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a  b  s  t  r  a  c  t

Introduction:  This  study  aims  to create  an artificial  intelligence  (AI)  based  machine  learning  (ML)  model
capable  of predicting  a spirometric  obstructive  pattern  using  variables  with  the  highest  predictive  power
derived  from  an  active  case-finding  program  for COPD  in  primary  care.
Material  and  methods:  A total  of 1190  smokers,  aged  30–80  years  old  with  no  prior  history  of respiratory
disease,  underwent  spirometry  with  bronchodilation.  The  sample  was  analyzed  using  AI tools. Based  on
an  exploratory  data  analysis  (EDA), independent  variables  (according  to  mutual  information  analysis)
were  trained  using  a  gradient  boosting  algorithm  (GBT)  and  validated  through  cross-validation.
Results:  With  an  area  under  the  curve close  to unity,  the  model  predicted  a spirometric  obstructive  pattern
using  variables  with  the  highest  predictive  power:  FEV1  theoretical  pre  values.  Sensitivity:  93%.  Positive
predictive  value:  94%.  Specificity:  97%.  Negative  predictive  value:  96%.  Accuracy:  95%.  Precision:  94%.
Conclusion:  An  ML  model  can  predict  the  presence  of  an  obstructive  pattern  in spirometry  in  a  primary
care  smoking  population  with no  prior  diagnosis  of  respiratory  disease  using  the  FEV1  theoretical  pre
values  with  an  accuracy  and  precision  exceeding  90%.  Further  studies  including  clinical  data  and  strategies
for  integrating  AI into  clinical  workflow  are  needed.

©  2024  Sociedad  Española  de  Neumologı́a  y Cirugı́a  Torácica  (SEPAR).  Published  by  Elsevier  España,
S.L.U.  This  is an  open  access  article  under  the  CC BY-NC-ND  license  (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Inteligencia  artificial  aplicada  a  la  espirometría  forzada  en  Atención  Primaria
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r  e  s  u  m  e  n

Introducción:  Este estudio  tiene  como  objetivo  crear  un  modelo  de  aprendizaje  automático  (ML)  basado
en  inteligencia  artificial  (IA) capaz  de  predecir  un  patrón  obstructivo  espirométrico  utilizando  variables
con  el  mayor  poder  predictivo  derivado  de un  programa  activo  de  búsqueda  de  casos  de  enfermedad
Gradiente de aumento
Validación cruzada
Matriz de confusión

pulmonar  obstructiva  crónica  (EPOC)  en  Atención  Primaria.
Materiales  y métodos:  Un  total  de  1.190  fumadores,  de  entre  30 y 80 años,  sin antecedentes  de enfer-
medad  respiratoria,  fueron  sometidos  a espirometría  con  IA  artificial.  Sobre  la base  de  un análisis  de  datos
exploratorio  (EDA),  las  variables  independientes  (según  el análisis  de  información  mutua)  se entrenaron
utilizando  un  algoritmo  de  gradiente  de  aumento  (GBT)  y se validaron  mediante  validación  cruzada.

bajo  la  curva  cercana  a la  unidad,  el modelo  predijo  un  patrón  obstructivo
Resultados:  Con  un  área  
espirométrico  utilizando  los  valores  del  FEV1 prebroncodilatador.  Sensibilidad:  93%.  Valor  predictivo
positivo:  94%.  Especificidad:  97%.  Valor  predictivo  negativo:  96%.  Precisión:  95%.  Precisión:  94%.
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Conclusión:  Un  modelo  ML  puede  predecir  la  presencia  de  un  patrón  obstructivo  en  la  espirometría  en  una
población  fumadora  de  atención  primaria  sin  diagnóstico  previo  de  enfermedad  respiratoria  utilizando
los  valores  FEV1  prebroncodilatadores  con  una  exactitud  y precisión  superiores  al  90%.  Se necesitan  más
estudios que  incluyan  datos  clínicos  y  estrategias  para  integrar  la IA  en  el  flujo  de  trabajo  clínico.

© 2024  Sociedad  Española  de  Neumologı́a  y Cirugı́a  Torácica  (SEPAR).  Publicado  por  Elsevier  España,
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Introduction

The world’s population is aging, leading to an increased preva-
lence of chronic disorders such as chronic obstructive pulmonary
disease (COPD).1 Early diagnosis and the challenge posed by
reducing under diagnosed rates (as well as its classification and
treatment) are still pending tasks.2 Promoting primary preven-
tion and/or providing basic spirometry equipment in primary
healthcare centers does not seem to have been turning points
in improving this situation. The fact that the disease can man-
ifest at an early age3 and that interpreting spirometry results
is not always straightforward4 could be variables of interest
when planning diagnostic strategies among general practitioners
(GPs).

In recent years, the application of artificial intelligence (AI) in the
field of medicine has grown exponentially, utilizing various types
of data and positively impacting the functional diagnostic accu-
racy of diseases like COPD5. Could clinical decision-making and the
automation of healthcare processes find anchor points in machine
learning (ML) and deep learning (DL)? The answer is yes, but the
data used in the models must adhere to data protection laws,6 be
always accessible, meet a clinical need with relevant outcomes,
and undergo exploratory data analysis (EDA). Finally, the validated
algorithm must be integrated into the clinical workflow and field
management of healthcare centers.7

Numerous examples exist of ML  integration in the diagnosis of
various pulmonary disease.8–11

Our goal is to create an AI model based on ML  capable of pre-
dicting the presence or absence of an obstructive pattern using
variables with the highest predictive power derived from an active
search program for COPD in primary care.

Material and methods

Patients

In the period between May  2015 and May  2017, patients
referred from six primary care centers in the Valencian Commu-
nity, Spain, aged between 30 and 80 years with a year-package
index equal to or greater than 10, with or without symptoms, were
included. Prior diagnosis of respiratory diseases, absence of a signed
informed consent, and/or receiving active systemic treatment were
considered exclusion criteria.

Forty-four GPs participated in patient inclusion. When a
potential candidate patient was identified in the primary care con-
sultation and after the signing of their informed consent, the patient
was referred to the spirometry consultation located at each of the
health centers in the study area.

Spirometry assessment

All patients underwent forced spirometry and post-

bronchodilator test (BDT) in accordance with ATS/ERS guidelines,12

using the same USB Care Fusion® equipment and trained person-
nel. Only spirometric assessments quality criteria A and B were
analyzed.
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 Open  Access  bajo  la  CC  BY-NC-ND  licencia  (http://creativecommons.org/
licencias/by-nc-nd/4.0/).

ariables

The following variables were analyzed: age, gender, number
f cigarettes smoked daily, number of years smoking, forced vital
apacity (FVC), forced expiratory volume in 1 second (FEV1) in
bsolute and theoretical values, FEV1/FVC ratio both before and
fter BDT, as well as the lower limit of normality (LLN) of the ratio
fter BDT. The obstructive pattern was defined according to GOLD
023 consensus criteria.13

tatistical analysis

Data was stored and analyzed using the Statistical Package for
he Social Sciences (SPSS) version 21.0® (SPSS Inc, Chicago, IL,
states Unites) (IBM Analytics, Arkoma, NY, EE. UU.).

The statistical analysis initially involved a general descriptive
tudy of the results obtained in all included variables. Results were
xpressed as mean ± standard deviation for continuous variables
or median and range if the distribution was not normal), and as
bsolute values and percentages for categorical variables.

DA in Python version 3.8.5

The data consisted of 1232 rows and 16 columns, including 15
umeric variables and two  nominal categorical variables. The target
ariables were defined as the presence or absence and FEV1/FVC
atio less than 70%. Duplicated, missing, extreme, or atypical values
ithin the dataset were removed.

omputerized algorithm and validation

The development of a computer algorithm for interpreting
pirometry results using ML  was based on Python version 3.8.5 and
he use of mutual information statistics.14–17

The importance of variables was estimated using gradient tree
oosting (GTB) of LightGBM,18,19 and a new decision tree based
n spirometry data combined with age, gender, and smoking
abits was developed. The area under the curve (AUC) was used
o evaluate the models. To better assess the model’s prediction,

 cross-validation 5-fold20 was performed, where the data was
ivided into five equal parts, and five iterations were conducted,
ith each fold used as the validation set (20%) and the remaining

s the training set (80%). This technique helps avoid overfitting that
ould occur with small datasets.

Out-of-fold predictions (off-preds)20 were used to measure the
redictive capability of the model on the already validated data.

The ranking of variables based on their predictive power after
he training and validation process was  also confirmed using the
xplain Like I’m 5 (ELI5) library.21

The performance of our classification model was evaluated
sing a 2 × 2 confusion matrix.

During the preparation of this work, the authors used

xploratory data analysis (EDA) in Python 3.8.5, gradient boosting
lgorithm (GBT) of LightGBM, cross-validation 5-fold, out-of-fold
redictions (off-preds) and Explain Like I’m 5 (ELI5) to design and
alidate the machine learning (ML) model. After using these tools,
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Fig. 1. Mutual information of the recorded variables. Degree of dependence between variables. Pre-quotient: pre-bronchodilator ratio of FEV1 and FVC; Spirometry
post-quotient: ratio of FEV1 and FVC after bronchial dilation test; LLN: lower limit of normal; FVC absolute pre: pre-bronchodilator forced vital capacity absolute;
FVC  theoretical pre: pre-bronchodilator forced vital capacity theoretical; FVC absolute post: post-bronchodilator forced vital capacity absolute; FVC theoretical post:
post-bronchodilator forced vital capacity theoretical; FEV1 absolute pre: pre-broncho
pre-bronchodilator forced expiratory volume in 1 second theoretical; FEV1 absolut
FEV1 theoretical post: post-bronchodilator forced expiratory volume in 1 second theoret

Table 1
Descriptive analysis.

Patient features

Features Value

Number of patients 1190
Age 55.86 ± 10.72
Women 522 (43.86%)
Men  668 (56.14%)
Cigarettes per day 20.81 ± 11.71
Years of smoking 31.27 ± 12.11
Pre-quotient FEV1/FVC 72.89 ± 9.57
Spirometry post-quotient 74
LLN 66.02 ± 3.31
FVC  absolute pre 3431.86 ± 911.5
FVC theoretical pre 83.16 ± 15.37
FVC absolute post 3444.98 ± 903.04
FVC theoretical post 83.5 ± 15.24
FEV1 absolute pre 2511.03 ± 785.81
FEV1 theoretical pre 81.62 ± 19.22
FEV1 absolute post 2521.12 ± 770.34
FEV1 theoretical post 81.89 ± 18.97

Pre-quotient: pre-bronchodilator ratio of FEV1 and FVC; Spirometry post-
quotient: ratio of FEV1 and FVC after bronchial dilation test; LLN: lower
limit  of normal; FVC absolute pre: pre-bronchodilator forced vital capacity
absolute; FVC theoretical pre: pre-bronchodilator forced vital capacity the-
oretical; FVC absolute post: post-bronchodilator forced vital capacity abso-
lute; FVC theoretical post: post-bronchodilator forced vital capacity theoretical;
FEV1 absolute pre: pre-bronchodilator forced expiratory volume in 1 second abso-
lute; FEV1 theoretical pre: pre-bronchodilator forced expiratory volume in 1 second
theoretical; FEV1 absolute post: post-bronchodilator forced expiratory volume in
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1  second absolute; FEV1 theoretical post: post-bronchodilator forced expiratory
volume in 1 second theoretical.

the authors reviewed and edited the content as needed and assume
full responsibility for the publications’ content.

The study protocol was approved by the ethics committee of the
Arnau de Vilanova-Lliria Hospital located in Valencia, Spain.

Results
The training dataset included 1190 cases after the completion
of EDA. Table 1 provides a descriptive summary of the sample.

M
p

3

dilator forced expiratory volume in 1 second absolute; FEV1 theoretical pre:
e post: post-bronchodilator forced expiratory volume in 1 second absolute;
ical. Obstructive pattern.

redictor variables

Through mutual information,14–17 patterns of correlation
dependence) between variables were identified (see Fig. 1).

 Weak correlations: among spirometry results, tobacco, gender,
and age.

 Intermediate correlations: among spirometry-derived results.
 Strong correlations: between age and LLN (0.638) and between the
pre-BDT ratio and post-BDT ratio, both with the target variable
(0.75 and 0.98 respectively).

The positive correlation between pre- and post-BDT spirometry
esults, along with the more widespread use of forced spirometry
ithout bronchodilator testing in primary care centers, influenced

he use of pre-BDT results instead of post-BDT results, without sig-
ificantly affecting the predictive power of the model based on the
UC of the different classifiers analyzed. Additionally, the other
ariables with weak and intermediate dependencies were used as
nput data in the chosen algorithm.

L algorithm with multiple variable combinations

Using a GTB of LightGBM,18,19 permuting variables with higher
redictive power allowed the analysis of 11 different GTB models,
roviding an overview of their discriminative capabilities through
he resulting AUC values. The standout models were model 2
mod2), 3 (mod3), and 4 (mod4).

Mod2: age, gender, pre-quotient (pre-bronchodilator ratio
of FEV1 and FVC), FVC theoretical pre (pre-bronchodilator
forced vital capacity theoretical), FEV1 theoretical pre (pre-
bronchodilator forced expiratory volume in 1 second theoretical).
Mod3: gender, pre-quotient, FVC theoretical pre,
FEV1 teórico pre.
Mod4: pre-quotient, FVC theoretical pre, FEV1 theoretical pre.
It is worth noting that the AUC value exceeded 0.97 in Mod2,
od3, and Mod4. Spirometry data alone statistically predict the

resence or absence of an obstructive pattern.
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Fig. 2. Out-of-fold prediction of the pre-quotient. Left: with five variables (age, gender, pre-quotient, FEV1 theoretical pre and FVC theoretical pre). Right: with three variables
(pre-quotient, FEV1 theoretical pre and FVC theoretical pre). Pre-quotient: ratio of FEV1: forced expiratory volume in 1 second. FVC: forced vital capacity. Measured before
bronchial dilation test. FEV1 theoretical pre: pre-bronchodilator forced expiratory volume theoretical in 1 second. FVC theoretical pre: pre-bronchodilator forced vital
capacity theoretical.

Fig. 3. Out-of-fold prediction of the FEV1 pre. Left: with five variables (age, gender, pre-quotient, FEV1 theoretical pre and FVC theoretical pre). Right: with three variables
 FEV1:
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(pre-quotient, FEV1 theoretical pre and FVC theoretical pre). Pre-quotient: ratio of
bronchial dilation test. FEV1 theoretical pre: pre-bronchodilator forced expirator
capacity theoretical.

Classifier model validation

After using cross-validation 5-fold and off-preds,20 the most
relevant off-preds were displayed (Figs. 2 and 3).

Fig. 2 for the pre-quotient, with both five and three variables,
confirmed that the model is accurate, but data dispersion is lower
in the model using three features. The predictive probability of the
pre-quotient exceeds 0.8 for values below 66%.

The curves in Fig. 3 follow a similar pattern to Fig. 2, with less
data dispersion in the case of three variables. However, in the range
of 58–82% of the theoretical value of FEV1 theoretical pre, there
was a loss of probabilistic power in the model.

Finally, ELI521 ranked pre-quotient and FEV1 theoretical pre as
the variables with the highest probabilistic power.

Confusion matrix

The results are shown in Fig. 4.
Model A: Sensitivity (S): 93%. Positive predictive value (PPV):

94%. Specificity (E): 97%. Negative predictive value (PNV): 96%. Pre-
cision (P): 94%. Accuracy (Ac): 95%.

Model B: S: 73%. PPV: 94%. E: 97%. PNV: 88%. P: 94%. Ac: 90%. The
false negative rate increased using the 5-variable model.

Discussion
The focus was placed on the real contribution of the study on
conventional clinical practice.

With the aim of contributing to the diagnosis of COPD, this
is the first study that combines AI with spirometry data derived
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 forced expiratory volume in 1 second. FVC: forced vital capacity. Measured before
me theoretical in 1 second. FVC theoretical pre: pre-bronchodilator forced vital

rom a case-finding study in primary care. Our study shows that
 ML  model can predict the presence of an obstructive pattern in
pirometry in a primary care population with no prior diagnosis of
espiratory disease using the FEV1 theoretical pre values with an
ccuracy and precision exceeding 90%.

In the conventional practice of health centers in the Valencian
ommunity, there is no access to spirometry consultations. As a
esult, in most cases, only those patients with a high symptom
urden and frequent visits to the GPs are referred to tertiary care
enters with the intention of conducting a complete respiratory
unctional study and accessing specialized pulmonology consulta-
ions. The shortage of resources, both human and material, in health
enters hinders the diagnosis of mild cases, patients with few symp-
oms, young patients, and women. All these factors are considered
eterminants in the underdiagnosis of COPD.22,23

On another note, the use of simpler devices than spirome-
ry, such as COPD-6 among others, allows obtaining FEV1 values
t the time of the consultation quickly.24 The emphasis that our
tudy places on FEV1 theoretical pre values could contribute to
arger-scale studies among health centers, with the intention of
urther refining the cutoff points of FEV1 theoretical pre through a

achine learning model capable of reducing overfitting bias. Like-
ise, it could contribute to future validations of the use of these
icrospirometers in primary care consultations.

DA
EDA is used as the first step in the data cleaning process.25

hanks to this, the ML  model uses homogeneous data with the same
nits and no outliers.26 In this sense, the data for each patient in
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Fig. 4. Confusion matrix. Python 3.8.5. A (up): model with three fea-
tures (pre-quotient, FEV1 theoretical pre and FVC theoretical pre). B (down):
model with five features (age, gender, pre-quotient, FEV1 theoretical pre and
FVC theoretical pre). Pre-quotient: ratio of FEV1: forced expiratory volume in
1  second. FVC: forced vital capacity. Measured before bronchial dilation test.
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FEV1 theoretical pre: pre-bronchodilator forced expiratory volume theoretical in
1  second. FVC theoretical pre: pre-bronchodilator forced vital capacity theoretical.

our population was accessible and objective, and it underwent EDA
to ensure the quality of our algorithm.

Classification algorithms: decision trees

Based on our classification problem, sample size, and the need to
handle dimensionality as well as interrelationships between vari-
ables, and based on previous literature,27 our model used decision
trees despite the loss of accuracy of this type of algorithm when the
disease prevalence is not high.28 This is a common point with other
research groups focused on respiratory pathologies; however, the
heterogeneity of the samples in terms of objectives, volume of
variables, and analyses used made it difficult to make a compar-
ative analysis between the results of our algorithm and previous
groups.29

Additionally, the use of modified decision trees as GTB18,19

allowed individual training of each tree to correct errors made by
previous trees, so that they were interconnected and built based

on the residual sorted prediction errors of previous trees, gradually
reducing the overall error. This allowed us to adapt the model to
our positive rate.

p
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verfitting of models. Loss of precision

The advantage of random forests over GTB18,19 is that the for-
er  tolerates overfitting better, meaning the loss of model accuracy
hen faced with new data. Therefore, in addition to using GTB, our

eam opted for cross-validation tools previously used.30,31 Addi-
ionally, the use of off-preds20 provided a more realistic measure
f the model’s performance on previously unseen data.

After this validation process, our model did not lose statistical or
redictive power when using only functional variables (no change

n AUC in the absence of information on gender, age, and LLN), or
ven when using only pre-bronchodilation data. This could be of
nterest because primary care physicians would use lung values
erived from simple devices in their offices to identify patients
uspected of having obstructive patterns, where the BDT would
ventually be performed with varying speed. Unfortunately, the
xisting literature that combines case-finding in COPD and the use
f AI is scarce. However, we agree with other groups on the rele-
ance of FEV1 theoretical pre values as a predictor of the presence
r absence of obstructive patterns.28

he reality

For the understanding and using ML  models in COPD (a disease
ith an underlying biological mechanism that is still unknown), the
resence of more data (functional, genomic, and clinical) derived
rom prospective multicenter studies with continuous monitoring
s vital.32

On the other hand, obtaining optimal metrics does not automat-
cally guarantee a positive impact, so paired studies comparing AI

ith conventional practice and the integration of predictions into
ealthcare workflows are required. Ethical questions about the use
f AI, such as assigning responsibility in the case of an incorrect
iagnosis or misuse of the model, also need to be addressed. Multi-
isciplinary committees are necessary to ensure effective and safe

mplementation.6,22,33,34

imitations

Our study has several limitations, both stemming from our
ethodology and from the evaluation of the utility of AI in con-

entional clinical care.
In the first case, out study used a limited number of patients;

owever, the AI tools we used allowed us to avoid model overfit-
ing under these circumstances. Another limitation was the lack of
ocial and clinical data; however, the initial goal of our study was
o relay on rapidly accessible data in primary care consultations to
nsure that the model could predict the presence or absence of an
bstructive pattern.

In the second case, as integrating AI into healthcare workflows is
n inevitable challenge, we must find integration pathways through
ools that are already being used, such as apps among students and
octors. This will allow us to obtain more multicenter, functional,
enomic, and social data. With these data, trials, paired studies, and
eal-time studies can be conducted to increase the reliability of AI
s support for our work rather than as an adversary.

onclusion

Based on our results, a ML  model with GBT is capable of pre-
icting the presence of an obstructive pattern in spirometry, using
he pre-bronchodilation FEV1 value as a predictor variable, in a

opulation of primary care smokers without a prior diagnosis of
espiratory disease. Further studies that include clinical and lon-
itudinal data are needed, as well as strategies for integrating AI
nto healthcare workflows. It is our duty to harness the incredible
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resources of AI to benefit the millions of people who  currently suffer
from and will suffer from COPD.35 This is what we must continue
to do despite the limited training in AI tools in medical schools. The
time for multidisciplinary teams with data experts and healthcare
professionals has arrived.
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