical impact of the
COL3A1 mutations on tissue fragility is not limited
to the vasculature. Patients have thin, fragile skin,
which splits easily and heals slowly with formation
of thin scars, which is also present in the mouse
models that develop skin fragility and open wounds
[53,58] However, this phenotype remains under-
investigated in the different animal models and rep-
resents an important gap in our understanding that
needs to be bridged.
To better understand the biological processes by

which these mutations cause disease, Chiarelli and
colleagues performed transcriptomics analysis of a
small allelic series of dermal fibroblasts with
COL3A1 mutations (two glycine and one in frame
splicing mutation) [82]. This revealed the cell cycle
was the most dysregulated pathway with downreg-
ulation of genes (e.g. cyclin dependent kinases)
involved in cell division, DNA replication, telomere
organization etc. [82]. This impact on the cell cycle
may be downstream of altered DNA damage
responses that interestingly cross-talk with ER
stress and proteostasis [88] and/or ECM defects
as integrin mediated cell signalling influences cell
proliferation [89]. The COL3A1 mutations also
affected the mRNA levels of several major ECM
components that provide ECM structural integrity.
This includes reduced levels of FBN2 (fibrillin 2) that
plays a key role in providing elasticity along with
elastic fibers in many tissues, in particular blood
vessels (Fig. 2), and modulates TGFb signalling,
which is well known to be involved in vascular con-
nective tissue disorders such as Marfan Syndrome,
by binding LTBP [90–92]. Interestingly increased
serum levels of TGFb have been observed in vEDS,
but no evidence of increased TGFb mediated sig-
nalling was detected in fibroblasts of patients [93].
Together with the disorganization of elastin (ELN)
and elastin microfibril interface-located proteins
(EMILINs) that provide elasticity in blood vessels
and skin tissue [94], many of these affected mRNAs
could contribute to the vascular fragility in vEDS
(Fig. 2).
Recent elegant work by Dietz and colleagues has

suggested a key role for increased signalling of the
PLC/IP3/PKC/ERK pathway which was identified
following transcriptomics of thoracic aorta of mice
with a Col3a1 glycine mutation (Col3a1G209S/+ and
Col3a1G938D/+) (Figs. 2 and 3) [51]. Inhibition of this
pathway increased the survival of these mice, con-
firming its contribution to disease. However, how
this pathway is activated and the mechanism by



Fig. 3. Therapeutic approaches for VEDS have focused on addressing the aortic rupture. In particular b targeting
adrenergic signalling via celiprolol, which has been used in clinical trials in Europe but failed FDA-approval and
treatment in mice has given contrasting outcomes [51,57]. Targeting MMP via doxycycline has also been used, while
inhibition of PLC/IP3/PKC/ERK reduced lethality and aortic rupture. Similarly, targeting androgen signalling was also
effective. The cross talk between these pathways, how they are activated by either ECM defects and/or the impact of
altered proteostasis, remains poorly defined (AR: androgen receptor, Hsp heat shock protein).
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which it causes disease remains unclear. The tran-
scriptomic analysis did not show overt signs of UPR
activation although ER enlargement was detected,
and the reduced levels of collagen III were therefore
put forward as the upstream mechanism [51]. Con-
firmation in the Col3a1 knock-out models would be
highly informative in this regard and further analysis
is required to disentangle this cross-talk.
Pregnancy associated aortic rupture is the most

common cause of death for female vEDS patients
of child bearing age [95]. The PLC/IP3/PKC/ERK
signalling pathway was also increased during preg-
nancy and lactation [51], which also occurs in Mar-
fan Syndrome where this is due to oxytocin
signalling [96]. This potentially convergent mecha-
nism between Marfan Syndrome and vEDS was
confirmed by the 95% survival of pregnant
Col3a1G209S/+ mice treated by an oxytocin receptor
antagonist and when pups were removed immedi-
ately after birth [51]. This clearly highlights the
increased risk of lactation for vEDS in the mother
and the link between oxytocin signalling,- PLC/IP3/
PKC/ERK signalling and vEDS. Together this
shows that over-activation of the PLC/IP3/PKC/
ERK pathway in both non pregnant and pregnant
females contributes to aortic rupture, underscoring
a key role for this signalling pathways in vEDS
(Fig. 3). There is also cross-talk with this PLC/IP3/
PKC/ERK pathway and androgen signalling. Data
from patients indicate that males are more severely
affected than females, which is also reflected in the
10
lethality of the mouse models, that was rescued
when treated with bicalutamide, an androgen
receptor antagonist [51] (Fig. 3).
Therapeutic approaches

Current treatments of vEDS are only symptomatic
due to our limited understanding of its disease
mechanism. To date, the main treatment is to
maintain normal blood pressure to reduce the
likelihood of vascular dissection or rupture, via
angiotensin receptor blockers, ß-adrenergic
blockers or other antihypertensive agents. Blood
pressure medication has also been employed in
mouse models. Two mouse models were treated
with anti-hypertensive drugs losartan and
propranolol but while they reduced the blood
pressure, no changes were seen in the incidence
of the vascular ruptures and survival of the mice
[51,57]. These data support that reducing blood
pressure may be ineffective for preventing vascular
ruptures in mouse models.
To date, only one clinical trial was done using

celiprolol, a ß1 antagonist and ß2 agonist that
reduces arterial pressure [97]. Patients treated with
celiprolol had vascular complications later than
untreated patients [97], and a subsequent long-
term observational study also suggested a benefi-
cial effect on survival compared to published data
[98]. However due to design of the observational
study (absence of untreated arm) the high survival
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cannot be unequivocally attributed to celiprolol [98].
The original trial was also criticised for its small
sample size and that one third of patients did not
have a COL3A1mutation, complicating its interpre-
tation [36]. Furthermore, whilst celiprolol has some
efficacy, it is not well tolerated (1/3 patients did not
tolerate recommended dose) [99] and was declined
FDA approval. Interestingly in mice, celiprolol res-
cued the biomechanical parameters of one vEDS
model [57], however treatment with a different ß
blocker (bisoprolol) did not have the same benefit
[100] (Fig. 3). This raises the question regarding
the mechanism of celiprolol, and confirms that ß
blockers cannot be used interchangeably, which is
relevant as celiprolol is not available in the USA
andCanada, but is in Europe [100]. Moreover, treat-
ment with celiprolol gave opposing results when
administered to two different mouse models and in
one increased the levels of aortic ruptures and
death [51]. Importantly, these two studies provide
evidence for allele specific treatment outcomes.
The basis of this allelic heterogeneity remains
unclear (e.g. was this due to genetic background
or different alleles?) but illustrates the potential
problems of targeting downstream effects of muta-
tions, and that there is an urgent need to delineate
disease mechanisms for different classes of
COL3A1mutations and in multiple disease relevant
cell types.
The identification of the PLC/IP3/PKC/ERK

pathway in two different mouse models with
glycine mutations [51] presents an important
advance in our knowledge of vEDS and develop-
ment of therapeutic opportunities. This is especially
so given the cross talk with androgen and oxytocin
signalling that contributes to the lethality during
pregnancy, following lactation, and puberty [51].
Extensive modulation of this pathway via ruboxis-
taurin (PKCb inhibition), cobimetinib (FDA-
approved inhibitor of MEK, the kinase that activates
ERK), and hydralazine (FDA-approved, inhibits IP3-
mediated calcium release from ER and PKCb acti-
vation) shows its potential as a therapeutic target
[51] (Fig. 3). It should be noted that the protection
of hydralazine was lost around puberty, especially
in males but that a combined treatment with the
FDA-approved compound spironolactone (andro-
gen receptor antagonist) overcame this lethality
[51]. These are highly promising results and have
uncovered a key pathway and potential therapeutic
target in vEDS. However and importantly, this
investigation was focused only on the lethality and
aortic dissection, and did not consider extra-
vascular phenotypes.
Finally, attention has also been focused on

directly modulating the ECM in vEDS. In
particular, as Col3a1+/� mice exhibited elevated
levels of MMP9 [73], treatment with broad spectrum
MMP inhibitor doxycycline was undertaken (both as
11
a short term, and long term chronic treatment)
which reduced aortic lesions [72,73] (Fig. 3). This
suggests MMPs could be a treatment target at least
for nonsense mutations leading to haploinsuffi-
ciency. Further analysis is now needed to confirm
if these data and approach can be translated to
other mutations.
Besides pharmacological approaches, gene

therapy strategies offer the potential of, at least in
theory, providing a cure by addressing the root-
cause of the disease. One of these is RNA
interference to knock-down the expression of the
mutant COL3A1 allele. A proof of concept of this
approach has been performed in fibroblasts from
vEDS patients in which the mutant COL3A1
mRNA was successfully targeted without affecting
the WT allele [79]. This improved collagen fibril for-
mation, further confirming that the fibril defects are
at least in part due to insufficient extracellular colla-
gen III. In addition, a very limited analysis showed
reduction of a single ER stress marker [79]. While
this is promising, for this technology to be adopted
it requires successful allelic specific knockdown
for a variety of alleles. In addition, given the multi-
systemic nature of vEDS, the efficient delivery of
any RNAi to the different tissues and cells repre-
sents a hurdle for the development of this approach
as a treatment.
Concluding remarks

The disease mechanisms of COL3A1 mutations
and vEDS remain enigmatic and a complex puzzle
to solve. However, by combining elegant animal
models that accurately recapitulate the genetic
and phenotypic features of vEDS with global
analysis of cell responses to these mutations,
significant advances have been made. They
however have also uncovered complexities. At
least some of these pertain to the molecular basis
of the allelic and mechanistic heterogeneity across
the different cell types affected by mutations in
COL3A1. As a result it is unlikely, but not
impossible, that targeting downstream mechanism
can lead to a one size fits all treatment for vEDS.
An alternative or complementary approach would
be a causal treatment whereby the upstream
mechanisms of reduced collagen levels and ER
retention are tackled, and/or the use of gene
therapy approaches as a cure. Regardless of
approach, the multi-systemic nature of the disease
does mean that delivery will need to be carefully
considered. The available mouse models (and
possibly future generation of additional novel
models) for vEDS are very valuable resources for
the study of this disease and our quest for
disease-specific (and/or personalized) therapies,
the ultimate aim being increased life-expectancy
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and quality of life of those living with this severe
disease.
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Mirault, T., Denarié, N., Mousseaux, E., Boutouyrie, P.,

Fiessinger, J.-N., Emmerich, J., Messas, E.,

Jeunemaitre, X., (2015). The type of variants at the

COL3A1 gene associates with the phenotype and

severity of vascular Ehlers-Danlos syndrome. Eur. J.

Hum. Genet., 23 (12), 1657–1664.

[38] Ghali, N., Baker, D., Brady, A.F., Burrows, N., Cervi, E.,

Cilliers, D., Frank, M., Germain, D.P., Hulmes, D.J.S.,

Jacquemont, M.-L., Kannu, P., Lefroy, H., Legrand, A.,

Pope, F.M., Robertson, L., Vandersteen, A., von

Klemperer, K., Warburton, R., Whiteford, M., van Dijk,

F.S., (2019). Atypical COL3A1 variants (glutamic acid to

lysine) cause vascular Ehlers-Danlos syndrome with a

consistent phenotype of tissue fragility and skin

hyperextensibility. Genet. Med., 21 (9), 2081–2091.

[39] Plancke, A., Holder-Espinasse, M., Rigau, V.,

Manouvrier, S., Claustres, M., Van Kien, P.K., (2009).

Homozygosity for a null allele of COL3A1 results in

recessive Ehlers-Danlos syndrome. Eur. J. Hum. Genet.,

17 (11), 1411–1416.

http://refhub.elsevier.com/S2590-0285(21)00034-X/h0050
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0050
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0055
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0055
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0060
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0060
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0060
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0060
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0060
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0060
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0060
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0060
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0065
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0065
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0065
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0065
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0070
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0070
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0070
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0070
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0075
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0075
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0080
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0080
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0080
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0080
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0085
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0085
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0085
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0085
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0085
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0090
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0090
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0090
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0090
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0090
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0090
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0090
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0095
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0095
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0095
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0100
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0100
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0100
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0105
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0105
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0105
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0105
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0105
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0110
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0110
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0110
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0115
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0115
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0115
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0115
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0120
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0120
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0120
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0120
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0125
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0125
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0130
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0130
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0135
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0135
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0135
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0135
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0135
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0140
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0140
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0140
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0145
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0145
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0145
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0150
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0150
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0150
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0150
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0155
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0155
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0155
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0155
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0155
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0160
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0160
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0160
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0160
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0160
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0165
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0165
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0165
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0170
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0170
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0170
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0175
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0175
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0175
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0175
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0175
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0175
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0175
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0180
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0180
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0180
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0180
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0180
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0180
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0185
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0185
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0185
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0185
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0185
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0185
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0185
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0185
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0190
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0190
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0190
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0190
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0190
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0190
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0190
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0190
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0190
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0195
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0195
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0195
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0195
http://refhub.elsevier.com/S2590-0285(21)00034-X/h0195


14
[40] Jørgensen, A., Fagerheim, T., Rand-Hendriksen, S.,

Lunde, P.I., Vorren, T.O., Pepin, M.G., Leistritz, D.F.,

Byers, P.H., (2015). Vascular Ehlers-Danlos Syndrome in

siblings with biallelic COL3A1 sequence variants and

marked clinical variability in the extended family. Eur. J.

Hum. Genet., 23 (6), 796–802.

[41] Horn, D., Siebert, E., Seidel, U., Rost, I., Mayer, K., Abou

Jamra, R., Mitter, D., Kornak, U., (2017). Biallelic

COL3A1 mutations result in a clinical spectrum of

specific structural brain anomalies and connective

tissue abnormalities. Am. J. Med. Genetics Part A, 173

(9), 2534–2538.

[42] Vandervore, L., Stouffs, K., Tanyalçin, I., Vanderhasselt,
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