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Abstract

Previously, we introduced causal mapping (CMAP) as an easy to use systems biology tool for studying the behavior of
biological processes that occur at the cellular and molecular level. CMAP is a coarse-grained graphical modeling approach in
which the system of interest is modeled as an interaction map between functional elements of the system, in a manner
similar to portrayals of signaling pathways commonly used by molecular cell biologists. CMAP describes details of the
interactions while maintaining the simplicity of other qualitative methods (e.g., Boolean networks). In this paper, we use
the CMAP methodology as a tool for generating hypotheses about the mechanisms that regulate molecular and cellular
systems. Furthermore, our approach allows competing hypotheses to be ranked according to a fitness index and suggests
experimental tests to distinguish competing high fitness hypotheses. To motivate the CMAP as a hypotheses generating
tool and demonstrate the methodology, we first apply this protocol to a simple test-case of a three-element signaling
module. Our methods are next applied to the more complex phenomenon of cortical oscillations observed in spreading
cells. This analysis produces two high fitness hypotheses for the mechanism that underlies this dynamic behavior and
suggests experiments to distinguish the hypotheses. The method can be widely applied to other cellular systems to
generate and compare alternative hypotheses based on experimentally observed data and using computer simulations.
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Introduction

Recently much effort has been focused on gaining a systems-

level understanding of processes that occur on the cellular and

molecular level. Because the external and internal environments of

cells are constantly changing, any design principle employed at

this level must be robust to perturbations. In terms of

computational models, this implies that some degree of uncertainty

in key parameter values must be tolerated without significantly

affecting system performance. This situation leads quite naturally

to an increased role of coarse-grained descriptions of cellular

systems such as Boolean networks [1–5] or Dynamic Bayesian

Networks [6–14], that do not require the precision of detailed

biophysical models.

Previously we proposed a graphical systems biology approach,

causal mapping (CMAP), to describe complex cellular and

molecular systems [15]. CMAP is a course-grained biological

network tool that takes into account causal interactions between

network elements and provides a description of the overall system

dynamics. The network of interest is modeled as a map based on

known and hypothetical interactions between elements of the

system, in a manner similar to common portrayals of signaling

pathways. CMAP provides an intuitive algorithm for evolving the

values of the elements in time based on the interactions between the

elements. The CMAP maintains the simplicity of other course-

grained methods, including Boolean networks, but there are

essential differences. The elements of the CMAP, which are

referred to as concepts, vary continuously in time between the

values of 0 and 1. The strength of the interactions between elements,

called weights, ranges from [21, 1]. By contrast, for Boolean

networks, the values of the nodes, which are analogous to concepts

in the CMAP methodology, vary discretely between 0 and 1 and the

strength of the interactions are restricted to 0, 1 or 21. In classical

Boolean networks (see, for example, [16]) a node does not change its

value unless the inputs to that node exceed a threshold. By contrast,

CMAP concepts evolve in time as long as they are acted upon by

other concepts. In CMAP, the strength of the interactions between

concepts is determined by a set of weights (Appendix A)that can be

interpreted in linguistic terms such as ‘strong’, ‘weak’, and

‘moderate’ [15]. This approach simplifies the CMAP analysis (see

below) by limiting the parameter space of the models.

In this paper, we introduce the use of the CMAP as a hypothesis

generating tool. Other similar approaches have been developed

using different network techniques including Boolean networks [1–

5]. First, we use a simple example of a three-node network to

demonstrate how the CMAP can be used to generate hypotheses for

pathway architectures that generate transient responses [17–23].

This type of behavior occurs in signal pathways that become
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desensitized or adapt to persistent stimuli. Then we apply

hypotheses generation to the problem of cortical oscillations of

spreading cells [15,24]. Our goal is to develop a tool to investigate

the behavior of living systems and to provide substantial guidance to

experimentalists. We show how CMAP can be employed: (i) to

develop several hypotheses that satisfy criteria which are based on

experimental observations; (ii) to rank those hypotheses in terms of

how well they satisfy the criteria; and (iii) to make testable

predictions that distinguish between the highest ranking hypotheses.

Results

Illustration of the method: a three-concept system
To illustrate the algorithm, we considered a simple CMAP

consisting of three concepts (C1–C3) with the goal of determining

which network architectures are capable of adaptation. That is, at

least one of the concepts must return to near its basal level in the

presence of a persistent stimulus. Such behavior is common in

genetic networks and signaling pathways [17–23]. We defined

criteria for successful configurations in the following way: using an

initial value of concept 1 (C1) of 1 concept 3 (C3) was required to

respond transiently and reach a maximum value higher than 0.2,

and eventually return to a value below half of the maximum. Note

that the fitness indices below correspond to calculations that satisfy

these particular criteria; the optimum scheme in terms of highest

fitness will, in general, depend on the selection of criteria.

In Fig. 1 a sequence of CMAPs in order of increasing fitness

index is presented. The fitness index corresponds to the fraction of

parameter space that generates simulation results consistent with

the criteria for an acceptable configuration (See Methods for the

formal definition). Initially, we assumed a feed-forward architec-

ture, so that configurations where C2 influenced C1 or/and C3

influenced C1 or C2 were not considered (Fig. 1A). Each of the

three allowed influences can be positive, negative or zero. The

strength of each influence is characterized by a weight. Each

weight represents a free model parameter. The weights are

restricted to a finite range of discrete values. The number of these

values is denoted by the set size K. For K = 5, the range of values

for the weights is 6[0.1, 0.3, 0.5, 0.7, 0.9]. There are 125

combinations of parameter values for configurations restricted to

only a single influence between any two concepts and therefore for

three weights: K3 = 125. The only feed-forward configuration

satisfying the criteria is shown in Fig. 1A. This architecture

represents an incoherent feed-forward loop and is well-known in

the systems biology literature [25]. Our simulations showed that

only about 30% of the parameter combinations produced the

required behavior giving a fitness index of 0.3. Typical time series

for the concepts are shown in the right panel of Fig. 1A.

When a negative feedback loop from C2 to C1 (Fig. 1B) is

included in the system, the resulting configuration had a larger

fitness index (F = 0.4). In this configuration the behavior of concept

1 is qualitatively different from the previous one (compare Fig 1A

and 1B) enabling the two hypotheses to be distinguished

experimentally by measuring C1. If there are no interactions

between C1 and C2, the configuration depicted in Fig. 1C has the

highest fitness (0.8). In this case, C1 diminishes with time to a

steady-state level. If there are no restrictions on any of the

connections, a configuration (Fig. 1D) can be found which satisfies

Figure 1. Simple three-element CMAP configurations. Depictions of the configurations, with the concepts in boxes and their influences
represented by green arrows (positive) and bar-headed red connectors (negative), are shown on the left of each panel. All configurations have the
requirement that concept 1 transiently activates concept 3. F denotes fitness index for corresponding configuration. On the right of each panel, the
time-courses of the concept values are shown: red, C1; blue, C2; and dark green, C3. A: only feed-forward reactions are allowed; B: a feedback from C2

to C1 is allowed; C: a case where no interactions between C1 and C2 are allowed; D: there are no limitations on the connections. (See Illustration of the
Method.)
doi:10.1371/journal.pone.0005378.g001

Alternative Hypotheses by CMAP
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the criteria for any combination of the weights (F = 1). In this case,

because of the competition between C1 (inhibiting) and C3

(activating), C2 evolves non-monotonically in time. Since none of

the other hypotheses produced similar results, observation of this

behavior would provide strong support for such a mechanism.

This behavior is a general property of the model but, for some

parameter sets, it is not so pronounced and its detection would

require adequate signal to noise ratio in the experiment. In

summary, in this section we showed how the hypotheses

generation algorithm can be applied to a simple three-concept

system to determine pathway architectures that respond transient-

ly to a sustained external signal.

Hypothesis generation for cortical oscillations
Pletjushkina et al. [24] observed that spreading epithelial cells or

fibroblasts, in which the microtubules have been depolymerized,

undergo rhythmic oscillations of the cell body that last for several

hours. The complex nature of this system makes it a good

candidate for hypothesis generation using the CMAP. It is known

that the oscillations involve intracellular calcium and activation of

the Rho pathway, which occurs following microtubule depoly-

merization [24].

In a previous study [15], we used CMAP to propose a

mechanism for the generation of cortical oscillations that involved

a negative feedback loop in which myosin-based contractility

negatively regulated stretch activated calcium channels (SACs).

The SACs opened due to stretching of the cell surface when the

cytosol moves from one side of the cell to the other [26]. The

CMAP model assumes that the role of Rho pathway is to decrease

the level of myosin light chain phosphatase (MLC-pho) [15]. This

is because active Rho activates Rho kinase (ROCK) which

phosphorylates MLCpho, a negative regulator of myosin, thereby

inactivating this enzyme and simultaneously increasing the level of

phosphorylated myosin light chain and increasing actomyosin

contractility. A mechano-chemical model using a system of

ordinary differential equations was developed based on that

CMAP configuration that recapitulated the experimental results

and made testable predictions [26]. Note that in both cases we

employed non-spatial models; this simplification applied because

of the symmetry of the oscillating cell in which the two opposing

sides oscillate out of phase with each other [26]. To take into

account the volume conservation and cytosolic movement, we

introduced constant force acting on the membrane (‘Cytosol’R
SAC in Fig. 2). Independently, another group [27] described a

similar oscillatory phenomenon using a mechano-chemical

description in which a negative feedback from contractility to

stretch activated channels is invoked. However, other mechanisms

may be responsible for generating cortical oscillations. In this

paper we demonstrate how the CMAP method can be used to

evaluate alternative hypotheses.

Candidate systems. We constructed eight different

candidate configurations of the system, all of which include eight

concepts (see Fig. 2 and Table 1), including the one previously

tested [15]. In our previous model, it was assumed that the Rho

pathway was not influenced by the other elements of the system.

Therefore, we decided to relax this assumption and test for a

possible feedback loop from contractility to the Rho pathway. For

simplicity, rather than modeling the entire Rho pathway, we

assumed that contractility directly influences the myosin light

chain phosphatase (MLC-pho). This feedback is an alternate to the

‘contractilityRSAC’ feedback. The eight candidate configurations

varied by the nature of the four influences: ‘‘‘Cytosol’RSAC’’,

‘‘contractilityRSAC’’ (depicted as black connectors in Fig. 2),

‘‘contractilityRMLC-pho’’, and ‘‘ROCKRMLC-pho’’ (color

coded connectors, see legends to Fig. 2). The sign of these

influences for each configuration are presented in Table 1 in the

second half of column 2. If an influence is not included in the

particular configuration, it is marked as ‘0’. The rest of the

influences are considered to be known and are held fixed in the

initial investigations.

Criteria for evaluating hypotheses. The configurations

were tested against three criteria formulated from experimental

observations [24]. First, after depolymerization of microtubules,

spreading cells exhibited morphological oscillations. Second, the

morphological oscillations were accompanied by oscillation of

intracellular calcium. Finally, oscillatory behavior was halted by

inhibition of Rho kinase (ROCK).

Testing the configurations. The configurations were tested

in a way similar to that described in the section Illustration of the

Method. Configurations 1–4, 7, and 8 have a total of sixteen

influences, configurations 5 and 6 have fourteen. First, we fixed the

seven weights relating to the calcium pathway (see footnote for

Table 1). The values for these weights were taken from our

previous work [15]. We simulated all configurations with all

possible sets of weights for the influences that were not fixed and

Figure 2. CMAP of cortical oscillations for hypotheses gener-
ation. The scheme is derived from the original CMAP paper [15] to
describe the phenomenon of cortical oscillations [24]. The red
connectors depict the inhibitory influences that are characterized by
negative weights while the green arrows represent activation
characterized by positive weights. The black dotted connectors reflect
the unknown causal influences being tested in this work: they can be
activation (green) or inhibition (red). The shadowed boxes indicate ‘self-
inhibitions’ for a corresponding concept Ci where wii,0. The colored
dashed connectors can be characterized by corresponding sign of
weight or be non-existent during testing. The red half-circle connected
to the inhibitory influence between MLC-pho and p-MLC depicts the
second order interaction between the product (p-MLC) and the enzyme
(MLC-pho). (For explanations of higher order interactions see Materials
and Methods).
doi:10.1371/journal.pone.0005378.g002

Alternative Hypotheses by CMAP
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tested the results against the experimentally determined criteria. In

addition, each set of weights was simulated with different set sizes

(K = 3, 5, 7). Column 7 in Table 1 shows the fitness indices

obtained for each configuration when these seven weights were

fixed. Configurations 4 and 5 have the highest fitness indices and

qualify as hypotheses (Table 1). It is noteworthy that both

hypotheses suggest that the oscillatory behavior observed by

Pletjushkina et al [24] requires a negative feedback from

contractility to stretch activated calcium channels (SAC).

Monte-Carlo method for sampling parameter space. In

the previous section we discussed the results of simulations with

fixed values for several weights. based on the results of our

previous work [15]. To test the validity of fixing these weights, we

performed simulations in which the values of all the weights are

allowed to vary. To do this, we used a Monte Carlo approach to

generate 4,000,000 candidate sets out of the .1011 possible

combinations of parameter values. The value of each weight was

chosen from a uniform random distribution. The results from this

approach are presented in Table 1 (columns 4, 6, and 8) and

confirm the analysis presented in the previous section.

We constructed histograms of the distribution of weights

associated with each causal influence that give successful outcomes

for hypotheses 4 and 5 based on the Monte-Carlo method for

sampling parameter space. The results for four selected causal

influences are shown in Fig. 3. Note that all values of the weights

produced positive outcomes, which implies that the parameter

Table 1. Results of hypothesis generation1.

Configuration # Hypothesis description

Total number of
combinations, Ptotal

Number of valid
combinations, Pi Fitness index, F Set size, K

Fixed Random Fixed Random Fixed Random

1 2 3 4 5 6 7 8 9

1 Con to SAC 2 19683 4000000 0 6 0 1.50E-06 3

‘Cytosol’ to SAC + 1953125 4000000 292 97 1.50E-04 2.43E-05 5

Con to MLC-pho 2 40353607 4000000 4548 222 1.13E-04 5.55E-05 7

ROCK to MLC-pho +

2 Con to SAC + 19683 4000000 0 0 0 0 3

‘Cytosol’ to SAC 2 1953125 4000000 0 0 0 0 5

Con to MLC-pho 2 40353607 4000000 0 0 0 0 7

ROCK to MLC-pho +

3 Con to SAC + 19683 4000000 0 0 0 0 3

‘Cytosol’ to SAC 2 1953125 4000000 0 0 0 0 5

Con to MLC-pho + 40353607 4000000 0 0 0 0 7

ROCK to MLC-pho 2

4 Con to SAC 2 19683 4000000 279 7916 0.0142 1.98E-03 3

‘Cytosol’ to SAC + 1953125 4000000 3429 4250 1.76E-03 1.06E-03 5

Con to MLC-pho + 40353607 4000000 91854 2945 2.28E-03 7.36E-04 7

ROCK to MLC-pho 2

5 Con to SAC 2 2187 4000000 743 185617 0.3397 0.0464 3

‘Cytosol’ to SAC + 78125 4000000 8127 127856 0.104 0.032 5

Con to MLC-pho 0 823543 4000000 71221 43949 0.0865 0.011 7

ROCK to MLC-pho 0

6 Con to SAC + 2187 4000000 0 0 0 0 3

‘Cytosol’ to SAC 2 78125 4000000 0 0 0 0 5

Con to MLC-pho 0 823543 4000000 0 0 0 0 7

ROCK to MLC-pho 0

7 Con to SAC 0 6561 4000000 0 0 0 0 3

‘Cytosol’ to SAC 0 390625 4000000 0 0 0 0 5

Con to MLC-pho + 5764801 4000000 0 0 0 0 7

ROCK to MLC-pho 2

8 Con to SAC 0 2187 4000000 0 0 0 0 3

‘Cytosol’ to SAC 0 78125 4000000 0 0 0 0 5

Con to MLC-pho 2 823543 4000000 0 0 0 0 7

ROCK to MLC-pho +

1The weight for the following influences were fixed: MLCK-p-MLC, MLC-pho - p-MLC, calcium uptake and Ca-pump work (calcium - calcium), calcium release from Cai
2+-

CaM (Ca-CaM – Ca i
2+), Ca-CaM – MLCK, Ca-CaM dissociation (Ca-CaM - Ca-CaM), MLCK-Ca-CaM dissociation (MLCK - Ca-CaM).

doi:10.1371/journal.pone.0005378.t001

Alternative Hypotheses by CMAP
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search could not be limited to a subset of the parameter space.

Another feature of the histograms is that some weights have fairly

uniform distributions (p-MLCRcontractility for hypothesis 4)

while others are more localized around a specific value

(contractility - SAC in hypothesis 4). Those distributions that

exhibit ‘flatness’ reflect robustness of the system with respect to the

interaction in question. That is, no matter how strong or weak this

interaction is there are always parameter values that lead to

oscillations.

We tested different values of the set size (K) to verify that our

conclusions were independent of this parameter. Figure 4 shows

histograms based on Monte-Carlo simulations for K = 3, 5, and 7.

The histograms show similar shapes of weight distributions for

different K values for four causal influences: contractilityRSAC;

SACRCai
2+; calciumRcalmodulin; and p-MLCRcontractility

(see Fig. 3)). Table 1, column 8, confirms that the fitness indices

lead to the same hierarchy of configurations for all three K values:

hypothesis 5.hypothesis 4.hypothesis 1. These comparisons of

the results for different K values suggested that the results of

simulations should not be greatly influenced by the choice of the

set size.

In silico experiments to refine predictions. A key

problem in modeling is to find parameter sets that describe

system behaviour. We used the CMAP approach to find

parameter sub-space whose values describe qualitative features

of experimental data sets. This led to computation of the fitness

index for various configurations (see Table 1) from which

hypotheses were defined as those configurations with F.0. For

hypothesis 5 (K = 5), for example, we got 127,856 valid weight

combinations out of 4,000,000 we tried. This result raises several

questions. How many out these combinations really actually

describe the oscillating cells and how can hypotheses be

differentiated?

To further test competing hypotheses, we asked how weight sets

included in valid hypotheses would respond to defined perturba-

tions that correspond to feasible manipulations of the experimental

system under investigation. To quantify the effects of such

perturbations, we adopted the following procedure:

N Identify an influence which can be experimentally manipulat-

ed, e.g. titration of an inhibitor;

N For each set of weights that produced oscillations, shift the

weight of interest by a chosen amount to simulate the

experimental manipulation;

N Simulate the CMAP with the new set of parameters and

determine the period and amplitude of the resulting oscilla-

tions and the fraction of non-oscillators;

N Compute the number of sets of weights in the ensemble that

lead to an increase, decrease, or a loss of oscillations.

This procedure is demonstrated in Figure 5 for the case where

the calcium self-inhibition [15] is perturbed. The cytoplasmic free

calcium is determined by a number of factors including calcium

influx, efflux and the status of internal endoplasmic stores. Thus,

for example, cytoplasmic free calcium can be experimentally

reduced by introducing calcium buffers into the cell. To reproduce

this experimental manipulation in the CMAP calculation, the

calcium self-inhibition was strengthened by shifting the corre-

sponding weight by 20.4 in all successful sets previously produced

by Monte Carlo simulation. After recalculation with new

Figure 3. Distribution of weights for selected causal influences for different hypotheses. Distribution of weights for hypotheses 4 and 5
for four causal influences. Top row: hypothesis 4; bottom row: hypothesis 5. All histograms are normalized by the total number of occurrences.
doi:10.1371/journal.pone.0005378.g003

Alternative Hypotheses by CMAP
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parameters, Hypothesis 4 predicted that the population average

period will rather increase when cytoplasmic free calcium is

reduced; by contrast, Hypothesis 5 suggested the opposite

(Figure 5).

Discussion

The causal mapping technique has the potential to be an

effective tool for studying complex biological systems. On the one

hand, CMAP is a semi-quantitative method similar to Boolean

networks and its extensions [16]. On the other hand, CMAP

provides a more detailed description than other graphical

approaches with similarities to the difference equation approach.

Thus, in terms of modeling techniques, the CMAP technology

occupies an intermediate position between purely graphical

methods and more quantitative models based on either ordinary

or partial differential equations or stochastic formulations and it

puts some limitations on possible mechanisms. For example, both

mechano-chemical models of cortical oscillations that have been

developed recently ([26,27]) include a negative feedback from

Figure 4. Distribution of weights for selected causal influences for different set sizes. Distribution of weights for hypothesis 5 for four
causal influences as a function of set size. K = 3 (upper row), 5 (middle row), 7 (bottom row). All histograms are normalized by the total number of
occurrences.
doi:10.1371/journal.pone.0005378.g004

Figure 5. Results of in silico experiments to test the effect of reducing cytoplasmic free calcium according to Hypotheses 4 and 5
(see text). The bar graphs represent the portion of weight sets that produced an increase in oscillation period (green) or a decrease in oscillation
period (red) or cessation of oscillations (black) when the value of calcium self-inhibition weight (wCaCa,0) was decreased by 0.4 from the initial value
for each set with the constraint that the final weight value could not be less than 20.9. Weight sets that already had the minimum value of 20.9
(maximum ‘self-inhibition’) were excluded from simulations. All initial weight sets were taken from the Monte Carlo simulations.
doi:10.1371/journal.pone.0005378.g005

Alternative Hypotheses by CMAP
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contractility to a mechano-sensitive source of calcium such as

stretch activated calcium channels (SAC). This feature was

predicted by CMAP modeling [1] and suggests that application

of the coarse-grained CMAP technology can illuminate key

qualitative requirements of mechanisms put forward to account

for system behavior.

In this paper, we have added hypotheses generation to the

CMAP toolbox. This methodology enables investigators to rank

hypotheses according to a fitness index. Hypotheses with high

fitness indices represent operating mechanisms that are robust to

variations in parameter values, and, therefore, in theory represent

good design principles for operating in the fluctuating environ-

ments found at the cellular and molecular levels. Thus, one

interpretation of a high fitness index is that these systems represent

architectures most likely to survive natural selection.

We applied the hypothesis generation tool to a simple test case

of a three-element signaling module and to the more complex

phenomenon of cortical oscillations [24]. For the former case, we

demonstrated that the CMAP protocol can be used to generate

pathway architectures capable of adaptation to persistent signal.

Intriguingly, our analysis found a configuration that produced

adaptation for all parameter values (F = 1). It would be interesting

to determine if this pathway architecture exists in real signaling or

regulatory systems. For the case of cortical oscillations, the two

main conclusions are that i) a negative feedback from cell

contractility to mechanochemically-activated calcium release is

required to qualitatively reproduce experimental observations for

this system [26,27] and ii) that there are possible connections

between the Rho pathway and contractility [28,29] that should be

explored experimentally and in future modeling. Our methodol-

ogy also provides a mechanism for generating experimentally

testable predictions to discriminate competing high-fitness hypoth-

eses. An important feature of our approach is that the predictions

are not based on perturbations to a single parameter set, but

represent trends in the behavior of the hypotheses when all the

parameter sets that generate results consistent with experimental

data are considered. Because we are able to exhaustively sample

the parameter space, a consistency between new experimental

results and model predictions is more likely to be indicative of the

design architecture of the biological system rather than reflect a

particular choice parameter values. While a single experiment may

not definitively prove a mechanism, it would reduce the regions of

parameter space for various hypotheses that produce behavior

consistent with all the experimental results. It may then be possible

to find experimental perturbations for which valid hypotheses

produce qualitatively different behavior for all parameter values

within this restricted space.

Coarse-grained approaches such as this will have some

limitations. Of course, as the complexity of biological networks

increases, the number of possible configurations increases in an

exponential fashion. However, this is limited in a practical sense by

the prior knowledge we have about this system derived from

laboratory experiments and the biological literature. It could also

be argued that the weight interval we employ [21, 1] is unduly

restrictive in limiting the range of variation of weights that we

employ. In this regard, it should be noted this is already an

improvement in terms of modeling dynamics when compared to

the frequently employed Boolean networks which are binary in

nature. Moreover, this range of weights employed already

produces a rich repertoire of parameter combinations that

qualitatively reproduce the observed behavior.

As biologists continue to move toward studying cellular and

molecular systems as a whole, there will be an increased need for

mathematical approaches to interpret and codify experimental

results. We believe the CMAP provides the appropriate level of

description within an intuitive framework to make sense of these

complex biological systems.

Materials and Methods

Description of the method
CMAP basics. The equations describing how the concepts

Cj(t) evolve in time are [15]:

Cj tð Þ~Cj t{1ð ÞzL Cj ,fj

� �
f xj

� �
,

L Cj t{1ð Þ,fj

� �
~

Lz~1{Cj t{1ð Þ, if fjw0,

L{~Cj t{1ð Þ, if fjƒ0,

(

fj~
1{e{xj

1ze{xj
;

xj~aj

XN

i~1

wijCi t{1ð Þ;

ð1Þ

where N denotes the number of elements in the system and the

wij’s are the weights of interactions. The first equation consists of

two terms: the value of the concept at the previous time step

Cj(t21) and the product of the causal function f(x,), which

determines how the concepts influence Cj(t21) , and the scaling

factor L which forces Cj(t21) to stay within the range between 0

and 1. The coefficient aj is described below.

Weights and the set size. Each causal influence is assigned a

weight (wij) during the simulations. The set size, K, is the number

of intervals used to discretize these weights. As mentioned above,

each weight can be positive or negative (a value of zero reflects a

non-existent interaction between corresponding concepts). The

absolute value of a weight can take a number in the interval [0, 1]

determined by the set size K. In our original work, we divided this

interval evenly into K subintervals and assigned weight values as

the midpoint of the subintervals [15]. For example, if K = 5 then

the possible values of the weights wij are: 6[0.1, 0.3, 0.5, 0.7, 0.9].

Parameter a. In [15] we introduced the parameter ai, which

determines how much the causal function f(x) in Eq.(1) can change

during single iteration. At maximum possible input, i.e. when all

input concepts Ci and the corresponding weights wij are equal 1,

the value of the causal function is

fmax~
1{e{ajNj

1ze{ajNj
; ð1Þ

In the previous work [15] we assumed that this maximum step

can not exceed the interval size pj determined by the set size, i.e.

fmax = p = 1/K. Thus, from Eq.(1a) we have

aj~{
1

Nj

ln
1{p

1zp

� �
, ð2Þ

where Nj is number of influences on the concept Cj. In general, this

condition can be relaxed and the role of ai should be investigated

further.

Higher order interactions. In the original version of the

CMAP [15] the concepts in the exponents of f(x) occurred only

linear combinations. However, it is clear that higher order terms

may also be required. For example, a second order reaction

requires that both reactants are present for an interaction to occur.

Therefore, we introduce higher order inputs as a generalization of
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the previous version:

xj~
XN

i~1

wijCi;

xj~
XN

i~1

Ciwijz
XN

i~1

XN

k~1

CiCkwikj

z
XN

i~1

XN

k~1

XN

l~1

CiCkClwikljz . . .;

ð3Þ

Using this extension, the causal function for phosphorylated

myosin light chain (MLC-phoRpMLC influence, see Fig. 2) has

the form

fpMLC~
1{e

{apMLC

PN
i~1

wMLC{pho
:CpMLC

:CMLC{phozwMLCK
:CMLCK½ �

1ze
{apMLC

PN
i~1

wMLC{pho
:CpMLC

:CMLC{phozwMLCK
:CMLCK½ �

ð4Þ

Note the differences between MLCKRpMLC and MLC-

phoRpMLC influences: in the first case pMLC is a product of

phosphorylation while in the second, it is a substrate of a

dephosphorylation. Assuming a large pool of non-phosphorylated

MLC, a substrate for the first reaction, in the cell (meaning no big

change in its concentration), there is no need for a second order

reaction for MLCKRpMLC influence in contrast to case of

MLC-phoRpMLC.

Definitions
CMAP configurations. A given network configuration is

defined by the number of concepts (nodes) and influences (edges)

between the concepts and the nature of the influences (positive or

negative). For a given network configuration, the weights of the

influences and the initial values for the concepts can vary, but the

weights cannot change sign. Network configurations can differ

from each other by the number of concepts, the connectivity or the

nature of the influences (positive or negative). For example, Fig. 1

shows 4 different CMAP configurations (A–D), each containing 3

concepts. The configurations differ either by the connectivity of

the network or the nature of the influences.

Fitness index. Because we assume a discrete range of values

for the weights, for any given CMAP configuration, there is a finite

number of parameter sets that need to be investigated. This

number, Ptotal, defines the total volume of parameter space for a

given configuration. To be a viable hypothesis, a CMAP

configuration must reproduce known experimental results for the

biological system under investigation. For each candidate

parameter set, the output of the CMAP configuration is checked

for consistency with experimental results, and if consistent results

are obtained, the parameter set is accepted. The fitness index, Fi, is

defined as

Fi~
Pi

Ptotal

ð5Þ

where Pi is the number of parameter sets that are consistent with

the experimental behavior. Note that in this work the fitness index

is a relative value and should be compared to other indices

computed in the same way. Since the total parameter space in our

cortical oscillation model is too big for exhaustive simulations (for

example, for hypothesis 5 and K = 5, Ptotal = 514 = 6,103,515,625),

we randomly picked 4*106 weight combinations, see column 4 in

Table 1.

Hypothesis. A CMAP configuration is defined as a hypothesis

only if it has a non-zero fitness index. The larger the fitness index,

the larger is the fraction of parameter space for which the

configuration meets the experimental criteria. Therefore, the

fitness index provides a mechanism for ranking the hypotheses

under consideration.

Simulations
Simulations were performed using Fortran95 to calculate the

fitness indices and MATLAB (The Mathworks, Inc) for the rest of

simulations.

Three-node signaling module. For three-node simulation,

we examined all possible CMAP configurations with a full set of

weight values. The configuration had a total of six possible

influences between concepts for which the weights could be

positive, negative or zero. For K = 5, each positive or negative

weight could have five different absolute values [0.1, 03, 0.5, 0.7,

0.9]. Each simulation was performed for 5000 ‘‘time’’ steps. The

initial parameters for concept values were: C1 = 0.5; C2 = C3 = 0.

We considered that a particular set of weights met a criterion when

during the simulation the value of C3 transiently increased higher

than 0.2 with a subsequent decrease to lower than half of the

maximum value which was reached during the increasing stage.

Cortical Oscillations. During the simulation, when some of

the influences were fixed (see Table 1), the remaining influences

were used in all possible combinations. In case of Monte Carlo

simulations, 4,000,000 weight combinations were checked. In both

cases the concept values for 20,000 ‘‘time’’ steps were calculated

for each set. The oscillation behavior for the calcium and

contractility concepts were chosen as selection criteria. If the

amplitude of a concept in the step interval from 10,000 to 20,000

was less than 0.1/K, it was not considered as an oscillation. If,

within the same interval, the amplitude value decreased by more

then 10%, it was considered as a damped oscillation and the

weight set was disregarded. The simulation had to demonstrate at

least two full periods of oscillation between 10,000 and 20,000

‘‘time’’ steps to be considered as successful.

Algorithm for testing hypotheses. The algorithm for

evaluating the fitness index and ranking hypotheses consists of

the following steps:

1. Define the phenotype as a set of experimental observations that

the CMAP configuration should reproduce. These observations

form the criteria against which the CMAP configurations are

tested.

2. Build candidate CMAP configurations. Start with the elements

that are known to be involved in the processes under study.

Next, use all available knowledge to place connections

(influences) between these elements.

3. Specify the weights that will be varied.

4. For each set of parameter weights, run a simulation with K = 5.

Count the number of parameter combinations, Pi, for each

configuration that meets the criteria defined in step 1.

5. The value of Pi is then used to calculate the fitness index of the

configuration.

6. Hypotheses with the highest fitness indices are selected for

further studies.

7. Control:

Alternative Hypotheses by CMAP
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N Start over for set sizes K = 3 and 7.

N Perform Monte-Carlo simulations (see section ‘Monte-Carlo

method for sampling parameter space’ in text) in which all

parameter values are allowed to change.

The controls are needed to make sure that the results are not set

size dependent or reflect a special choice of values for the fixed

parameters.
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