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Abstract: Amyloid-β plaques and neurofibrillary tangles are the main neuropathological 

hallmarks in Alzheimer’s disease (AD), the most common cause of dementia in the elderly. 

However, it has become increasingly apparent that neuroinflammation plays a significant role 

in the pathophysiology of AD. This review summarizes the current status of neuroinflamma-

tion research related to AD, focusing on the connections between neuroinflammation and some 

inflammation factors in AD. Among these connections, we discuss the dysfunctional blood–brain 

barrier and alterations in the functional responses of microglia and astrocytes in this process. 

In addition, we summarize and discuss the role of intracellular signaling pathways involved 

in inflammatory responses in astrocytes and microglia, including the mitogen-activated pro-

tein kinase pathways, nuclear factor-kappa B cascade, and peroxisome proliferator–activated 

receptor-gamma transcription factors. Finally, the dysregulation of the control and release of 

pro- and anti-inflammatory cytokines and classic AD pathology (amyloid plaques and neuro-

fibrillary tangles) in AD is also reviewed.

Keywords: inflammation, blood–brain barrier, glial cells, intracellular signaling pathways, 

inflammatory factors

Introduction
Neuroinflammation is defined as the brain’s activation of the innate immune system, 

and its main function is to protect the central nervous system (CNS) against infec-

tious insults, injury, or disease.1 It has been well established that neuroinflammation 

is actively involved in neurological diseases and disorders such as Alzheimer’s disease 

(AD).2 It is a complex response involving a host of cellular and molecular changes, 

recruitment of peripheral immune cells, induction of some intracellular signaling 

pathways, and release of inflammatory mediators in the brain. All these factors can 

contribute to the occurrence of neuronal dysfunction and death in AD, either alone 

or in combination.3,4 These observations and other researches indicate that neuroin-

flammation is an early and continuous feature of AD. In the following contents, we 

will emphasize the role of the blood–brain barrier (BBB) and glial cells during neu-

roinflammation in the CNS and provide an outline of the involvement of intracellular 

signaling pathways and inflammatory mediators produced by glial cells and the main 

neuropathological hallmarks in the pathological cascade of events leading to AD.

BBB and neuroinflammation
BBB is a specialized barrier between blood and brain mainly consisting of specific 

endothelial cells, tight liner sheets formed by astrocytic end-feet and pericytes, and 

tight junctions (TJs) that are brought together.5 Because of the importance of the CNS, 

a physical and transport barrier for blood–borne cells and toxic solubles to invade 

the CNS parenchyma is indispensable.6 The BBB and blood–nerve barrier restrict 

exchanges of soluble factors and cells between the neural tissue and blood, thus playing 
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a crucial role in the maintenance of the peripheral nervous 

system and CNS homeostasis.7

Increasing evidence indicates that amyloid-β (Aβ) and 

BBB disruption may mutually promote their effects on AD. 

P-glycoprotein, a transporter on the luminal surface of the 

BBB transports Aβ from the brain to the blood efficiently.8 

The dysfunction of BBB can result in Aβ accumulation 

by inducing BBB leakage or insufficient clearance. Aβ42 

is able to modify the expression of TJs and alter barrier 

properties functionally in vitro.9 Aβ accumulation can lead 

to BBB dysfunction by endothelial toxicity and increased 

monocyte adhesion.10 One cause of the BBB dysfunction is 

inflammatory cytokines. For example, it has been reported 

that tumor necrosis factor-α (TNF-α), interleukin-(IL)1β, 

and IL-17A could loosen the TJs and breach the BBB.11 

Neuroinflammatory response is involved in the altered 

expression of TJs and loss of BBB integrity in capillary 

cerebral amyloid angiopathy,12 and BBB transcriptome 

changed in systemic inflammation.13 In an animal model of 

AD using an Alzheimer amyloid precursor protein (APP)-

transgenic mouse (APP-Tg), the increase in brain inflamma-

tory cytokine (IL-6) level is significantly higher in APP-Tg 

than in wild-type mice after peripheral lipopolysaccharide 

injection, and the BBB becomes more permeable during 

peripherally evoked inflammation. The results indicate 

the increased vulnerability of the BBB to inflammation in 

this animal model of AD.14 Research has usually focused 

on structural integrity rather than functionality, and BBB 

alteration has traditionally been explained as a consequence 

rather than a cause. But current knowledge suggests that 

BBB integrity plays a more important role than previously 

thought, and pharmacological modulation of the BBB 

may offer a new therapeutic target for AD treatment. For 

example, there is a patent showing that ultrasound neuro-

modulation can control the permeability of the BBB for 

the selective penetration of drugs or other substances into 

the target.15

Cell mediators of neuroinflammation
Astrocytes and microglia are the major types of glial cells 

in the CNS, and their activation involves various types of 

neurodegenerative processes. Reactive glial cells are closely 

associated with plaques and parallels tangles in AD.16 Once 

activated, their processes become hypertrophied; both astro-

cytes and microglia produce multiple inflammatory factors, 

including cytokines, prostanoids, chemokines, reactive 

oxygen species, and cyclooxygenase-(COX)2.17 Similarly, 

as indications of neuroinflammation, elevated levels of 

inflammatory cytokines are discovered in AD (see the section 

Cytokines and neuroinflammation).

Microglia
Due to the presence of the BBB, the lack of lymphatic drain-

age, and the reduced capability of leukocytes to invade the 

CNS, the need arises for a different approach to remove and 

eliminate injured tissue. Therefore, the CNS is equipped 

with high specificity of innate immune cells named micro-

glia. They are the resident macrophages, accounting for 

approximately 5%–10% of the adult brain cell population in 

the CNS.18 These cells actually arise early from progenitors 

in the embryonic yolk sac and appear to persist into adult-

hood. Furthermore, microglia exist in all stages of brain 

development.19 Their main functions are to facilitate host 

defense by destroying invading pathogens, eliminating del-

eterious debris, and promoting tissue repair and homeostasis, 

partly by affecting the surrounding astrocytes and neurons.20 

And inflammatory conditions have been shown to increase 

the supplement of circulating myeloid progenitors and dif-

ferentiation into microglia.21 As the primary regulators of 

inflammation in the CNS, the activation of microglia can 

quickly lead to the release of inflammatory cytokines.22 In 

culture, it has been shown that microglia can release several 

potentially cytotoxic substances, such as cytokines, nitric 

oxide, arachidonic acid derivatives, proteases, reactive 

oxygen intermediates, excitatory amino acids, and various 

neurotrophic factors.23

Now, there is no doubt that activated microglia are 

involved in neuronal death and cognitive deficits in AD. 

Morales et al showed that Tau polymers induce activation 

of microglia and change their cellular morphology and the 

release of the inflammatory cytokine IL-6; furthermore, 

conditioned media of activated microglia induced neurofibril-

lary degeneration of hippocampal neurons in culture.24 In a 

triple-transgenic model of AD, activated microglia increased 

significantly compared with nontransgenic controls, and the 

activation of microglia was closely associated with Aβ plaque 

formation, smaller Aβ deposits, and Aβ plaques.25 Griciuc 

et al investigated the AD risk gene, CD33. AD brains have 

increased CD33 and CD33-positive microglia. Mice lacking 

the gene of CD33 have less AD pathology, revealing a role 

for microglia in Aβ clearance.26 Early in the emergence of 

senile plaques, microglia are strongly activated; they serve 

to limit the growth of senile plaques and then minimize local 

inflammatory damage to the brain components.27 Microglia 

express scavenger receptors of class A or B and receptors 

for advanced-glycosylation end products that promote Aβ 
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phagocytosis.28,29 In addition, microglia also secrete prote-

olytic enzymes that degrade Aβ, such as insulin-degrading 

enzyme, matrix metalloproteinase, and plasminogen–plasmin 

complex.30,31 Moreover, microglia can secrete a number of 

soluble factors at the same time, such as the glia-derived 

neurotrophic factor, which plays a part in promoting the 

survival of neurons.32 It has been shown that bone marrow–

derived microglia could delay or stop the progress of AD, and 

preventing their recruitment contributes to the pathology.33 

Although there is a growing body of evidence to support 

a role for microglia in neuroprotection and Aβ clearance, 

why Aβ continues to accumulate and why AD pathology 

progresses despite continued microglia activation and recruit-

ment remain to be answered. Possible explanations for the 

failure of microglia to slow AD pathology progresses would 

be that microglia become overloaded by the large amount 

of Aβ produced, cannot keep pace with the generation of 

Aβ, become more proinflammatory,34 and their activation is 

gradually diminished in the later stages of plaque formation 

(.150 days).27 The ability of the microglia to interact with 

Aβ fibrils undergoes an age-dependent decrease and their 

ability to phagocytize them is lost;35 thus, the uptake and 

degradation of Aβ are reduced. Major microglial functions 

progressively decline with the appearance of Aβ plaques in 

AD, and lowering Aβ burden could reverse this functional 

impairment.36 Microglia interact with Aβ, overproduction of 

inflammatory cytokines (IL-1β, TNF-α, IL-6) and substances 

released by dying neurons, activated β-secretase-1 (BACE1) 

and γ-secretases to reduce Aβ clearance, thereby promot-

ing Aβ production,34 further proliferation and activation of 

microglia and neuronal damage, resulting in a vicious cycle in 

AD.37 Above all, the role of microglia in neuroinflammation 

of AD could be seen as a double-edged sword. Therefore, 

it is important to understand the activation of microglia in 

different stages of AD to be able to estimate the effect of 

potential therapies. A seminal study conducted by Heneka 

et al revealed that microglia-specific inflammasome is a 

promising type of cell-specific molecular target for thera-

peutic intervention of AD in the CNS.38 It could be proposed 

that pharmacological agents targeting microglia represent a 

novel angle for the therapeutic intervention of AD.

Astrocytes
Astrocytes are specialized glial cells accounting for 

 approximately 35% of the total CNS cell population and are 

found in all the CNS regions.39 Like neurons and oligoden-

drocytes, they are derived from the neuroectoderm, which 

is in contrast to microglia.40 Astrocytes are morphologically 

heterogeneous. Fibrous astrocytes are shown in the white 

matter, and protoplasmic astrocytes are shown in the gray 

matter.41 The reaction of fibrous astrocytes and protoplasmic 

astrocytes is very different. Following mechanical injury, 

both of them undergo the process of hypertrophy of the cell 

bodies and processes. Fibrous astrocytes simplify and retract 

their branching structure, but not protoplasmic astrocytes.42 

Astrocytes assume a variety of roles in maintaining an opti-

mally suited milieu for neuronal function. Select astrocytic 

functions include the removal of debris and toxins from 

the cerebrospinal fluid, the regulation of neurotransmitter, 

the production of trophic factors and ion concentrations, 

and the maintenance of redox potential. These functional 

impairments associated with the injury of astrocytes during 

physiological reactions could trigger or exacerbate neuronal 

dysfunction.43

Glial cells are abundant in the CNS and play multiple 

roles in brain structure and function. In response to Aβ oli-

gomers, reactive astrocytes are closely associated with the 

activation of the transcriptional factor nuclear factor-kappa B 

(NF-κB) and upregulation of TNF-α, IL-1β, and COX-2 in 

the rat cortex in vivo.44 Some scientists think that astrocytes 

are conductors of the AD neuroinflammatory symphony45 and 

astrocyte senescence as a component of AD.46 On the one 

hand, it has been demonstrated that primary human astro-

cytes or astrocytoma cells could be induced by interferon-γ 

in combination with IL-1β or TNF-α to produce Aβ.47 The 

astrocyte-secreted proinflammatory factors could contribute 

to the expression level of secretases, thereby enhancing the 

conversion of APP into neurotoxic, insoluble, fibrillary Aβ 

on the membrane of neurons.48,49 Reactive astrocytes express 

BACE, the enzyme responsible for the generation of Aβ, 

suggesting that they may promote Aβ accumulation in aged 

transgenic AD mice model.50,51 Reactive astrocytes from spo-

radic AD patients also have increased levels of presenilin-1, 

the catalytic component of the γ-secretase complex that is 

involved in the formation of Aβ.52 As the largest number 

of brain cells, activated astrocytes may represent a very 

important source of Aβ during neuroinflammation in AD.53 

On the other hand, by providing trophic support to neurons 

and forming a protective barrier between neurons and Aβ 

deposits, astrocytes are known to promote the Aβ clear-

ance and degradation.51 Reactive astrocytes could express 

Aβ-degrading enzymes, mainly matrix metalloproteinases-2,  

-3, and -9 and neprilysin.54,55 Aβ increases apoE protein lev-

els, which is associated with neuroinflammatory responses 

and Aβ clearance in astrocytes. It may be a neuroprotective 

response to Aβ-induced cytotoxicity, in accordance with 
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apoE’s role in cytoprotection.56 Thus, astrocytes undergo-

ing modifications and chronic inflammation might suffer a 

deleterious transformation: acquire the capacity to generate 

Aβ and lose the ability to remove and degrade them.57

Astrocytes are closely involved in inflammatory and 

immunological events occurring in the CNS due to their 

ability to secrete and respond to a very large number of 

inflammatory cytokines, such as TNF-α, IL-1β, IL-6, IL-8, 

IL-10, transforming growth factor (TGF)-β, interferon-γ, 

and interferon-β.58 The mechanisms of astrocyte activation 

in response to Aβ may include NF-κB–mediated pro- and/or 

inflammatory gene expression.44 Aβ induces astrocytic glu-

tamate release, synaptic loss, and extrasynaptic N-methyl-d-

aspartic acid receptor activation.59 In vitro, Aβ42 triggered 

senescence, driving the expression of positive senescent 

astrocytes. Senescent astrocytes produce a number of inflam-

matory cytokines including IL-6, and an accumulation of 

senescent astrocytes may be associated with increased risk 

of sporadic AD with advancing age.60 Astrocytes exposure 

to increased amounts of Aβ for a long time, these cells 

must to clear large amounts of Aβ, hence, neglect their 

other functions, at last impairs the transmitter recycling and 

metabolic support of astrocytes in AD patients.61 Recently, 

the potential of astrocyte-targeted therapeutics in an intact 

animal model of AD was tested. When adeno-associated 

virus vectors containing the promoter of astrocyte-specific 

Gfa2 was used to target hippocampal astrocytes in APP/

PS1 mice, APP/PS1 mice exhibited improved synaptic 

function, cognitive, lower amyloid levels, and reduced glial 

activation.62 The results lay the foundation to explore other 

novel astrocyte-based therapies.

Intracellular signaling pathway and 
neuroinflammation
The regulation of inflammatory cytokine production in 

activated microglia and astrocytes is under the control of 

intracellular signaling pathways, including the mitogen-

activated protein kinase (MAPK) signaling pathway, the 

NF-κB signaling cascade, and peroxisome proliferator–

activated receptor-γ (PPAR-γ).

Role of MAPK
MAPK signaling pathways are widespreading and highly evo-

lutionarily conserved regulation mechanisms of the eukary-

otic cell. MAPKs include extracellular signal–regulated 

kinase (ERK1/2), c-Jun N-terminal kinase (JNK1/2/3), and 

p38 kinase (p38αβγδ).63,64 They orchestrate the regulation of 

gene transcription, protein biosynthesis, cell cycle control, 

differentiation, and apoptosis.65 Loss of MAPK signaling 

regulation is implicated in diseases and cancer affecting the 

brain and the immune system.66,67

The ERKs were the first identified mammalian MAPKs. 

In many cases, the ERKs can be triggered by inflammatory 

cytokines including the TNF family. These mechanisms of 

ERK activation play important roles in inflammation and 

innate immunity.65

The JNKs are multifunctional signaling molecules that 

are activated in response to a wide range of inflammatory 

mediators and cellular stresses. JNKs regulate various pro-

cesses, such as neuroinflammation, neuronal death, memory 

formation, brain development, and repair. These findings 

suggest that the JNKs play a role in Tau pathology and cog-

nitive deficits68 and regulate soluble Aβ oligomers in AD 

mouse model.69 Activation of JNK in the brain triggered by 

intracellular Aβ accumulation leads to neuronal death in AD 

animal models and patients.70 The generation of proinflam-

matory cytokine induced by Aβ42 might be related to the 

toll-like receptor 2–dependent JNK/NF-κB signal pathway, 

at least in part. Blockade of this pathway could be beneficial 

in the AD pathogenesis.71

The first p38 MAPK isoform, α isoform, isolated from 

extracts of endotoxin-treated cells, could play multiple roles 

in AD pathophysiology. Microglial p38 MAPK leads to the 

inflammation of the AD brains, and astrocytes p38 MAPK 

modulates the excitotoxicity and expands the inflammatory 

response, while the neuronal p38 MAPK contributes to 

depression of synaptic plasticity, Tau phosphorylation, and 

neurofibrillary tangle (NFT) formation.72 Some effects on 

neuroinflammatory processes are summarized in Table 1.

Among the effects, the MAPK signaling pathways play a 

pivotal role in lipopolysaccharide-, cytokine-, or Aβ-induced 

neuroinflammation and highlight the evidence of the potential 

inhibition of neuroinflammation through MAPK signal-

ing pathways. Targeting this single kinase might have the 

potential to change the disease process. However, there are 

two unsolved problems: first, a single kinase inhibitor might 

not provide therapeutic efficacy, and whether three kinase 

common inhibitors possess the ability to have better effects 

is still unknown; second, the same potential drug targets the 

different MAPK signaling pathways in vivo and in vitro. 

For example, potential drug epigallocatechin gallate has dif-

ferent targets, mediated inflammation via ERK and NF-κB 

in vivo,1,85 but via NF-κB, p38, and JNK inhibition in vitro 

(U373MG).86 The same potential drug targets the different 

MAPK signaling pathways in vivo and in vitro. The phar-

macodynamics of potential drugs is still missing, and clinical 

application of drugs targeting the MAPK in the brain still has 

a long way to go.
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Besides the MAPK pathways, various transcription fac-

tors, including NF-κB87–90 and PPAR-γ91,92 have been shown 

to be involved in inflammatory responses in astrocytes and 

microglia.

Role of NF-κB
The NF-κB pathway was discovered in 1986 as a modulator 

of transcription in the light chain of B lymphocyte immu-

noglobulins.93 NF-κB is a redox transcription factor located 

within the cytoplasm and responsible for regulation in 

cytokine production. It is a dimer composed of members of 

the Rel family transcription factors: RelA (p65), RelB, c-Rel, 

p52, and p50. Normally, NF-κB is kept inactive by interaction 

with its inhibitors, which are family members of the inhibitor 

κB (IκB) protein (IκBα, IκBβ, IκBγ, IκBε, IκBδ, and Bcl-3) 

in the cytoplasm. IκB kinases (IKKs), components of a ser-

ine–threonine kinase complex, catalyze IκB phosphorylation. 

It is composed of three elements: a regulatory subunit, NEMO 

(also called IKK-γ), and two catalytic subunits, IKK-α and 

IKK-β.94,95 When the pathway is activated, phosphorylated 

NF-κB dimers are released and translocated to the nucleus, 

bind to the DNA sequences κB, and induce transcription 

of target genes. The effects caused by NF-κB activity are 

usually based on the control of neurite outgrowth, synaptic 

plasticity, and neuronal apoptosis in the CNS.95 In terms of 

neuroinflammation, NF-κB activation has been shown to 

mediate cytokine expression87,88 and inducible nitric oxide 

synthase (iNOS) induction and nitric oxide production89 

in microglia. Furthermore, its activation is also involved in 

COX-2 expression in activated astrocytes,90 a molecule that 

mediates the formation of prostaglandin and seems to play 

a significant role in the processes of neuroinflammation. It 

has also been suggested that NF-κB plays an important role 

in sustaining the vicious cycle of inflammatory response and 

in neuroglial interactions in neurons and astrocytes.96

Several molecules have the ability to activate NF-κB, 

including TNF-α,97 IL-1β,98 Aβ, and secreted APP.99,100 In 

turn, the NF-κB is involved in Aβ42 oligomer production.101,102 

NF-κB signaling upregulates BACE1 gene expression and 

facilitates APP processing, and the levels of NF-κB/p65 

and BACE1 in the brains of AD patients were significantly 

increased.103 In mice models of AD (Tg2576), the increase of 

NF-κB activity has been associated with neuronal apoptosis 

and the process of the disease.104 Using different NF-κB kinase 

modulators in pharmacological approach, the results indicate 

that NF-κB pathways are involved in Aβ production.105 

In the promoter region of human BACE1, two functional 

NF-κB–binding elements were identified, and disruption 

of NF-κB/p65 decreased the expression of BACE1 gene 

in RelA(p65) knockout cells and expression of NF-κB/p65 

upregulated BACE cleavage and Aβ production.103 Paris et al 

have also shown that different kinds of NF-κB inhibitors 

reduce Aβ generation in 7W CHO cells overexpress-

ing AβPP.106 Moreover, nonsteroidal anti-inflammatory 

drugs such as indomethacin effectively decreased Aβ 

production through the inactivation of NF-κB activity.107  

Table 1 Summary of some effects on neuroinflammatory processes

Drugs or effects Immune effects Model References

Lipopolysaccharide induced Mediate generation of NO and TNF-α through p38 in vitro (primary rat and  
human microglia)

73,74

Aβ-induced Mediate neuroinflammation through microglial p38 in vivo (rat brain) 75

Aβ-induced Mediate glutamate excitotoxicity through p38 in vitro (primary rat astrocytes) 76

TNF-α/iL-1β-induced Modulate iNOS induction through JNK1 in vitro (astrocytes) 77
Modulate iNOS induction through ERK 78

JNK inhibitory peptide (JIP) Reduce NADPH oxidase-mediated H2O2 productivity  
through JNK

in vitro (Bv-2 microglia) 79

JNK inhibitor, D-JNKI-1 The involvement of the JNK pathway on Tau pathology  
and cognitive deficits

In vivo (6-month-old SAMP8 mice) 68

inhibition of  
phosphorylation of JNK

Suppresses Aβ-induced eR stress and upregulates  
prosurvival of mitochondrial proteins

in vitro (rat hippocampus) 80

HO-1 activator, CoppiX Reverse iNOS/NO upregulation and HO-1 downregulation  
through JAK1/JNK/STAT1 signaling pathway

in vitro (Bv-2 microglia) 81

p38β knockout Mediate proinflammatory cytokines and neuron death  
through p38α but p38β MAPK is dispensable

in vitro (wT microglia co-culture  
with wT neurons)

82

Overexpression of JNK induce neurite extension in vitro (primary neurons or 
PC12 cells)

83

Hyperphosphorylated Tau Mediate amounts of aggregated Tau through p38 in vivo (transgenic mice) 84

Abbreviations: Aβ, amyloid β; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; HO-1, heme oxygenase-1; IL-1β, interleukin 1β; iNOS, inducible nitric 
oxide synthase; JAK, Janus Kinase; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; NO, nitric oxide; SAMP8,senescence-accelerated prone mouse 8; 
TNF-α, tumor necrosis factor-α; wT, wild type.
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Now a new study suggests that the expression level of the 

NF-κB1 (p105/50) gene in peripheral mononuclear cells of 

patients with AD was significantly higher than adult age-

matched controls; furthermore, various NF-κB target genes 

expression and NF-κB/p65 and NF-κB/p50 DNA-binding 

activity were also increased.108 So it may be a promising 

pathogenic research tool for early diagnosis of AD at the 

peripheral levels. Taking all these reports into consideration, 

NF-κB can be viewed as a potential therapeutic target for AD 

treatment by directly inhibiting Aβ production.

Role of PPAR-γ
The PPARs belong to the superfamily of nuclear hormone 

receptors, a ligand-inducible transcription factor. Its activities 

are regulated by lipid and steroids metabolites.109 At present, 

three different PPAR subtypes (PPAR-α, PPAR-β [PPAR-δ], 

and PPAR-γ) have been identified.110 PPARs bind to PPAR 

response elements in target DNA sequences as heterodim-

ers with the retinoid X receptor, leading to the transcription 

of target genes. It has been reported that they control the 

expression of genes related to inflammatory responses and 

glucose and lipid homeostasis.111

Under physiological conditions, PPAR-γ is expressed 

at low levels in the CNS.112 However, in some pathological 

conditions, PPAR-γ expression and mRNA levels, rather 

than other subtypes, were shown to be elevated in AD 

patients.113 These findings suggested that PPAR-γ may play 

a regulatory role in pathophysiological features of AD. In 

addition, PPAR-γ activation in microglia decreased the 

expression of inflammatory cytokines, iNOS, and nitric 

oxide (NO) production.91 These latter effects resulting from 

the PPAR-γ activation suppress the expression of proinflam-

matory genes by inhibiting NF-κB–mediated inflammatory 

signaling at multiple sites.114 Besides microglia, emerging 

data indicate neurons and astrocytes as basic cell type tar-

gets for the beneficial effects of PPAR-γ ligands.92 PPAR-γ 

activation has been reported to promote neurogenesis, and 

agonists regulate the proliferation and differentiation of 

neuronal stem cell.115

PPAR-γ target drugs have been largely described to 

have neuroprotective effects in neuropathological con-

ditions, including Aβ-induced neurodegeneration and 

neuroinflammation.116 For example, cannabidiol reduces 

neuroinflammation induced by Aβ and promotes hippocam-

pal neurogenesis through PPAR-γ.117 PPAR-γ agonists 

could suppress Aβ-mediated microglia activation, inhibit 

inflammatory gene expression, alter Aβ homeostasis, exhibit 

neuroprotective effects,91,118–120 and protect neurons through 

modulation of the mitochondrial fusion–fission events,121 

thereby ameliorating the pathogenesis and progression of 

AD. Pioglitazone treatment decreased BACE1 and lowered 

the plaque burden in an animal model of AD.122 It protects 

cortical neurons against inflammatory mediators by improv-

ing peroxisomal function123 and reduces the levels of brain 

Aβ42 in Tg2576 mice.122 Furthermore, PPAR-γ agonists 

could reduce Tau protein phosphorylation, thereby inhibiting 

the accumulation of NFT in AD.124

At present, the main evidence suggests that PPAR-γ play 

a critical role in regulating pathophysiological features of 

AD. But there is evidence revealing that PPAR-α/δ have 

been involved in the pathogenesis of neuroinflammation.125,126 

PPAR-δ deficiency leads to cognitive impairment associated 

with enhanced astrogliosis, inflammation, and Tau hyper-

phosphorylation in the cortex.127 These two isoforms are 

attracting more and more attention.

Cytokines and neuroinflammation
Cytokines are small, nonstructural proteins secreted from 

various cell types with molecular weights ranging from 

8,000 Da to 40,000 Da that play varied biological activities. 

Chronic neuroinflammation induced by cytokines released 

from activated microglia and astrocytes has been recognized 

as one of the major mechanisms of AD neuropathology. Key 

to this review, we introduce both anti- and pro-inflammatory 

responses mediated by cytokines. Among these factors, we 

shall focus on cytokines and their interaction with Aβ and 

AD pathologies.

Tumor necrosis factor-α
TNF-α is a pleiotropic cytokine regulating numerous physi-

ological and pathological processes, including differentiation, 

inflammation, and cell death. TNF-α expression levels in the 

healthy brain are low under physiological conditions. TNF 

is thought to play a central role in inflammatory or disease 

states. More and more studies present TNF as a neuromodula-

tor in the process of AD pathologies.128 The dysregulation of 

TNF-α production has been linked to AD.129 Compared to the 

age-matched healthy controls, serum TNF-α levels signifi-

cantly increased in the early-onset AD patients (age of onset 

,65) and late-onset AD patients (age of onset .65) groups.130 

It has been shown that TNF-α regulate AβPP in mouse model 

of AD131 and induce Aβ production by increasing the expres-

sion of BACE1132 and the activity of γ-secretase.133 TNF-α 

synthesis inhibitor (3,6′-dithiothalidomide) suppresses 

Aβ-induced microglial activation, neuronal degeneration, and 

memory dysfunction and attenuates inflammation  markers 
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and AD pathology in the setting of neuroinflammation and 

AD.134 However, there are some opposing results. In their 

study, Uslu et al observed a correlation of Aβ42 levels 

with mini-mental state examination scores and body mass 

indexes in AD patients, but not with IL-6 and TNF-α levels 

in serum.135 The relationship between TNF-α and AD needs 

urgent solution and further research.

interleukin-1
IL-1 is a kind of inflammatory cytokine that is usually pro-

duced by microglia in the brain and seems to play a significant 

role in the AD pathogenesis.136 A 10-year follow-up study 

of 133 institutionalized elderly patients in a nursing home 

indicates that systemic inflammatory IL-1 during agitation 

stage are risk factors in the development of AD.137 A recent 

study suggests that the polymorphism of IL-1 gene clusters 

may play a relevant role in AD pathogenesis in Brazilians.138 

IL-1β can promote Aβ production by modulating γ-secretase 

activity in neurons.133 Enhanced message translation of IL-1β 

promotes the increase of AβPP synthesis in astrocytes.139 

Likewise, IL-1β increased the levels of soluble amyloid 

precursor protein (sAPP) in a dose-dependent manner in the 

culture medium of primary neurons.140 Some studies have also 

demonstrated that IL-1β induces Tau protein phosphorylation 

and triggers the formation of paired-helical filaments, thus 

aggregating into NFTs.141,142 Sustained IL-1β overexpression 

increases in Tau phosphorylation and exacerbates Tau pathol-

ogy in an IL-1β overexpression (IL-1βXAT) AD mouse 

model.143 In response to Aβ deposition, IL-1β released from 

astrocytes may be an important trigger of Tau pathology in 

the AD brain.45 Chronic hippocampal IL-1β overexpression 

and peripheral and intracerebral injection of IL-1β directly 

also impair long-term memory.144,145 However, one study 

indicates that IL-1β may play a beneficial role in limiting AD 

pathology. In the study by Matousek et al, regardless of the 

duration of cytokine expression or age, IL-1β overexpression 

leads to plaque clearance, and sustained IL-1β did not cause 

overt apoptosis in the hippocampus of an APPswe/PS1dE9 

AD mouse model.146

Above all, there is no doubt that IL-1β causes AD 

pathologies in neuroinflammation, but its mechanism remains 

unclear and some key points have to be solved.

interleukin-6
IL-6 is a major cytokine in the CNS. It plays an important 

role in the brain.147 IL-6 gene maps to chromosome 7p21 and 

has been assumed to be a good candidate for AD genetic risk 

factor.148 Recent studies showed that IL-6 polymorphisms 

are associated with risk of AD.149,150 Through a 10-year 

follow-up study on 133 elderly patients, they also found 

that systemic inflammatory IL-6 during the agitation stage 

are risk factors in AD development.137 In AD brain, IL-6 

stimulates and promotes the recruitment of microglia and 

astrocytes to release proinflammatory cytokines,151 and it 

also promotes the Tau phosphorylation in neurons.152 But a 

meta-analysis suggested that IL-6-174G/C polymorphism 

would be a protective factor for AD in Asians but not in 

Caucasians. It may contribute to a decreased risk of AD.153 

Taking into account the multifactorial etiology of AD, more 

complete case–control studies of stratified analysis of dif-

ferent environmental exposure, ethnic background, or other 

risk factors should be carried out to evaluate possible roles 

of IL-6 in the AD pathogenesis in the future.

interleukin-10
IL-10 is one of the main anti-inflammatory cytokines 

and plays an important role in cell survival and neuronal 

homeostasis. Preexposure of glial cells to IL-10 inhibits the 

production of proinflammatory cytokines induced by Aβ or 

lipopolysaccharide.154 However, the stimulation of IL-10 did 

not suppress Aβ deposition in the mouse brain.155 It is inef-

ficient in Aβ42 degradation and could potentially increase 

the ratio of Aβ42/Aβ40 (Aβ42 promotes amyloid deposition 

but Aβ40 inhibits it) in Tg2576 mice.156 A recent study shows 

that IL-10 in the periphery obviously associated with brain 

atrophy in AD.157 The relationship between IL-10 and AD 

needs more compelling evidence.

Transforming growth factor-β
TGF-βs are pleiotropic cytokines produced by various cell 

types throughout the body. They play an important role in 

some biological effects, such as brain development, neu-

roendocrine roles, synaptogenesis, synaptic functions, adult 

neurogenesis, and neuroprotection.158 In the brains of AD 

patients, increased levels of TGF-β1 in plasma and cerebro-

spinal fluid were demonstrated.159,160 Furthermore, increased 

levels of TGF-β1 mRNA expression was found before the 

manifestation of obvious dementia in AD patients, suggest-

ing that it is mobilized in the process of AD pathology.161 

The levels of TGF-β1 expression correlate with the degree 

of cerebrovascular amyloid deposition in AD.162 In contrast, 

some scientists found decreased levels of TGF-β1 in AD 

patients compared with the control group in serum163 and 

plasma.164

Peripheral mononuclear phagocyte TGF-β signaling in 

deficient AD mice increased the accumulation of  microglia 
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around Aβ plaques and reduced AD-like pathology.165 

Reduced TGF-β1 signaling contributes to microglial activa-

tion and ectopic cell-cycle reactivation in neurons; both lead 

to neurodegeneration in the AD brain.166 TGF-β secreted by 

IL-34–treated microglia enhances the neuroprotective prop-

erty of microglia and suppresses their proliferation.167 TGF-β1 

modulates the activation of microglia partially through the 

Smad pathway, leading to reduced cytotoxicity and increased 

Aβ clearance.168 However in a transgenic AD model mice, it 

was observed that TGF-β1 promotes amyloidogenesis and Aβ 

deposition.169 Chronic overexpression of TGF-β1 negatively 

impacts hippocampal structure and impairs hippocampus-

dependent learning.170 Due to methodological problems of 

individual studies and several underpowered studies, the 

effects of TGF-βs in AD pathology remain controversial.

Aβ plaques and NFTs as causes and 
consequences of neuroinflammation
It is critical to note in this review that both Aβ plaques and 

NFTs may represent causes and consequences of neuroin-

flammation in AD.

Aβ peptides, the main constituents of amyloid plaques, 

are derived from the proteolytic cleavage of APP.171,172 

Diverse lines of evidence suggest that Aβ and APP con-

tribute to the pathogenesis of AD causally. The conversion 

from preclinical AD to clinical AD is not only associated 

with widespread Aβ plaque deposition and NFT pathology 

but also with the appearance of various soluble/dispersible 

Aβ aggregates in the neuropil.173 Aβ regulates synaptic and 

neuronal activities, and Aβ accumulation in the brain leads 

to an interesting combination of synaptic depression and 

aberrant network activity.174 For the neuroinflammation, 

Aβ plaques are frequently associated with the activation of 

microglia and astrocytes (see the section “Cell mediators”). 

Aβ induces the expression of inflammatory cytokines and 

inflammatory enzymes such as COX-2 and iNOS. Inflamma-

tory cytokines (such as TNF-α and IL-1β), in turn, enhance 

APP production and the process of APP proteolytic cleav-

age to increase the production of Aβ42 peptide. Aβ is able 

to stimulate NF-κB and MAPK signaling pathways. Both 

these signaling pathways are associated with the transcrip-

tion of inflammatory mediators (see the section “Intracellular 

signaling pathway”). Also NF-κB participates in Aβ produc-

tion through regulation of APP and BACE and γ-secretases; 

NF-κB/p65 is closely related to BACE1 expression, cleav-

age and Aβ production.103,105 Aβ can disrupt gliotransmitter 

release and astrocytic calcium signaling, and alter synaptic 

plasticity, which are vital processes for astrocyte–neuron 

communication.175 So, Aβ can be viewed both as a cause 

and consequence of neuroinflammation in AD. However, 

Aβ has also shown some antioxidant and neuroprotective 

effects under certain experimental conditions.176 A recent 

work suggests that Aβ immunotherapy leads to downregu-

lation of microglial activation and reduction of Aβ and Tau 

pathology.177 Joseph-Mathurin et al used old lemurs to study 

Aβ immunotherapy. Worsening of iron accumulation is 

the side effect of Aβ immunization treatment at prodromal 

stages of AD.178 Now there are a growing number of studies 

on Aβ immunotherapy, such as the active anti-Aβ vaccine 

(AN1792), bapineuzumab and solanezumab, but the side 

effects were obvious and the clinical trials were disappointing. 

Second-generation anti-Aβ immunotherapies (crenezumab 

and gantenerumab) and Aβ vaccines (CAD106, ACC-001, 

and Affitope AD02) are being tested in AD patients.179

NFTs are the major neuropathological hallmarks in the 

brains of AD patients. They form intracellularly, aggregated 

and reorganized through hyperphosphorylation and acety-

lation of Tau proteins.180–182 The microtubule-associated 

protein, Tau, plays an important role in the stabilization and 

assembly of microtubules, which are crucial for normal cel-

lular morphology and trafficking. Its aggregation in AD leads 

to deficits through a loss-of-function mechanism.183 Synapse 

degeneration closely correlates with cognitive decline in 

AD, while soluble, oligomeric Tau, as a synaptotoxic spe-

cies, may contribute to synapse degeneration.184 During the 

process of the AD, the mechanisms and the triggers of Tau 

proteins aggregating into NFTs are unclear, but neuroin-

flammation could play a role.185 The number of NFTs and 

the progression of neurodegeneration as well as dementia 

showed a significant positive correlation in AD,186 leading 

to a common assumption that NFTs are neurotoxic. The 

repeated immunization with phosphorylated-Tau peptides 

causes neuroinflammation in NFT and wild-type mice.187 

Similar to Aβ, NFTs can also be viewed both as causes and 

consequences in the neuroinflammation of AD.

Thus, in line with the study by Anand et al the amyloid- 

and Tau-based therapeutics may be the main direction of AD 

research and therapy in the near future.188

Conclusion
In this review, we described the potential role of inflamma-

tion factors in the process of neuroinflammation associated 

with AD. Neuroinflammation is currently recognized as an 

important pathophysiological feature of this neurodegenera-

tive disorder. At the same time, it seems that every factor 

that associates with neuroinflammation could be a target for 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2015:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

251

Neuroinflammation in AD

AD treatment and every single factor represents an attrac-

tive therapeutic target. But which one is the main cause of 

the process? There is usually no simple solution to complex 

problems and AD is sadly a complex neurodegenerative 

disorder. To date, preventative and therapeutic researches 

on AD focus on a single target, and few drugs are available 

to effectively treat this disease. Combination therapies with 

drugs targeting different causal or modifying factors may be 

the most successful treatment strategies, such as interruption 

of deleterious inflammatory pathways and improved plaque 

clearance by activated microglia.

Epidemiological evidences suggest that long-term use of 

non-steroidal anti-inflammatory drugs has a sparing effect 

on AD, but it failed to slow the progression of disease or 

improve the symptoms in patients with early or moderate 

AD in randomized clinical trials. Possible reasons for the 

failure of anti-inflammatory drugs in clinical trials may be 

associated with the advanced state of the disease in patients 

and the dosing regimens of the trials. Currently, most of the 

available anti-inflammatory drugs, including non-steroidal 

anti-inflammatory drugs, are not really “anti-inflammatory”. 

They prevent the pro-inflammatory response, but do not 

trigger the anti-inflammatory response. Given that neuroin-

flammation is now being recognized as a complex process 

that has both beneficial and detrimental aspects, rather than 

suppressing inflammation, orchestrating specific elements 

of the neuroinflammation may be a more appropriate thera-

peutic objective.

Finally, it is essential to define early biomarkers that 

correctly indicate inflammation of the CNS for potential AD 

subtypes. Disappointments of anti-inflammation drugs in 

AD suggest that attention should be taken in the intervention 

strategy, which is likely a better way to prevent the incidence 

of AD. It is crucial to develop better diagnostics relying upon 

peripheral inflammatory biomarkers. For example, serum 

or plasma inflammatory cytokines closely related to the AD 

pathological process can be used as indicators of AD. Efforts 

to discover more sensitive and selective biomarkers should 

be continued and integrated with more innovative approaches 

to clinical trial design. Certainly, neuroinflammation remains 

a young discipline, and our basic understanding of the neu-

roinflammatory network into therapeutic interventions still 

has a long way to go.
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