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Abstract

An ensemble of genetic networks that describe how the model fungal system, Neurospora crassa, utilizes quinic acid (QA) as
a sole carbon source has been identified previously. A genetic network for QA metabolism involves the genes, qa-1F and qa-
1S, that encode a transcriptional activator and repressor, respectively and structural genes, qa-2, qa-3, qa-4, qa-x, and qa-y.
By a series of 4 separate and independent, model-guided, microarray experiments a total of 50 genes are identified as QA-
responsive and hypothesized to be under QA-1F control and/or the control of a second QA-responsive transcription factor
(NCU03643) both in the fungal binuclear Zn(II)2Cys6 cluster family. QA-1F regulation is not sufficient to explain the
quantitative variation in expression profiles of the 50 QA-responsive genes. QA-responsive genes include genes with
products in 8 mutually connected metabolic pathways with 7 of them one step removed from the tricarboxylic (TCA) Cycle
and with 7 of them one step removed from glycolysis: (1) starch and sucrose metabolism; (2) glycolysis/glucanogenesis; (3)
TCA Cycle; (4) butanoate metabolism; (5) pyruvate metabolism; (6) aromatic amino acid and QA metabolism; (7) valine,
leucine, and isoleucine degradation; and (8) transport of sugars and amino acids. Gene products both in aromatic amino
acid and QA metabolism and transport show an immediate response to shift to QA, while genes with products in the
remaining 7 metabolic modules generally show a delayed response to shift to QA. The additional QA-responsive cutinase
transcription factor-1b (NCU03643) is found to have a delayed response to shift to QA. The series of microarray experiments
are used to expand the previously identified genetic network describing the qa gene cluster to include all 50 QA-responsive
genes including the second transcription factor (NCU03643). These studies illustrate new methodologies from systems
biology to guide model-driven discoveries about a core metabolic network involving carbon and amino acid metabolism in
N. crassa.
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Introduction

Systems biology provides a new paradigm to understand

complex traits, such as carbon metabolism [1–6], homeostasis

[7–8], development [7], response to environmental change [9],

longevity [10], the clock [11], and life itself [12]. This new

approach has a number of common elements [1,3,13] including

viewing living systems as biochemical and regulatory networks,

measuring a system-wide response with genomic approaches as in

RNA and protein profiling [14–15], and cycling through a

rationalized discovery process to identify the true underlying

network explaining a complex trait of interest [1,3,16]. One

application of this approach is being exploited to identify how

DNA sequence variation elucidates molecular networks that cause

disease [17]. The challenge is that systems biology approaches are

still in their infancy and require careful evaluation of their utility

on particularly well studied systems.

Ideker et al. [1] chose one early paradigm for eukaryotic gene

regulation, the GAL genes in Saccharomyces cerevisiae [18] to develop

and test new approaches in systems biology. We have chosen

another early paradigm for eukaryotic gene regulation, the qa gene

cluster in Neurospora crassa [19] to develop and test these new

systems biology approaches. Both the GAL genes and qa cluster

have been biochemically and genetically studied for more than 40

years. A wealth of molecular biology experiments are then

available to specify detailed biochemical and regulatory network

models or genetic networks, for short, for galactose and quinic acid

(QA) metabolism [1–2]. The GAL genes provided a testing ground

for new genomic scale methodologies for measuring relative

mRNA and protein abundances and an iterative process of genetic

network identification [15,1]. The qa gene cluster provided a

testing ground for ensemble methods of network identification

containing many parameters and limited data and an iterative

model-guided discovery process in genomics experiments called

Computing Life [2,16]. Here we examine some of the strengths and

limitations of these approaches on the qa gene cluster.

In prior work we have identified a working genetic network

model to describe how the qa gene cluster functions in the cell to
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metabolize quinic acid (QA) as a sole carbon source [2]. We

followed this work with exploration of how widespread the

response to shift to QA is on the transcriptome with microaray

experiments and used additional microarray data to refine the

ensemble of genetic network models describing the qa cluster

behavior [5]. As in a previous study of the GAL genes [1], we found

the effects of the qa cluster are widespread, involving a QA

response by more than 100 known genes in varied functional

categories including carbohydrate metabolism, protein degrada-

tion and modification, ribosome biogenesis, and amino acid

metabolism [5]. The challenge in understanding both galactose

(GAL) and QA metabolism is that other processes could elicit a

similar response to shift to these carbon sources. How do we

distinguish the effects of these other secondary processes from the

main effects of shift to galactose or quinic acid? For example,

neither GAL nor QA are preferred carbon sources and could elicit

a starvation response on the part of the cell [20], thereby

unleashing a whole cascade of stress responses unrelated to the

direct effect of the non-preferred carbon source. There is also a

need to reconcile the 997 and 895 genes responding to GAL and

QA with the average number of targets per transcription factor of

,38 found in S. cerevisiae [21–22].

In this work our goals are several fold. First we wish to identify

all QA-responsive genes. Second, we wish to distinguish a QA-

response from other ancillary responses, such as to starvation.

Three, we wish to begin the more or less complete description of

the qa genetic network as is beginning to be achieved in Escherichia

coli for carbon metabolism [3]. Finally, we wish to evaluate the

performance of some of the new systems biology tools for

rationalized discovery about genetic networks in the cell used

here to discover the role of the qa gene cluster in metabolism [16].

In particular, we wish to extend the ensemble method to operate

on a genomic scale transcriptional network. To address this

problem we have developed a parallelized version of the ensemble

method for network identification as described under Materials

and Methods.

Genetic network model for the qa gene cluster
The qa gene cluster consists of 7 genes on linkage group VII of

N. crassa [23]. Four of the genes are structural genes (qa-2, qa-3,

qa-4, qa-y); one has an unknown function (qa-x); and two are

regulatory genes (qa-1F and qa-1S). The genes qa-1F and qa-1S

encode a transcriptional activator and repressor, respectively, [24]

that turn on and turn off the qa gene cluster. The gene qa-1F gene

product QA-1F activates all genes in the qa cluster, allowing the

use of QA as a sole carbon and energy source. The cluster is also

known to be linked to a parallel biosynthetic pathway in aromatic

amino acid metabolism as well [25].

This information enabled formulation of an initial detailed

genetic network shown in Figure 1 (minus the QA-responsive

genes (qag) on the left hand side) that explains how QA metabolism

functions [2,5]. Following the notation of [26], circles denote

reactions, and boxes, molecular species (i.e., genes, mRNAs,

proteins, and metabolites) appearing in this chemical reaction

network. Arrows entering a circle denote reactants, and arrows

leaving a circle denote products. Double arrows indicate that a

molecular species appears on both the left and right side of the

reaction and is a catalyst. As an example, enzymes enter reactions

with double arrows. The overall structure of this genetic network

for carbon metabolism has the Central Dogma at the top and the

biochemical pathway for QA metabolism, at the bottom. On the

left side of the network is the transport process for QA involving

the permease, QA-Y, and on the right side is the genetic

regulatory mechanism involving the regulators, QA-1F as QA-

1S, as well as metabolites hypothesized to affect these regulators.

In this network model, the QA-1F protein activates all of the qa

cluster genes, including a gene (qa-1S) leading to its own

inactivation, by means of the QA-1S repressor protein [27,24].

The active qa-1F1 gene is transcribed into its cognate mRNA qa-

1Fr, which in turn is translated into its cognate protein QA-1F.

The QA-1F protein, in turn, activates all of the qa cluster genes in

the A-reactions in Figure 1 in a positive feedback loop. One of

these is the qa-1S gene, encoding a repressor. The encoded QA-1S

protein thereby counteracts QA-1F in the I1 reaction and shuts

down QA-1F as QA-1S accumulates by sequestering QA-1F. The

action of the QA-1S protein is facilitated in reaction I3 by a

preferred carbon source, such as sucrose, binding to QA-1F,

thereby providing a mechanism for catabolite repression. In

addition, QA-1F may also activate a number of QA-responsive

genes (qag) that serve as yet to be identified outputs of this circuit.

The number of these QA-responsive genes in the genome, and hence

the extent of QA control over metabolism is largely unknown [5].

Figure 1 then specifies fully the null hypothesis for this paper

with 204 rate constants and 147 initial molecular species

concentrations as parameters. A number of alternative hypotheses

to Figure 1 will be considered. For example, one alternative

hypothesis is catabolite repression by inducer exclusion [28].

Predictions about QA-responsive genes from the genetic
network

Six predictions about the behavior of QA-responsive genes can

be made from the genetic network in Figure 1 and prior work.

1. When WT cells are shifted from sucrose to quinic acid as

described in Materials and Methods, the mRNA levels are

predicted to respond [2]. This experiment is referred to as

experiment 1-QA response to identify a QA-response in WT.

In contrast as a control, we can also predict that if WT cells

were shifted from sucrose to sucrose, under the genetic network

model there should be no response in mRNA levels by QA-

responsive genes [2]. We will refer to this as the control
experiment.

2. Since QA is a poor non-preferred carbon source, it is possible

that cells will not differentiate a shift to QA from a shift to no

carbon source, i.e., a starvation response. So, in experiment

2-starvation we shift the cells from sucrose to Fries Medium

without a carbon source [29] to differentiate a response to QA

in experiment 1 from a response to starvation in experiment 2.

The prediction is that genes under qa cluster control should not

have a starvation response because there is no such mechanism

in Figure 1.

3. The first two perturbation experiments represent environmen-

tal perturbations. The last experiment 3-QA response by
qa-1F is a genetic perturbation. If qa-1F mutant cells were

shifted from sucrose to QA, the genetic network would predict

that there should be no QA-response [2] because some qa-1F

mutants, such as the one selected in Materials and Methods, do

not make functional transcriptional activator protein QA-1F. It

is still possible that qa-1F mutant cells might perceive that the

shift to a poor carbon source, such as QA, as a starvation

signal, eliciting other ‘‘starvation’’ genes to respond in a qa-1F

mutant. Alternatively, if there were alternative pathways for the

metabolism of QA [30] or if there were other transcription

factors that can substitute for QA-1F in function, we may see a

response by genes in the absence of a functional qa gene cluster.

The QA-1F protein is a member of the largest family of

Systems Biology of the qa Cluster in N. crassa
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transcription factors in N. crassa, and such transcription factors

are well known to act redundantly [31].

4. Another prediction that can be made about the dynamics of

the mRNA levels of QA-responsive genes from the genetic

network in Figure 1 [2]. If we were to compare such a gene’s

mRNA level at time 0 in the shift from sucrose to QA to the

average mRNA level at later times, we should see a dramatic

rise in mRNA abundance with time. We search for this kind of

change. This does not preclude the qa gene cluster acting to

decrease expression of other genes, but if such a decrease were

observed, it would have to be an indirect effect in the genetic

network. For example, the QA-1F protein would need to target

a repressor, for example, which in turn would down-regulate

other genes under its control. This last prediction places an

additional constraint on what are considered genes directly

regulated by the qa cluster.

4. These four microarray experiments and the expected dyna-

mics of mRNA levels of genes under QA-1F control provide a

means to sift through the 895 genes that respond to the initial

shift experiment under experiment 1 [5]. A QA-responsive gene

will be defined as one whose mRNA level: (1) in WT responds

to shift from sucrose to QA; (2) in WT does not respond to

shift from sucrose to Fries (i.e., no starvation response); (3) in a

qa-1F mutant does not respond to shift from sucrose to QA;

(4) in WT does not respond to shift from sucrose to sucrose

(i.e., in the control experiment); (5) increases significantly from

time 0 to later time points in WT when shifted from sucrose

to QA.

5. There are two more predictions from prior work about QA-

responsive genes. Case and colleagues [30] presented both

genetic and biochemical evidence for the interrelationships of

the QA and shikimate (aro) pathways. A mutation in aro-1

(which converts dehydroshikimic acid (DHS)Rshikimic acid

(SA)) was suppressed by qa-3+ in an aro-1/qa-4 double mutant

background. The double mutant leads to the accumulation of

DHS, which by mass action allows the QA-3 protein to convert

DHS to SA. The aro-1 mutation was thus sidestepped. Also a

block in the aro pathway via an aro-9 mutation was demon-

strated to lead to the internal induction of the qa cluster. The qa

and aro pathways are coupled by redundancy of function and

mass action. We thus predict that aromatic amino acid meta-

bolism will have encoding genes that are QA-responsive.

Figure 1. A genetic network for the qa gene cluster derived from [2,5]. Molecular species (i.e., reactants or products) in the network are
represented by boxes. The qa-1F, qa-1S, qa-2, qa-3, qa-4, qa-x, and qa-y gene symbols can be superscripted 0, 1, r0, r1, indicating, respectively, a
transcriptionally inactive (0) or active (1) gene or a translationally inactive (r0) or active (r1) mRNA. Associated protein species are denoted with capital
letters. Reactions in the network are represented by circles. Arrows entering circles identify reactants; arrows leaving circles identify products; and bi-
directional arrows identify catalysts. The labels on each reaction, such as Sx, also serve to denote the rate coefficients for each reaction. Reactions
labeled with an S, L, or D denote transcription, translation, or degradation reactions, respectively. Reactions without products, such as Dxr, are decay
reactions. The rate constants specify the right hand side of the kinetics model. The figure differs from the network in Logan et al. [5] in that the 50 QA-
responsive genes (qag) in Table 3 have been included under the control of QA-1F (model all1F-2E in Table 5).
doi:10.1371/journal.pone.0020671.g001
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6. It has been long known that sorbose-resistant mutants

constitutively activated QA-metabolism on sucrose (M. E.

CASE, unpublished results). We then expect that some of the

QA-responsive genes will be sorbose-resistance mutants (sor-1-

sor-4 in [32] as well. We thus expect that starch metabolism

should be represented among QA-responsive genes. (While

fungi generally use glycogen instead of starch, we continue to

refer to the ‘‘sucrose and starch metabolism’’ because that is the

label of this metabolic module used in the Kyoto Encyclopedia

of Genes and Genomes.

Materials and Methods

Strains
Strain 74A-OR23-1A is used in all shift experiments except

experiment 3 (QA-response by qa-1F mutation). In experiment 3 a

qa-1F, pan-2 mutant named 125-23-1A (MEC, unpublished) is

used to inactivate the entire qa gene cluster. Strain 125-23-1A was

obtained from a cross of pan-2,a named B23 [33] with qa-1F,A

named 125 [34]. Strain 125 was UV-induced in a 74A-OR23-1A

background [34], and strain B23 was X-ray induced in the same

background [33]. There is no known interaction between pan-2

and the qa cluster (MEC, unpublished).

Liquid growth conditions for harvesting RNAs
Establishment of liquid cultures follows [35–36]. A culture in a

250 ml flask with 50 ml of Fries medium [29] + sucrose (1.5%) +
agar (1.5%) is inoculated, grown for 2 days at 30uC and then is

shifted to room temperature under light for 5–6 days to induce

conidiation. Conidia are suspended by adding 50 ml of Fries +
sucrose (1.5%) to a flask. The suspension is added to a new 500 ml

flask with 100 ml of Fries + Sucrose (1.5%). The new liquid

cultures are grown at 25uC at 300 rpm overnight (14–16 hrs) on a

shaker (New Brunswick Scientific, Edison, NJ, Series 25). Conidia

are harvested through a Buchner filter funnel containing 541

Whatman filter paper, rinsed with distilled water and grown for 0,

K, 1, 1.5, 2, 4, 6, and 8 hrs in a new 500 ml flask with Fries + QA

(0.3%). Conidia are harvested again as just described, squeezed of

liquid, and frozen at 270uC for RNA harvesting. Fries medium is

supplemented as needed for various qa cluster mutants used, such

as pan-2,qa-1F.

Experiment 1 (QA-response)
To identify QA-responsive genes (experiment 1) all liquid

cultures are processed as described in the previous section with a

shift from sucrose (1.5%) to QA (0.3%) for varying amounts of

time on QA ranging from 0 to 8 hrs. Cells are placed at 70uC to

await RNA harvesting using a High Pure RNA kit (Roche, Inc.).

The harvested RNA is subjected microarray analysis as described

below.

Experiment 2 (Starvation response)
To study a starvation-response (experiment 2) the only change

from experiment 1 is to shift to Fries medium with no carbon

source (instead of Fries + QA (0.3%)) for 0, 0.5, 1, 1.5, 2, 4, 6, or

8 hrs.

Experiment 3 (QA-response by qa-1F mutant)
To study the QA-response in a qa-1F mutant (experiment 3), the

experiments are performed as in experiment 1 but with the qa-1F,

pan-2 mutant. Pantothenate Calcium (0.0002%) was used to

supplement Fries medium.

Control experiment
As a control, a shift experiment as in experiment 1-QA response

is performed but with a shift from sucrose (1.5%) to sucrose (1.5%).

RNA isolation
RNAs are isolated as described in [16].

Design of 12K oligonucleotide arrays (Combimatrix, Inc.)
The arrays were constructed exactly as described in [16] with

two changes. The same design was used on all Combimatrix chips

here, and each chip had eight rDNA-derived oligonucleotides.

RNA amplification and oligonucleotide array
hybridization

750 ng of total RNA (as determined by a Nano LabChip

(Agilent Technologies, Inc.)) is amplified and hybridized to

oligonucleotide arrays (Combimatrix, Inc.) as previously described

[16] with one change. Laser confocal scanning is performed on a

GSI Lumonics ScanArray 5000 (now manufactured by Perkin-

Elmer, Inc.) using two laser power and a photomultiplier (PMT)

gain settings adjusted less than 10% between arrays from one of

the two settings.

Quality control on RNAs
RNA samples are verified to have a ratio of at least 1.00 and

their profiles examined for 28S/18S rRNA on the LabChips

(Agilent Technologies, Inc.) with a ratio of 2.00 being considered

the best [37]. As shown in Figure S1, the quality of the RNAs is

quite high with little sign of degradation, although the total

amount of RNA used (750 ng) in amplification needed to be kept

constant from sample to sample. Arrays hybridized to aRNAs are

also visually scanned for trends in the foreground median count

(described below) in control sequences in the (x,y) coordinates on

arrays. In addition, using 4 l-oligonucleotides spiked into each

aRNA (see Methods in [16], the coefficient of variation (CV) in

median foreground count for these spiked oligonucleotides is

estimated, and if the chip has a CV greater than 0.65 (n = 88

because each quality control oligonucleotide is represented 22

times per microarray), the sample is usually not used and redone.

Each oligonucleotide array is verified to have 50–52% of its

features above median background (as determined from the 633

negative controls). This percentage (50–52%) of identified genes

with expression above background is the same (51%) as for clock

oligonucleotide array experiments on N. crassa [16] and in the

range (38%–60%) of previously published oligonucleotide array

experiments [38–39]. All samples passed these quality control

steps. Data are deposited in the MIAME-compliant Neurospora

crassa functional genomics database at http://www.yale.edu/

townsend/Links/ffdatabase/introduction.htm [40] under acces-

sion numbers 134 (experiment 1-QA response), 133 (experiment 2-

starvation), 135 (experiment 3-QA response by qa-1F), and 136

(control).

Background subtraction and normalization
There are 3 perturbation experiments and one control

experiment, each with 8 time points. Typically each experiment

uses a different scanner. Each time point is associated with a single

microarray which contains 12,544 features (12K chip) including

11,911 genes of interest and 633 negative control genes. All of the

background subtraction and normalization is done within each of

the 32 ( = 4 experiments68 time points) microarrays. The

background subtraction is accomplished by subtracting the

minimum reading of all 11,911 genes of interest for each chip.

Systems Biology of the qa Cluster in N. crassa
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All the data are then transformed by means of taking the base 2

logarithm and normalized in the following robust way:

Zijk~(bijk{bij,50th)=½(bij,95th{bij,5th)=3:29�,

where i = 1,…,4; j = 1,…,8; k = 1,…,11911; bijk is the background

subtracted and base 2 logarithm transformed microarray value of

the kth gene in the jth chip of the ith experiment; bij,50th, bij,95th bij,5th

are the 50th, 95th and 5th percentile of the b values respectively

within the jth chip of the ith experiment.

The reason that the sample median (bij,50th) rather than the

sample mean is used as a center is to guard against the effects of a

few very large outliers, such as the QA-responsive genes. The

denominator expression (bij,95th - bij,5th)/3.29 is a robust estimate of

the standard deviation based on the middle 90% of the data

points. If the data were truly normally distributed, this estimator

would be approximately the sample SD of the b values. The reason

the actual sample SD is not used is, as above, to guard against

outlier effects.

Least Median Squares (LMS) regression
After preliminary analysis of the positive controls (known genes

from the qa gene cluster), we noticed that many of these positive

controls (see results) had a very sharp increase from the first

measured time point (t = 0) as compared to all other time points.

Hence, we decided to try to identify other genes with this same sort

of behavior. Consequently, to conduct this test for the four

experiments, a scatter plot was made with the normalized Z values

for all genes, where the x-axis displayed the Z value (Zi,1,k) at the

first time point (t = 0) and the y-axis displayed the average value

(Zi,avg,k) at the other seven time points, i.e.,

Zi,avg,k~
1

7

X8

j~2

Zi,j,k,

where i = 1, 2, 3, 4; k = 1, 2,…, 11911.

The four scatter plots are shown in the Results. In each case, as

one can clearly observe, there is a positive linear association

between the x and y variables. However, there are a few data

points which deviate significantly from the linear pattern. Since

these few outliers could distort a traditional ordinary least squares

(OLS) regression fit, we also fit the least median squares (LMS)

regression [41] line to each of the 4 experimental data sets. It

happened that the OLS method was not as effective as LMS, thus

resulting in a low power using the identification method described

below. On the other hand the LMS method selected too many

genes in Experiment 2 using the same method (see results). So

finally we combined these two methods and took the average of

the fitted LMS line and OLS line as our best predictor line. From

this line we calculated the standardized residuals

ri,:,k~
Zi,avg,k{(b0zb1 � Zi,1,k)

ŝse

,

where ri,.,k is the standardized residual, b0 and b1 are the regression

coefficients from the averaged OLS/LMS method, and ŝse is the

75th percentile of the absolute residual divided by 1.15; and

calculated the p-values in the standard way pi,:,k~1{W(ri,:,k),
where W is the CDF of the standard normal distribution; These p-

values yield the probability of a residual of the size observed or

larger, given that the fitted line is correct. Of course, if we naively

choose those points with p-values less than 0.10 as being

significant, we will have too many ‘‘false positives’’ because of

multiple testing. Hence, we used the Benjamini-Yekutieli False-

Discovery Rate Correction procedure [42] with a = 0.10 to detect

those genes which were truly significant. See the Results. As can be

seen from Table 1, the false discovery rate procedure seriously

restricted the number of genes that are truly considered to be on.

In Table 2 we see the effect on choice of regression line.

Microarray analysis
Each oligonucleotide array is typically scanned ,50–60 times,

and from these scans a median foreground (FG) count on each

microarray feature is obtained for each of 12,544 (12K) features on

an oligonucleotide array. From each median foreground count on

an oligonucleotide array, a background subtraction is performed

as described in the previous section. Then the median foreground

counts are normalized within arrays as described in the previous

section. A MIPS functional classification (FUNCAT in Table 3) is

assigned to each feature on a chip [43]. Hierarchical clustering of

genes is implemented in Cluster 3.0 [44] available at http://

bonsai.ims.u-tokyo.ac.jp/,mdehoon/software/cluster. Options

selected for analysis are average linkage (i.e., UPGMA) using

phenotypic correlation on the Zijk because of its superior aggregate

performance across a variety of cluster validation criteria [45].

Heat plots of trees as in Figure 2 are constructed with Java

TreeView 1.0.12 [46] available at http://treeview.sourceforge.net.

Searching for QA-1F binding sites in silico
Putative QA-1F-binding sites or Quinic Acid-Response Elements

(QAREs) are identified with the program pattern (Accelrys, Inc.)

operating on the 1000 nt upstream of each identified gene [47]

from the file neurospora_crassa_#10BD2C.fasta derived from the

Broad Institute Web site. The offset used is 1 and overhang 0. A

mismatch of 2 is permitted. Patterns [19] searched for are:

GGATAATTATCC, GGRTAATTATCC, GGGTAA{4}TT-

ATCC, GGATAA{4}TTATCC, GGGTAA{4}TTAAGC, GG-

TTAT{4}TCATCC, GGATGA{4}TTAACC, GGCTAA{4}T-

TAACA, GGGTAA{4}TTTTCC, GGCAAA{4}TCATCC, G-

GATAA{4}TAACCC, GGGGAA{4}TTATAG, GGATGA{4}-

TTCTCC, GGCGAA{4}TTACCC, CGTTAA{4}TTATTC,

and GGCTCA{4}TCATCA.

Ensemble methods
The ensemble method is used to fit genetic networks to the

profiling data of experiment 1-QA response and prior published

data (from a replicate of experiment 1-QA response) from

Northerns on six of the seven qa gene cluster genes [2]. The

protocol follows that detailed in the supplement to [11] with the

Table 1. Number of genes identified with or without a Multiple
Test Correction using a significance level of a= 0.10 [42].

Naı̈ve: Number
of genes
identified as ON

Multiple Correction
Procedure: Number of
genes identified as ON

Experiment 1 706 46

Experiment 2 1303 54

Experiment 3 376 2

Control Experiment 637 5

Identified QA
Responsive gene

466 41

doi:10.1371/journal.pone.0020671.t001
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following modifications. For each model tried, 20 random initial

conditions are selected and for each initial condition a Markov

Chain Monte Carlo is initiated with 35,000 equilibration sweeps

and 5,000 accumulation sweeps. For each model, the initial

condition, which results in the best (lowest x2) in the MCMC run is

used to initialize a second MCMC run of 40,000 accumulation

sweeps. The solution method utilized for solving the trajectories

for the ordinary differential equations (ODEs) is modified Euler

since this used less time and gave comparable results to other

methods [26]. The simulations were trivially parallelized by

distributing the 20 independently initialized Markov chains over

20 independent processors. If the experimental data set comprises

data from multiple experiments performed independently under

different experimental control conditions, e.g., due to different

perturbations, a corresponding independent ODE system must be

solved for each such experimental condition in every Monte Carlo

updating step. Additional parallelization speed-up can then be

achieved by distributing these independent ODE solutions over

multiple processors. This ODE solver parallelization could be used

in future simulations, as data from further experiments with

different control conditions are added to the data set. ODE solver

parallelization in the ensemble method was utlilized (but not

capitalized on) in the simulations presented here, since the

experiment 1-QA response data set comprises data from only a

single experimental control condition.

Results

Is the control experiment needed in identifying QA-
responsive genes?

The first question is whether or not the control experiment (i.e.,

a shift from sucrose to sucrose) has a significant effect on

identifying QA-responsive genes. Previously we used a simple

unpaired t-test to compare mRNA levels of cells grown on glucose

to those grown on QA (Figure 2, [5]). A total of 895 genes with QA

upstream response elements (QAREs) were identified as candidates for

QA-responsive genes. As in Figure 5 of (1), the functions of

responding genes were distributed over a broad array of functional

categories including carbohydrate metabolism, ribsosome biogen-

esis, cell cycle, DNA metabolism, and others [5].

If instead we incorporated the control experiment and use here

a paired t-test of differences in mRNA level (one of two places a

traditional t-test is used in this paper for comparison with earlier

work) between the control experiment and the experiment 1-QA

response experiment (i.e., WT QA-response), then the number of

responding genes in Figure 2 is much more circumscribed in

number. There are now only 300 genes in Figure 2 responding to

the shift in experiment 1-QA response when compared to the

control experiment. Many of the same functional categories are

seen, such as amino acid metabolism and carbohydrate metabo-

lism in Figure 2 as in Figure 2 of [5], but the number of identified

responders is dramatically less. It is clear that the use of the control

experiment has a significant effect on filtering for QA-responsive

genes. We now turn to examining the effects of imposing the

remaining predicted properties of QA-responsive genes with a

multiple-test correction on the 895 initial candidates identified

previously [5].

What are the QA-responsive genes as identified by all
four microarray experiments?

We now combine the results of all four microarray experiments

in Figure 3 to identify QA-responsive genes. First, the measured

mRNA abundances over time are determined in each of four

microarray experiments. The mRNA abundances are background

subtracted and normalized as described in the Materials and

Methods. Then the mRNA abundance at time 0 and the average

abundance at a later time is normalized with a robust measure

of scale to form a nontraditional t-statistic (see Materials and

Methods). To determine if a significant change in mRNA

abundance for each of the 11,000 genes in the N. crassa genome

has occurred, a robust and linear regression of the t-statistic at

later times (tave) is performed on the t-statistic at time 0 (t0). It can

be seen in Figure 3 that the regression is quite good. If there is a

significant increase in mRNA abundance by a particular gene in

one of the four experiments, then its pair of values (t0, tave) will fall

far above an average of the two regression lines, after a suitable

multiple-test correction using a significance level of 0.1 (see

Materials and Methods). The significance test makes a normality

assumption about the residuals (z) from the regression line in

Materials and Methods and is examined in Figure S2 for each

experiment using histograms and normal plots [48].

Genes (in red) in Figure 3 are known qa cluster genes that were

identified as significantly responding in experiment 1-QA

response; genes in yellow are known qa cluster genes that were

not identified as significantly responding in experiment 1 (see

Discussion). The remaining genes in blue are genes outside the qa

cluster found to respond significantly in experiment 1-QA

response, but not in experiments 2-starvation and 3-QA response

by qa-1F or in the control experiment. A total of 50 features on the

microarray chips are found to constitute QA-responsive genes

after a multiple-test correction using a significance level of 0.10

[42]); see Materials and Methods and Table 1). Some of these QA-

responsive genes (50) show up only as significant departures from

the least median squares (LMS) regression line; a fewer number of

QA-responsive genes (46) are identified by their departure from an

average of the ordinary least squares (OLS) regression line and the

LMS robust regression line (Table 2). Since some genes are

represented in duplicate on the microarray chips, a total of 41

distinct genes can be found in Table 3 as QA-responsive. Most of

these 50 genes are found to respond in experiment 1-QA response,

but most not in experiments 2-starvation and 3-QA response by

qa-1F and the control experiment. These genes also have the right

mRNA kinetics (as is discussed below). These genes behave

consistently with Prediction (1).

There is also an interesting set of QA-responsive genes (in blue)

that fall significantly below the regression line in the control

experiment (Figure 3 – Panel A). Most of these genes appear to

be transport genes, and they appear not simply to be off, but

positively reduced in mRNA abundance in the absence of QA. It

would appear that the cell does not waste resources producing

these transporters when the metabolite is not available. This kind

Table 2. Number of genes identified with ordinary least
squares (OLS), with robust least median squares (LMS) [41]
and with the averaged OLS/LMS method (see description in
Materials and Methods) using a significance level of a= 0.10.

OLS LMS OLS/LMS

Experiment 1 31 67 46

Experiment 2 12 253 54

Experiment 3 2 2 2

Control Experiment 3 13 5

Identified QA Responsive gene 28 50 41

doi:10.1371/journal.pone.0020671.t002
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Table 3. QA-responsive genes are described by their NCU number [47], N. crassa gene name when available, MIPS FUNCAT
classification [43]), KEGG assignment, whether or not they possess a known QA response element (QARE), and whether or not they
are leaky in their response to quinic acid (QA).

NCU# Feature ID Gene name FUNCAT FUNCAT Description KEGG QARE Leakiness$

1517 10032 gla-1 1.05.01.01.01 Sugar, glucoside, polyol, & carboxylate metabolism 13669

1830# 12383 1.01.09.05.02 Tyrosine degradation 3188

3643* 9441 11.02.03.04 Transcriptional control 4869

5499# 11438 1.01.09.05.02 Tyrosine degradation X 1320

6024# 9636 qa-4 1.20.15 Biosynthesis of derivatives of dehydroquinic acid,… X 286

2704* 12467 1.05.01 C-compound & carbohydrate utilization Valine Metabolism 1327

6023# 8395 qa-2 1.20.15 Biosynthesis of derivatives of dehydroquinic acid,… X 1533

6023# 11955 qa-2 1.20.15 Biosynthesis of derivatives of dehydroquinic acid,… X 1971

8315# 10618 1.20 Secondary metabolism 1106

6675* 8082 1.05.01.01.01 Sugar, glucoside, Polyol, & carboxylate metabolism X 205

5134# 8639 99 unclassified 7512

9491 8958 fea-1 1.05.01.01.02 Polysaccharide degradation X 270

5627 8797 ght-1 20.01.03 C-compound & carbohydrate transport 4020

5897# 9998 20.01.03 C-compound & carbohydrate transport 3452

9525# 5569 99 unclassified 1446

2364# 12455 99 Unclassified (putative C2H2 domain) X 15321

6025# 12398 qa-3 1.20.15 Biosynthesis of derivatives of dehydroquinic acid,… X 1965

6881 1839 1.05.01 C-compound & carbohydrate utilization 22247

0801 5142 20.01.03 C-compound & carbohydrate transport 3540

6023# 6039 qa-2 1.20.15 Biosynthesis of derivatives of dehydroquinic acid,… X 1356

4072# 7586 99 unclassified Tryptophan metabolism X 4949

6026# 7429 qa-y ,distinct
primer

1.20.15 Biosynthesis of derivatives of dehydroquinic acid,… X 2785

0591* 4627 01.01.11.04.02 Leucine degradation Valine metabolism X 4490

0992 7199 99 unclassified 9063

9133# 12401 acw-7 99 unclassified 70579

5755# 10391 99 unclassified 3023

6025# 5215 qa-3 1.20.15 Biosynthesis of derivatives of dehydroquinic acid,… X 2897

6023# 9092 qa-2 1.20.15 Biosynthesis of derivatives of dehydroquinic acid,… X 1448

6025# 5518 qa-3 1.20.15 Biosynthesis of derivatives of dehydroquinic acid,… X 1718

8315# 3959 1.20 Secondary metabolism 1106

7888 9891 99 unclassified X 8188

4914 9342 99 unclassified 2925

6023# 4289 qa-2 1.20.15 Biosynthesis of derivatives of dehydroquinic acid,… X 1209

6524# 2391 16.09 Lipid binding 2529

6025# 4856 qa-3 1.20.15 Biosynthesis of derivatives of dehydroquinic acid,… X 1221

6025# 3426 qa-3 1.20.15 Biosynthesis of derivatives of dehydroquinic acid,… X 1875

5291 9604 14.07.04 Modification by acetylation, deacetylation X 3365

6524# 12359 ,
duplicate

16.09 Lipid binding 2529

0121# 8145 20.03.01.01 Ion channels 11429

5775 10122 aap-13 99 unclassified Amino acid transporter 16077

6815 8623 40.01.03 X 8117

4872# 9829 99 unclassified 22898

5315# 12523 99 unclassified 17836

8541# 8022 99 unclassified 7732

1231 10269 20.03.01.01 Ion channels 639

8771 8084 1.01.09.04.01 Phenylalanine degradation 6392
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of observation on the transcriptional repression of QA related

transporters has been seen for the qa-y gene (Figure 1 in [28]).

6 genes in the qa cluster were selected to validate the microarray

analysis by Northern analysis using a replicate of microarray

experiment 1 – QA response [2]. A total of 4 of these selected genes

appear in Table 3, and 2 of these selected genes (qa-1F and qa-x)

were selected as controls, having not appeared in Table 3. All six of

these qa genes have 5–6 replicate microarray measurements per

chip (see Materials and Methods). An analysis of covariance was

performed using the log2 of the microarray expression level of each

gene as the dependent variable and the log2 of the Northern

expression level, as the independent covariate [49]. All slopes were

significant at the 0.05 level except qa-1F (low abundance), and the

slopes were all positive. For no gene could the parallel slopes

hypothesis across replicate microarray measurements be rejected at

the 0.05 level. The R2 for the 4 qa genes from Table 3 varied from

0.78–0.94; the R2 for the qa-1F and qa-x not from Table 3 were 0.13

and 0.48, respectively. The most highly expressed genes (qa-2 and

qa-3) had a very high R2 (.0.69). We conclude that 4 of the entries

in Table 3 were validated by Northern analysis, but the qa-1F gene

with low expression is an example of a gene that was missed in the

microarray analysis (probably for reasons of power; see below).

The power and false positive rate of this test in experiment 1-QA

response can be assessed empirically by the positive controls

provided by qa cluster genes on each chip and also by 633 negative

controls involving sequences from unrelated genomes (see Materials

and Methods). An independently performed shift experiment to

starvation conditions can be used to estimate the power in

experiment 2-starvation [20]. The operating characteristics (i.e.,

false positive and false negative rates) of these experiments are

summarized in Table 4. The power is lower than in previous

microarray experiments on the clock (Table 1 in [16]).

In addition, we calculated a proxy for power in Table 4 called

the gene expression level 250 (GEL50) [50]. This GEL50

represents the fold variation between treatment (time points after

the shift) and control (time point 0), at which 50% of the genes

deemed to be significant have a larger fold variation than the

GEL50. The values reported for experiment 1-QA response and

experiment 3-QA response by qa-1F are in the range of at least 7

other published microarray experiments [50,16]. The logistic

regression used to calculate the GEL50 for experiment 3-QA

response by qa-1F is only based on two positives (see Table 1), and

the P-value of the slope in the logistic regression was P = 0.05.

What genes have a starvation response?
A total of 49 genes show a significant positive response to

starvation in Figure 4. As shown in Figure 4, only 5 genes overlap

in their response to starvation (i.e., shift from sucrose to Fries in

experiment 2) with the QA-response (i.e., a shift from sucrose to QA

in experiment 1). The small number of genes so identified would

indicate that the cell appears to differentiate well between these two

signals, quinic acid from no carbon source. In that so few genes [5]

are elicited both in a starvation and QA-response, we have listed

them in Table 3 (marked as starvation). So, 45 out of the 50 genes in

Table 3 are consistent with Prediction (2).

Xie et al. [20] conducted a similar starvation experiment. In

their experiment the shift was from 2% glucose to starvation

conditions over a 2-hour window, and they only assayed 1335

genes on cDNA arrays with a two-color system, which is not as

sensitive as the one-color system used here (see Materials and

Methods). While they analyzed 8 data points per gene, we double

this and analyze 16 data points per gene (8 under no shift from

sucrose and 8 under shift to starvation conditions in Fries medium

without a carbon source). To make the analysis of our microarray

data comparable to that in [20], we perform a traditional paired t-

test of mRNA abundance between experiment 2-starvation

response and the control experiment to identify 1928 candidate

genes involved in a starvation response (see paired t-test

description in Figure 2). While Xie et al. [20] found 19% of the

genes in the genome were involved in a starvation response based

on a representative cDNA library, we find 18% of the genes

implicated in a starvation response using microarrays representing

all genes. We would expect to find that Xie et al. [20] would

replicate 30% (from experiment 1-QA response) of the detected

genes responding here to starvation from Table 2, and we observe

40% of the positives (Tables 1–5 in [20]) in agreement with the

expectation from the experiment 2-starvation estimated power

(30%) in Table 4. The experiment of Xie et al. [20] provides an

independent validation of our microarray experiments here as well

as an independent estimate of power for experiment 2-starvation

in Table 4.

Are there other pathways or regulators for metabolizing
QA?

As a final prediction about QA-responsive genes, we would

expect no response to shift to QA in a qa-1F mutant in experiment

NCU# Feature ID Gene name FUNCAT FUNCAT Description KEGG QARE Leakiness$

10021*# 5062 hgt-1 20.01.03.01 Sugar transport Monosaccharide
transporter

258

3415 11884 cbs-3 32.05.01 Defense-related proteins X 2498

9429 7934 99 unclassified Flavin mono-oxygenase X 1502

9873# 4944 acu-6 2.01 Glycolysis/glucanogenosis Carbon metabolism X 2970

The listed entries survived a test for being significantly (a= 0.10) above the LMS regression line in experiment 1 after a multiple-test correction (see Materials and
Methods and Table 2). Entries significant at the a= 0.05 have their NCU number footnoted with a #. The gla-1 gene is probably a sorbose-resistant mutant in the classic
sense [32] and acu-6 encodes a phosphenolpyruvate carboxykinase [32]. The high-affinity glucose transporter (hgt-1) was first characterized by XIE et al. [20]. While
another gene designated by NCU03415 is classified as defense-related, it would also appear to encode a function in fermentation and glycolysis as an aldehyde
dehydrogenase. Genes with NCU06881 and NCU02704 have a carbohydrate metabolism FUNCAT classification, but are also classified under valine, leucine, and
isoleucine degradation under KEGG. The latter classification was accepted.
*These starred entries were significant in both experiment-1-QA response and experiment-2-starvation.
$Leakiness in QA-expression is defined to be an absolute abundance of mRNA of .1000 on sucrose at time 0 and absolute abundance of mRNA on QA of .10,000 for a
later time point than t = 0.

#significant at the 0.05 level.
doi:10.1371/journal.pone.0020671.t003

Table 3. Cont.
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3. If such a response were observed, it would be indicative of an

alternate pathway for QA metabolism or an alternate regulator for

qa-1F, as examples. Among the genes identified as responding to

shift from sucrose to QA, two are found responding to the same

shift in a qa-1F mutant. Given that 11,000 genes are tested, it is

very likely that these 2 responders represent noise in the mRNA

abundance data. The total number of genes responding to a shift

from sucrose to QA in a qa-1F mutant in Figure 4 is consistent

with chance explaining the appearance of a significant response

upon repeated testing, 11,000 times on 11,000 genes. We conclude

that it is unlikely there is an alternate functional pathway for

metabolizing QA or an alternate regulator of the qa cluster genes.

Prediction (3) appears to be satisfied.

What are the kinetics of mRNA abundance among QA-
responsive genes?

The kinetics of the 50 QA-responsive genes are summarized in

Figure 5. In Figure 5 the positive response of all QA-responsive

genes can be seen over time. These QA-responsive genes fall into

two categories. In the top part of the heat plot, where most of the

qa cluster genes are found (some in duplicate), the genes respond

immediately to a shift to QA. On the bottom part of the heat plot

in Figure 5, genes show a delayed responsive to QA. The genes

with no delay fall principally into two functional categories; they

are members of the qa gene cluster or they are sugar transporters

usually.

The detailed kinetics of QA-responsive genes are presented in

Figure 6. This panel of temporal profiles of mRNA abundances

for different genes is exhaustive of the kinds of temporal patterns

observed among the 50 QA-responsive genes. We can see the fast

response in mRNA abundance for the sugar transporter hgt-1 and

the qa cluster gene, qa-4, in Figure 6. There is also the more

gradual response of the qa-y and a putative carbohydrate

metabolism gene (NCU05627). The pronounced delay in kinetic

response to QA can be seen in the transcription factor

(NCU03643) and a gene (NCU09873) encoding a phosphoenol-

pyruvate carboxykinase involved in glycolysis/glucanogenesis

[51]. The expectation for the kinetic response is concave down

with time with a fall off in mRNA abundance over long enough

time periods [2]. Some of the genes, such as NCU02704, show this

kind of response. All of these genes are representative of the

responses by the 50 genes in Table 3 and behave as expected from

prediction (4).

What are the functions of the QA-responsive genes?
As a first step all 50 QA-responsive genes are assigned a MIPS

(FUNCAT) classification in Figure 7 [43]. In stark contrast to the

broad array of functions linked with galactose metabolism in

Figure 5 of [1], the QA-responsive genes are only distributed over

8 functional categories. This sharply defined distribution of

function among QA-responsive genes is highlighted by a

comparison with the proportion of these functions in the genome

(inner wheel of Figure 7). It is also instructive to compare the

collection of functions under QA-1F control with those under

clock control because both exert regulation over carbohydrate

metabolism. This focused collection of functions among QA-

responsive genes is very different from the broad array of functions

represented among clock-controlled genes in the biological clock of N.

crassa [16] as well; moreover, in contrast to clock-controlled genes, QA-

responsive genes are mostly of known function; only 27% of the

QA-responsive genes are unclassified in function in Figure 7.

Apparently the series of 4 microarray experiments are quite

precise in selecting functions related to the qa gene cluster. The

fact that the QA-responsive genes represent such a limited array of

functions implies that the 27% of unclassified genes are likely to

fall into this limited number of identified functional categories in

Table 3.

When the QA-responsive genes are overlayed on the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways [52–53],

the 8 functional categories represented in the QA-responsive genes

are tightly distributed across 8 interconnected metabolic modules,

all linked with the TCA cycle or glycolysis, as shown in Figure 8.

The QA metabolism pathway has long been known to be

functionally coupled to aromatic amino acid metabolism [25] and

has been hypothesized to feed into the TCA Cycle [54]. As

predicted [25], aromatic amino acid metabolism is well-represent-

ed (12%) among the 50 QA-responsive genes in Figure 5 (top

cluster). All of the metabolic modules with QA-responsivxe genes

Figure 2. Transcriptional profile of 300 putative genes with
QAREs upstream at 0, 1/2, 1, 3/2, 2, 4, 6, and 8 hrs after shift
from sucrose (1.5%) to QA (0.3%) after background subtrac-
tion, normalization within arrays relative to the grand median
of each chip, logging, and clustering with average linkage
using Euclidean distance between mRNA profiles of different
genes [44]. A total of 8 time points on sucrose (1.5%) are concatenated
prior to the shift from the control experiment (see Materials and
Methods). The bright green is 23, and the bright red is +3 is expression
level on a decadic log scale. Data arose from 16 oligonucleotide arrays
probed with a biotin labeled aRNA. Varied FUNCAT classifications are
overlayed in the right margin of this microarray experiment [43]). The
qa cluster genes in Fig. 1 are represented at least 5 times on each chip.
The 300 genes with QAREs upstream were selected by a paired t-test
applied to the profile of each of the 11,000 genes, and those with a
significant t with t7.2.365 (a= 0.05) are displayed.
doi:10.1371/journal.pone.0020671.g002
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are directly connected to the TCA cycle, except for the starch and

metabolism module, and a number of enzymes in aromatic amino

acid metabolism are encoded by QA-responsive genes.

QA-responsive genes in aromatic amino acid biosynthesis tend

to be part of the qa cluster (but see NCU03415, NC01830,

NCU05499, and NCU04072), and aromatic amino acid

biosynthesis is coupled to Val, Leu, and Isoleucine degradation

through 4 QA-responsive genes (NCU03415, NCU06881, and

NCU02704, and NCU00591). The gene NCU02704 encodes a

putative 2-oxoisovalerate dehydrogenase E2 component, which

may control flow through all three pathways in the Val, Leu, &

Ile degradation module in Figure 8. The gene NCU06881

encodes a putative succinyl-CoA:3-ketoacid-coenzyme A trans-

ferase subunit A possibly linking the Val, Leu & Ile degradation

module to butanoate metabolism in Figure 8 as well as possibly

controlling metabolic flux to a key metabolite, Acetyl-CoA.

Prediction (5) is satisfied.

From prior work (M. E. CASE, unpublished) it was predicted

(i.e., Prediction (6)) that sorbose resistant mutants involved in

starch and sucrose metabolism would involve QA-responsive genes

because sorbose-resistant mutants constitutively activate QA-

metabolism on sucrose as discussed earlier. The only metabolic

module with a QA-response gene two steps removed from the

TCA cycle is the gla-1 (NCU01517) gene inferred to encode a

glucoamylase precursor converting glycogen or dextrin to a-D-

glucose. The gene gla-1 has the same biochemical activity as the

gla-2 (also known as sor-4) gene, which as a mutant has a sorbose-

resistant phenotype. This gene can be thought of as encoding the

last step in glucanogenesis or the first step to metabolizing an

energy reserve.

The TCA cycle contains a QA-responsive gene (NCU09873);

this gene encodes a phosphoenolpyruvate carboxykinase, which

produces phosphenolpyruvate (PEP), another key metabolite

leading to (into) the TCA cycle, glycolysis/glucanogenesis, and

pyruvate metabolism [14]. By conversion of PEP to pyruvate there

is also a link to Val, Leu, and Ile degradation. This phosphoenol-

pyruvate carboxykinase encoding gene also has an upstream

QARE for regulation by QA-1F (see Table 3). It has also been

identified as being elicited by a starvation response in N. crassa [20]

and here in experiment 2-starvation.

The gene (NC03415) encoding a putative aldehyde dehydroge-

nase is QA-responsive and links glycolysis and glucanogenesis to a

number of other metabolic modules in Figure 8, including the

TCA cycle, Val, Leu, and Ile degradation, aromatic amino acid

metabolism, pyruvate metabolism, and butanoate metabolism.

This enzyme appears to be a major coupler of metabolic modules

in Figure 8. The organisms may carry out this flux control of

multiple metabolic modules by metabolizing acetate to and from

acetaldehyde. For example, this enzyme appears to control flux in

all three metabolic modules by converting products of alcohol

dehydrogenase into Acetyl-coenzyme A (coA) (connecting to the

TCA cycle, pyruvate metabolism, and glycolysis/glucanogenesis)

in Figure 8 [14]. This gene also has a QARE upstream (see

Table 3).

The connection to butanoate metabolism appears to be largely

redundant with respect to enzymes found in other metabolic

modules, namely the NCU06881 encoding a putative succinyl-

CoA:3-ketoacid-coenzyme A transferase subunit and the

NCU03415 encoding a putative aldehyde dehydrogenase previ-

ously discussed. Both of these enzymes control flow to acetoacetate

for entry into and out of butanoate metabolism.

The links to pyruvate metabolism include the previously

discussed NCU09873 gene encoding a phosphoenolpyruvate

carboxykinase controlling flow into the pyruvate metabolism

module and the putative aldehyde dehydrogenase encoded by

NCU03415 controlling flow through the module.

The last metabolic module includes the sugar and amino acid

transporters. The hgt-1 gene is reported as responding significantly

to a starvation response [20], and we also find it to respond to

starvation and QA in Figure 5. Among the 90 transporters in the

N. crassa genome [43], there are 9 such transporters that are QA-

responsive in Table 3; one of these is thought to be an amino acid

transporter (NCU05775). Another is thought to be a lactose

transporter (NCU00801).

Figure 3. The average of background subtracted and normalized mRNA abundances of each gene at later times is regressed on its
background subtracted and normalized mRNA abundance at time 0. Those genes that fall significantly above an average (in black) of the
two regression lines (in red and blue) are used to characterize QA-responsive (panel B), starvation-responsive (panel C), and QA-responsive in a qa-1F
mutant (panel D). The first panel A is a regression of an average of later time points of a particular gene on time point 0 for the same gene in the
control experiment. Genes in red are qa cluster genes. Genes in blue are QA-responsive genes as defined in the text, which are not qa cluster genes.
Genes in yellow are qa cluster genes not found to be QA-responsive (i.e., false negatives). Genes in black are all other genes. The regressions in other
panels and color coding of genes are defined similarly for other panels B–D.
doi:10.1371/journal.pone.0020671.g003

Table 4. Observed fraction of false positives and false negatives among 633 negative controls on each microarray chip and among
40 distinct genes as positive controls using reported qa cluster genes.

Fractions observed

Microarray Experiment
Nominal
significance level (a)

False
positives

False
negatives power GEL50

QA-response by WT (Exp 1) (S/QA) 0.05 0.16 0.70 0.30 2.69

Starvation-response by WT (Exp 2) (S/Fries) 0.05 0.32 0.60 0.40 5.82

QA-response by qa-1F mutant (Exp 3) (turn QA-1F off on S/QA) 0.05 0.31 - - 2.79

The estimated power is 1 – fraction of false negatives observed. The fraction of false positives observed can be compared with the nominal significance level used to
identify genes that are: (1) QA-responsive in WT; (2) starvation-responsive in WT; (3) QA-responsive in qa-1F. The gene expression level-50 (GEL50) is a proxy for power
[50] and allows comparison of power properties of the experiments below with other published experiments.
doi:10.1371/journal.pone.0020671.t004
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Ensemble fitting of 7 distinct genetic networks to the
profiling data from the different microarray experiments

In this section we specifically test how the QA-responsive genes

in Table 3 are regulated. We used the ensemble method of

network identification [2,55–58]. In Table 5 we fitted several

extensions of the genetic network in Figure 1 with 147 molecular

species and 204 reactions for the null hypothesis (denoted all1F-

2E). The extensions vary as to what (QA-1F or NCU03643)

regulates the QA-responsive genes outside the qa cluster. For

example, one model entertained is that only QA-1F regulates

the QA-responsive genes (all1F-2E). In another model only

NCU03643 regulates QA-responsive genes outside the qa cluster

and itself (all3643self-2E) as shown in Figure 8. In order to give

ourselves a more extensive exploration of the parameter space,

each model ensemble was pursued for 40,000 sweeps (35,000

equilibration sweeps+5,000 accumulation sweeps) in parallel to

identify the best candidate among 20 different random initial

conditions for the MCMC Method (see Materials and Methods

and Figure S3), which is then used to initiate a final accumulation

run of 40,000 sweeps.

The results would indicate that the simplest (null) hypothesis

that only QA-1F regulates the QA-responsive genes can be

rejected in favor of any of the six alternative hypotheses in Table 5.

The alternative hypothesis in Figure 8 (all3643-2E) has a lower

minimum x2 than the null hypothesis (1489 vs. 1754 in Table 5).

The only ensemble, which can be rejected, is the null hypothesis

(all1F-2E) in which QA-1F regulates all QA-responsive genes and

the qa cluster). The remaining models are not distinguishable

based on the profiling data so far accumulated. The distribution of

chi-squared values across 7 model ensembles is shown in Figure 9.

The overlap in these distributions is another indication that the

alternate models tried cannot be distinguished. The first three

models in Table 5 contain the null hypothesis, and so an ordinary

difference of the x2 s can be used with df = 35 and a= 0.05. These

differences are significant at at least the 0.001 level. We conclude

that the delay in expression of some QA-responsive genes is

explained in part by the regulation by NCU03643.

In Figure 10 we show how the ensemble for model all3643-2E

predicts all the major classes of responses to shift to QA. The

predictions are quite in accord with the profiling data. The only

issue is that the profiles of qa-4 and qa-y are a little over-dispersed

as was the case for the clock network [16]. The qa-4 and qa-y data

in Figure 10 include the Northern data from a replicate of

experiment 1-QA response to validate the microarray data

reported [2].

Use of markers for a QA-response in other studies
It is common practice to include a qa-2 promoter in various

expression vectors to study other processes in N. crassa (see for

example, [59]); [16]). In hooking up a gene to a qa-2 promoter it

would be useful to have an independent positive control for a

response to quinic acid (QA). In principle, any of the 50 genes in

Table 3 could be used, but it would be highly-desirable to use a

gene that is truly off (not leaky), when there is no QA in the

medium.

In Table 3 the maximum and minimum absolute abundance

measured over an 8-hour window from sucrose to QA is recorded

from experiment 1-QA response. Leakiness is defined to be an

absolute mRNA abundance above 1000 on sucrose. In Table 3

four genes are not leaky (in bold), and have an absolute mRNA

abundance on QA of at least 10,000 on a 0–64,000 scale. In

Table 3 genes that would represent good positive controls with

little leakiness would be qa-4, fea-1, hgt-1, and NCU01231. The

QA-responses of qa-4 and hgt-1 are shown in Figure 6.

Discussion

How is the shift to quinic acid predicted to affect the
flow through metabolic modules?

Work on other systems, such as S. cerevisiae, has identified

enzymes that are key to determining the flow through metabolic

modules in Figure 8 [14]. As an example, the putative aldehyde

dehydrogenase encoding gene (NCU03415) may determine flow

in several metabolic modules including to the TCA and Glyoxylate

Cycles. This would suggest that aldehyde dehydrogenase could

have a particularly important role in flux through the TCA cycle

upon shift to QA. We expect that by the up-regulation of the

putative aldehyde dehydrogenase as a direct response to shift to

QA would increase flux through the TCA and glyoxylate cycles. In

contrast in prior work [20] starvation was found to have relatively

little effect on the components of the TCA cycle.

Another key enzyme in control of flux in glycolysis/glucanogen-

esis was the QA-responsive gene (NCU09873) encoding a phos-

phoenolpyruvate carboxykinase [14]. This enzyme may control

the direction of flow in glycolysis/glucanogenesis under glucose

starvation. When induced under QA here, the expectation is that

flow would be in the direction of glucanogenesis. Under quinic

acid carbon source or starvation the organism is storing carbon

and energy in glucanogenesis. This is similar to the flow under

glucose starvation [14] and opposite that implied by [60] on

galactose (GAL) in S. cerevisiae, where GAL feeds into glycolysis.

The enzyme (NCU09873) may also control flow to pyruvate

metabolism and Val, Leu, and Ile Degradation modules as well.

QA-responsive genes are distributed extensively in aromatic

amino acid metabolism and Val, Leu, and Ile degradation. The

two modules appear connected in a cycle in Figure 8. From the

strong QA-response of the putative 2-oxoisovalerate dehydrogen-

ease E2 component, we hypothesize that back flow through this

degradation pathway is increased on shift to QA. All three

pathways in this module are affected by this one enzyme, 2-

oxoisovalerate dehydrogenease.

While these flux predictions can be made, the caveat is that

measured fluxes in metabolic pathways don’t always reflect what is

Figure 4. A Venn diagram summarizing the classification of all
genes and control features on oligonucleotide arrays as QA-
responsive (experiment 1), starvation-responsive (experiment
2), or QA-responsive in a qa-1F mutant (experiment 3). Any
genes found to respond in the control experiment were subtracted
from the counts in the Venn diagram. In the end a total of 11,809
features on the oligonucleotide arrays were classified as not responding
in cycles 1, 2, or 3.
doi:10.1371/journal.pone.0020671.g004
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predicted from measured expression levels (the basis of our flux

predictions) [61]. What is needed is to measure the fluxes to test

these predictions [62]. Then an integrated approach combining

measured fluxes with expression data could be enacted as in the

study of C(1) metabolism in Methylobacterium extorquens [63].

Discovering the connections in a genetic network
One of the striking results of the work by [1] is the large number

of genes (997) responding to a shift from raffinose to galactose over

a broad array of functions as in Figure 2 for the qa gene cluster. It

came as somewhat of a surprise that such a well-studied system as

the GAL genes could have such ramifying effects in the cell. The

challenge to understanding this result is that a transcription factor,

such as Gal4p or QA-1F, only has a limited number of targets

[21–22]. Ren et al. [60] identified only 10 targets for GAL4p.

The shift experiments in [1] or [5] did not include a number of

controls that are used here to identify QA-responsive genes in

Figure 3. A simple control, such as a shift from sucrose (1.5%) to

sucrose (1.5%), in conjunction with the experiment 1-QA response

microarray experiment of shift from sucrose (1.5%) to QA (0.3%)

has a dramatic effect on the number of genes identified as QA-

responsive, as shown in Figure 2 when compared with earlier

work (Figure 2 in [5]).

Using a genetic network model in Figure 1 for how the qa gene

cluster functions, a number of predictions can be made about how

a QA-responsive gene should behave (see predictions in Introduc-

Figure 5. Transcriptional profiles of approximately 50 QA-responsive genes at 0, 0.5, 1, 1.5, 2, 4, 6, and 8 hrs after shift from
sucrose (1.5%) to QA (0.3%) in experiment 1-QA response after background subtraction and normalization within arrays as
described in Figure 4 and using Zijk (see Materials and Methods) in clustering with average linkage using the phenotypic
correlation between mRNA profiles of different genes [44]. In this standard heat plot, black represents the starting value typically on sucrose,
while degree of red is indicative of increased mRNA abundance on a log scale. Degree of green is indicative of a drop in mRNA abundance. The
bright green is 23, and the bright red is +3 is expression level on a base 2 log2 scale. Data arose from 8 chips probed with a biotin
labeled aRNA. NCU numbers [47] and gene names (when available) are overlayed in the right margin of this heat plot. Genes in
Fig. 1 are represented at least 5 times on each chip. The 50 genes were selected by regressing an average mRNA abundance at later
times on an mRNA abundance at time 0 for each gene in each of the microarray experiments. 50 genes fell significantly above the
regression line (in black) in Figure 4 experiment 1-QA response and not so experiments 2-starvation and 3-QA response by qa-1F
usually and not in the control experiment and are listed in Table 3.
doi:10.1371/journal.pone.0020671.g005

Figure 6. An exhaustive portrait of the shapes of responses to QA by QA-responsive genes. The 50 genes in Table 3 were visually sorted
by JA into 9 categories as shown with one gene representing each category. Each RNA profile is a plot of mRNA abundance (background subtracted
and normalized) for a particular gene over time in hrs. Each gene is labeled with its FUNCAT classification [43], its NCU number, and its gene name
when available.
doi:10.1371/journal.pone.0020671.g006
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tion). This behavior can be used to filter for QA-responsive genes.

When such a filter is applied in Figure 3, a strikingly different

result is obtained from that in [1]. Only 50 QA-responsive genes

are identified as might be expected from the average number (38)

of binding sites per transcription factor in S. cerevisiae [21–22]. The

array of functions among QA-responsive genes is also telescoped

as shown in Figure 8 to functions closely connected with QA

metabolism. When the diauxic shift is examined under deletion of

the regulation TUP1, for example, a similar targeted response to

diauxic shift in S. cerevisiae is reported [14]. In conclusion, the

controls introduced into the microarray experiment are critical to

identifying genes directly affected by shift to QA from other

ancillary effects, such as starvation.

A genetic network for QA metabolism
In earlier work a simple model was developed for the qa gene

cluster [2]. A series of model-guided microarray experiments have

been carried out to place this genetic network in its larger

metabolic context [5]. Six predictions from the model and earlier

work were largely validated. A fairly detailed hypothesis is fleshed

out in Figure 8 including one new cutinase transcription factor-

1b (NCU03643) of previously unknown function [31] as well as

eight metabolic modules coupled to the core QA pathway in

Figure 1.

The cutinase transcription factor (NCU03643) is in the fun-

gal binuclear cluster Zn(II)2Cys6 family, the largest family of

transcription factors in N. crassa, of which there are 77 members

[64]. This family includes Gal4p and QA-1F, as examples. While a

knockout of this transcription factor (NCU03643) had no obvious

phenotype [31], the microarray experiments summarized here in

Figure 3 yield up several phenotypes. The transcription factor

NC03643 is QA-inducible and is starvation responsive. A mu-

tation in qa-1F suppresses the QA-induction of NCU03643, so

NCU03643 is epistatic to qa-1F. Both Dong et al. [16] and Chen

et al. [65] reported that NCU03643 is light-responsive. The series

of experiments here help to establish the first functional annotation

of this transcription factor. This transcription factor appears to

provide an assist to QA-1F in adapting to a shift to QA as

hypothesized in Figure 8 based on the NCU03643 phenotypes in

Figure 3, and based on its phenotypes we hypothesize

NCU03643 is one of the few targets of QA-1F outside the qa

cluster. In Figure 5 (i.e., the heat plot) we also identify potential

targets of NCU03643 with a delayed response to shift to QA. The

delayed response of NCU03643 induction in Figure 6 may help

to explain those genes with a delayed QA-induction in Figure 5,

as supported by ensemble fitting of a genetic network in which

both QA-1F and the protein encoded by NCU03643 regulate QA-

responsive genes (Table 5).

A second novel feature of the model in Figure 8 is the

involvement of Valine, Leucine, and Isoleucine degradation in the

QA-response. The Val, Leu, & Ile degradation module appears

coupled to the aromatic amino acid metabolism module, which

has long been known to be affected by QA metabolism. For

example the aro-9 gene which encodes a product in the Shikimate

pathway is functionally redundant with the product of qa-2 [66].

These two amino acid metabolism modules are connected in a

Figure 7. 50 QA-responsive genes (as defined in the text) are classified by function (MIPS, [43]) in the outer wheel. Gene products of
the N. crassa proteome are classified by function (MIPS, [43]) as well in the inner wheel. The definition of FUNCAT categories [43] is from Table 3:
transcription factor other than QA-1F and QA-1S (11.02.03.04); leucine, valine, isoleucine degradation (1.05.01, 01.01.11.04.02); aromatic amino acid
metabolism (1.01.09.05.02, NCU04072, NCU09429, 1.01.09.04.01); transport (20.01.03, NCU05775, 20.01.03.01); carbohydrate metabolism
(1.05.01.01.01, 1.05.01.01.02, 2.01, NCU09429); unidirectional cell growth morphogenesis (40.01.03); membrane-related (16.09, 14.07.04,
20.03.01.01; QA metabolism (1.20, qa gene cluster encoded proteins; unclassified (99 and no KEGG assignment of function). The frequencies of
the first 8 categories in the 50 QA-responsive genes vs. the frequencies in the genome were compared by an exact test facilitated with the use of
Cochran’s rules about the size of cell expectations [69]. For the exact test of homogeneity for this 268 table the P-value is 0.000059.
doi:10.1371/journal.pone.0020671.g007
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metabolic cycle. One of the findings of the microarray experiment

is that a gene (NCU02704) encoding a putative 2-oxoisovalerate

dehydrogenase E2 component found in all three pathways of this

amino acid degradation module is strongly up-regulated in

Figure 8. In fact, three other genes with products on this

pathway are also up-regulated in Figure 8. These two amino acid

metabolism modules are coupled to the TCA cycle through

Acetyl-CoA and through Succinyl-CoA. A complete picture of QA

metabolism thus appears to require particular elements of amino

acid metabolism, namely the aromatic amino acid and Val, Leu, &

Ile degradation modules.

A final interesting new feature of the revised model of QA

metabolism in Figure 8 is the inclusion for the first time of genes

outside the qa gene cluster under the apparent direct control of

QA-1F or possibly the gene (NCU03643) and those in the

transport module. Also for the first time the up-regulation of a

variety of transporters other than qa-y, such as the high-affinity

glucose transporter hgt-1 in Figure 6, appears to be involved in

allowing QA into the cell. Many of these transporters appear to

have the telltale signs of being high-affinity QA transporters

because they are positively down-regulated in the control

experiment (See Figure 3, Panel A), as has been reported for

the qa-y gene [28]. This control of other transporters outside the qa

cluster is also found in the GAL genes [60], albeit negative

regulation of other transporters in the case of PCL10 in S. cerevisiae.

Limitations of the microarray analysis in Figure 3
The most severe limitation of the microarray analysis in

Figure 3 is the power to detect QA-responsive genes in Table 4.

While the experiments here more than double in size previous

Figure 8. A model and portrait of the QA-responsive genes overlayed on the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [53]. This model is consistent with either model all3643self-2E or all3643-2E in Table 5, depending on what is assumed about how
NCU3643 is regulated. Arrows in red indicate transcriptional control by QA-1F. Arrows in black indicate transcriptional control by the ‘‘activator’’
NCU03643 on linkage group V [31]. The metabolic modules from KEGG are thumbnail sketches and can be clicked on for their enlargement. Enzymes
outlined in red or in red in pathways are encoded by QA-responsive genes. Metabolic modules in red are thought be under QA-control. Connections
by dotted arrows between metabolic modules are hypothesized by KEGG. The pathways themselves are derived from biochemical studies on a
variety of species. Thumbnails can be enlarged for Starch and Sucrose Metabolism (Figure S4), Butanoate Metabolism (Figure S5), Glycolysis (Figure
S6), Pyruvate Metabolism (Figure S7), TCA Cycle (Figure S8), Aromatic Amino Acid and QA Metabolism (Figure S9), and Val, Leu, Ile degradation
(Figure S10).
doi:10.1371/journal.pone.0020671.g008
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experiments [20] and in line with the power properties of other

microarray experiments [50], the power to detect QA-responsive

genes is still low. It is likely that larger replicates of the experiments

here will detect further QA-responsive genes. Some genes that are

likely to be found are those encoding isocitrate lyase (NCU04230)

and malate synthase (NCU10007) in the glyoxylate cycle [5].

One of the critical variables that affects the power of these

microarray experiments is the adequacy of the oligonucleotide tags

for each gene on the arrays. We made an effort to choose two

distinct tags for each of the qa cluster genes with the exception of

qa-2. The tag for qa-2 had been used successfully previously [16].

What we found is that only one of the two distinct tags for qa-4 and

qa-y shows a clear response to QA. We had observed this effect of

distinct tags on a gene response in prior work for the gene wc-1

[16]. If we had duplicated the ‘‘good’’ tag on qa-4 and qa-y as

described in Materials and Methods, we would have had a much

higher power estimate more comparable to that in Table 3 of [16].

It appears planning some redundancy in oligonucleotide tag

selection on arrays for genes is recommended.

Another limitation of the experiments here is that while it would

have been ideal to have the microarray experiments in all four

experiments in Figure 3 done on the same scanner (See Materials

and Methods), this was not possible. So, we have relied on a test

for QA-responsive genes in Figure 3 that does not involve relying

Figure 9. The x2 distributions differ (do not overlap) for the six alternate hypotheses (Table 5) from (with) that of the null
hypothesis (all1F-2E). Equilibration and accumulation runs of the ensemble method used to calculate these distributions are described in Materials
and Methods. The label all3643s-2E is an abbreviation for model all3643self-2E in Table 5.
doi:10.1371/journal.pone.0020671.g009

Table 5. Seven distinct ensembles are fitted to the profiles of all QA-responsive genes in Table 1 using a parallel implementation
of the ens.f.

Model name

qa cluster
genes (7) are
controlled by:

QA-responsive genes
(,48) not in qa cluster
are controlled by:

NCU3643 is
controlled by:

# of theta-
parameters

x2 after 206(35k Equilibration
sweeps+5k accumulation sweeps)
+40,000 sweeps in Accumulation run

1F-3643-2E A QA-1F QA-1F or NCU3643 QA-1F 147+239 = 386 1755.2

1F-3643-2E B QA-1F QA-1F or NCU3643 NCU-3643 147+239 = 386 1634.2

1F-3643-2E C QA-1F QA-1F or NCU3643 QA-1F or NCU3643 147+239 = 386 1666.0

2genes-2E QA-1F QA-1F
(except ncu5897, gla-1)*

QA-1F 147+204 = 351 1707.4

all1F-2E
(null hypothesis)

QA-1F QA-1F QA-1F 147+204 = 351 2026.3

all3643self-2E QA-1F NCU3643 NCU3643 147+204 = 351 1636.3

all3643-2E QA-1F NCU3643 QA-1F 147+204 = 351 1689.1

The regulatory networks among the 7 model ensembles differ by whether or not QA-1F or NCU3643 controls QA-responsive genes not in the qa cluster including
NCU3643. The minimum goodness of fit x2 over each ensemble is reported as well.
*This model, 2genes-2E, differs from model, all1F-2E, in shifting regulation of genes, ncu5897 and gla-1, to the control of NCU3643.
doi:10.1371/journal.pone.0020671.t005
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on comparisons of mRNA abundances between experiments to

identify QA-responsive genes.

Comparison of different system biology approaches to
understanding carbon metabolism

The model in Figure 1 is similar to the metabolic network

developed for E. coli for carbon metabolism [3] with at least

436 species and 720 reactions currently.The genetic network for

QA metabolism was started with 38 species and 54 reactions in

Figure 1 and been expanded to include the 50 QA-responsive

genes and their products in Figure 8 for a total of 147 species and

204 reactions. Both of the genetic networks in E. coli and N. crassa

began with a core metabolic module, such as Figure 1 or 8,

which included carbohydrate and amino acid metabolism [67,2].

The end goal is the same, a complete description of the meta-

bolism of a carbon source.

Both teams begin with an iterative model-guided discovery

process as in Figure 2 of [16] or in Figure 1 of [3]. From here

the approaches diverge. No shortcuts are being taken here. Here

the regulatory component introduced by genes has not been

approximated with a ‘‘logic statements to simulate regulatory

processes’’ [3]. No quasi-steady approximation is being invoked to

carry out a Flux Balance Analysis [67,3]. Instead a full dynamic

solution is being sought using methods drawn from statistical

mechanics capitalizing on ensemble methods for genetic network

identification to obtain bulk behavior of the network [2,5]. In

order to implement a full dynamic solution it was helpful to

parallelize the ensemble method of network identification as

Figure 10. The ensemble of models, all3643-2E, well predicts the dynamics of all genes in the network. As examples, the genes in Fig. 8
with very different dynamics are plotted with log-concentration on the y-axis and time in hours on the x-axis. The solid lines are the ensemble means
on a log-scale. The dashed lines are +/2 two standard deviations across the ensemble. The dots are microarray or Northern data. The numbers at the
top of each box are the first four digits of an NCU number.
doi:10.1371/journal.pone.0020671.g010
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described in the Materials and Methods. The differences in these

two approaches is well described in Figure 1 of [68].

Supporting Information

Figure S1 RNA profiles of experiment 1-QA response
samples by RNA Nano LabChip (Agilent Technologies,
Inc.). The leftmost lane is an RNA ladder with marker sizes

indicated in nucleotides. Successive time points are indicated in

hrs at the bottom of each lane.

(TIFF)

Figure S2 Distribution of residuals from the regression
line (in black) after background subtraction and nor-
malization. Gene features with positive residuals are considered

above background (see Materials and Methods). Responders are

those in the right tail of each distribution shown. In each panel the

inset is a normal plot [48] in which observed ranks of residuals (y-

axis) are plotted against their expected ranks (x-axis) from a

normal distribution. Linearity is indicative of normality. Each of

the panels A–D correspond to the panels (experiments) in Fig. 4.

(TIFF)

Figure S3 3 of the 20 give random initial conditions give
similar fits as measured by the x2

x. The remaining 17

random initial conditions do slightly worse. Each of the 20

equilibration runs was done for 35,000 sweeps followed by an

accumulation run of 5000 sweeps for a total of 40,000 sweeps. All

20 runs involve a total of 200,000 sweeps. The ensemble with the

best (lowest) x2 (i.e., run 1) was used to initialize an accumulation

run of ,40,000 sweeps to construct the final ensemble for each

network tried in Table 5. The network displayed is the null

hypothesis, all1F-2E, from Table 5. In this example the first

random initial condition tried led to the best final fit.

(TIF)

Figure S4 KEGG pathway for starch & sucrose metab-
olism [53]. Enzymes in red are encoded by QA-responsive genes

in Table 3.

(TIF)

Figure S5 KEGG pathway for butanoate metabolism
[53]. Enzymes in red are encoded by QA-responsive genes in

Table 3.

(TIF)

Figure S6 KEGG pathway for glycolysis [53]). Enzymes in

red are encoded by QA-responsive genes in Table 3.

(TIF)

Figure S7 KEGG pathway for pyruvate metabolism [53].
Enzymes in red are encoded by QA-responsive genes in Table 3.

(TIF)

Figure S8 KEGG pathway for TCA cycle [53]. Enzymes in

red are encoded by QA-responsive genes in Table 3.

(TIF)

Figure S9 KEGG pathway for aromatic amino acid and
QA metabolism [53]. Enzymes in red are encoded by QA-

responsive genes in Table 3.

(TIF)

Figure S10 KEGG pathway for Val, Leu, Ile degradation
[53]. Enzymes in red are encoded by QA-responsive genes in

Table 3.

(TIF)
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