
Research Article
An Immune-Related lncRNA Pairing Model for Predicting the
Prognosis and Immune-Infiltrating Cell Condition in Human
Ovarian Cancer

Xiaocui Zhang and Qing Yang

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China

Correspondence should be addressed to Qing Yang; yangqing_sj@126.com

Received 4 April 2022; Revised 20 July 2022; Accepted 27 July 2022; Published 16 August 2022

Academic Editor: Usman Ali Ashfaq

Copyright © 2022 Xiaocui Zhang and Qing Yang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Ovarian cancer is the second common cancer among the gynecological tumors. It is difficult to be found and diagnosed in the
early stage and easy to relapse due to chemoresistance and deficiency in choices of treatment. Therefore, future exploring the
biomarkers for diagnosis, treatment, and prognosis prediction of ovarian cancer is significant to women in the world. We
downloaded data from TCGA and GTEx and used R “limma” package for analyzing the differentially expressed immune-
related lncRNA in ovarian cancer and finally got 7 downregulated and 171 upregulated lncRNA. Then, we paired the
differentially expressed immune-related lncRNA and constructed a novel lncRNA pairing model containing 7 lncRNA pairs.
Based on the cut-off point with the highest AUC value, 102 patients were selected in high-risk group and 272 in low-risk
group. The KM analysis suggested that the patients in the low-risk group had a longer overall survival. Future analysis showed
the correlations between risk scores and clinicopathological parameters and infiltrating immune cells. In conclusion, we
identified an immune-related lncRNA pairing model for predicting the prognosis and immune-infiltrating cell condition in
human ovarian cancer, which thus further can instruct immunotherapy.

1. Introduction

As reported, there were 313,959 cases of newly diagnosed
ovarian cancer (OC) and 207,252 new deaths for OC in
2020 [1]. OC is the second common cancer to cause large
death among the gynecological tumors, difficult to be found
and diagnosed in the early stage of disease, deficient in
choices of treatment, and easy to relapse [2–5]. Therefore,
future exploring the biomarkers to diagnose, treat, and pre-
dict the prognosis of OC is of significance to women.

Tumor immune-infiltrating cells are strongly correlated
with cancer prognosis and response to therapy. Ye et al.
reported that tumor immune-infiltrating cells, especially
neutrophils, Tregs, and macrophages, affected the clinical
outcome in patients with colorectal cancers and could be
markers to predict the prognosis and response to therapy
[6]. Qi et al. also reported that the accumulation of CD39
+CD8+ T cells in tumor microenvironment indicated poor

prognosis in clear cell renal cell carcinoma and benefit of
tyrosine kinase inhibitors therapy [7]. And different methods
to target different immune-infiltrating cells, such as lympho-
cytes [8, 9], dendritic cells [10], and nature killer cells [11], in
the TME have been a popular and effective therapy.

As we know, long noncoding RNA (lncRNA) is a non-
coding RNA with a length of more than 200 nucleotides.
Studies have shown that lncRNA plays an important role in
many life activities, such as dose compensation effect, epige-
netic regulation, cell cycle regulation, and cell differentiation
regulation, and has become a hot spot in genetic research
[12]. For example, lncRNA MALAT1 plays an antiapoptotic
and anti-inflammatory role in the brain microvascular sys-
tem to reduce ischemic cerebrovascular and parenchymal
damage, which can be a therapeutic target to minimize brain
damage after stroke [13]. A recent study reported that
lncRNA H19X could regulated the expression of TGF-β, reg-
ulating differentiation and survival of myofibrillar cells [14].

Hindawi
BioMed Research International
Volume 2022, Article ID 3168408, 17 pages
https://doi.org/10.1155/2022/3168408

https://orcid.org/0000-0003-0335-6099
https://orcid.org/0000-0002-7324-6103
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3168408


Besides, lncRNA, such as MEG3 and Kcnq1ot1, can regulate
the progress of heart disease [15, 16]. More importantly,
lncRNA is included in the prediction of cancer prognosis
[17–24] and can be a regulatory factor of tumor immune
microenvironment including immune-infiltrating cells and
immune cell function [25, 26]. Previous study had emphasized
the importance of lncRNA in OC, among which lncRNA
facilitates epithelial-mesenchymal transition (EMT) and
invasion-metastasis and other tumor behaviors in OC
[27–30]. In addition, there were many reports saying tumor
immune infiltration-related lncRNA model to predict prog-
nosis and instruct immunotherapy of patients in non-
small-cell lung cancer [22, 31], bladder cancer [20, 32, 33],
liver hepatocellular carcinoma [23, 24, 34], breast cancer
[35–37], colon cancer [38], glioma [21, 39, 40], and so on
[41–43]. Therefore, it is very helpful to perform combined
analysis of lncRNA and immune-infiltrating cells for OC
diagnosis, treatment, and prognosis.

Here, we used a new algorithm to explore a new
immune-related lncRNA pairing model for predicting the
prognosis and immune-infiltrating cell condition in human
OC based on The Cancer Genome Atlas (TCGA) and The
Genotype-Tissue Expression (GTEx) database, which can
help a lot in the improvement of prognosis prediction and
immune therapy.

2. Materials and Methods

The data analysis steps are in Figure 1.

2.1. Data Preparation and Differentially Expressed Analysis.
The RNA-seq data and clinical information of OC patients
were gotten from https://portal.gdc.cancer.gov/repository.
The RNA-seq data of patients having normal ovarian tissue
were gotten from https://xenabrowser.net/datapages/. Data
type was HTseq-FPKM, and gene expression level in both
two databases was further processed by log2 (FPKM+1).
The cases without clinical information and the repeated
cases were removed. The data from Ensembl (http://asia
.ensembl.org) were taken for RNA-type annotation. Genes
in ImmPort database (http://www.immport.org) were taken
for coexpression analysis of the differentially expressed
immune-related lncRNA (gene correlation coefficients >0.4
and p value <0.001). Wilcoxon signed-rank test based on
“limma” R package were used for differentially expressed
immune-related lncRNA (DEirlncRNA) analysis in tumor
and normal tissues (false discovery rate (FDR) <0.01).

2.2. DEirlncRNA Pairing. Considering the general applicabil-
ity of the model and avoiding batch correction, lncRNA
pairs matrix was constructed. One lncRNA pair had lncRNA
1 and lncRNA 2. If the expression value of lncRNA 2 is
lower than lncRNA 1, consider the sample as 1; otherwise,
the sample is defined as 0. Next, the matrix was further ana-
lyzed. If all the value of the lncRNA pairs in the samples
were 0 or 1, the lncRNA pair was thought not be related to
prognosis because there is no specific rank of pairing that
cannot correctly predict the survival outcome of patients.
When the proportion of expression proportion was 0 or 1

in one lncRNA pair exceeding 20% of total pairs, it was con-
sidered a significant pair.

2.3. Construction of the Prognostic Model by lncRNA Pairs. A
prediction model of lncRNA pairs was constructed by uni-
variate, lasso, and multivariate Cox regression analysis.
The model was determined by ten-fold cross-validation and
p value less than 0.01. The model with the highest point of
area under curve (AUC) value was selected for further analy-
sis. The risk score was calculated according to the standard-
ized expression value of each pair and its corresponding
coefficient. The formula was score = esum (expression of each gene

pair × corresponding coefficient) . The receiver operating characteris-
tic (ROC) curve was evaluated to determine the point of
which the sum of sensitivity and specificity reached the high-
est, which was the cut-off point to divide patients into two
groups.

2.4. Validation of the Prognostic Model of the lncRNA Pairs.
The Kaplan-Meier (KM) analysis based on the “survive” and
“survminer” packages showed the differences in survival
time of the two groups. The KM analysis estimates the sur-
vival curve in this way: first, calculate the probability that
patients who have lived for a certain period will live for the
next period (i.e. survival probability), and then multiply
the survival probability one by one, that is, the survival rate
of the corresponding period. R software was also used to
show the risk score values and survival status of each sample
in the model. The “survivalROC” package was taken for pre-
dicting survival status in ROC curves.

2.5. Clinical Evaluation of the Prognostic Model by lncRNA
Pairs. The chi-square test based on the “ComplexHeatmap”
R package was taken for analyzing the relationship between
the model and clinicopathological parameters (∗∗∗ means
p < 0:001, ∗∗ means p < 0:01, and ∗ means p < 0:05). The
risk scores of these clinicopathological features were com-
pared between different groups by the Wilcoxon signed-
rank test. The relationship between the risk score and clinico-
pathological parameters was performed by univariate and
multivariate Cox regression analyses to demonstrate whether
the model can be used to predict the prognosis indepen-
dently. The “limma” and “ggupbr” packages were used to
show the results in a format of forest maps.

2.6. Evaluation of Immune-Infiltrating Cells and Immune
Checkpoint Genes Expression by the Prognostic Model of
the lncRNA Pairs. Using several immune-related databases,
the correlation between the risk score and immune cell
condition was analyzed by Spearman correlation analysis
(p value <0.05). The Wilcoxon signed-rank test based on
the “ggplot2” packages was conducted for evaluating the
content differences of immune-infiltrating cells between the
two groups, and we showed the results in a box diagram.
The “ggstatsplot” R package was performed to analyze
the expression differences of immune checkpoint-related
genes.
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3. Results

3.1. DEirlncRNA Screening. The expression data were gotten
from TCGA database and GTEx database, which included 379
OC patients and 88 normal patients. Gene expression level in
both two databases was further processed by log2 (FPKM+1).
And we annotated the expression data with Ensembl GTF
files, performed a correlation of immune-related gene and
lncRNA, and got 694 immune-related lncRNA (Supplemen-
tary material 1). Compared the gene expression level of nor-
mal ovarian tissues in GTEx database and OC tissues in
TCGA database, 178 differentially expressed immune-related
lncRNA (Figure 2(a); Supplementary material 2) were identi-
fied, which included 7 downregulated and 171 upregulated
(Figure 2(b)).

3.2. DEirlncRNA Pairing and Construction of the Prognostic
Model by lncRNA Pairs. After an iteration loop using
lncRNA pairs matrix screening, we got 11984 DEirlncRNA
pairs (Supplementary material 3). First, uniCox regression
analysis was conducted, and 227 DEirlncRNA pairs were
related to overall survival time (Supplementary material 4).
Next, lasso Cox analysis suggested that 7 DEirlncRNA pairs
had the highest point of AUC value (Figures 3(a)–3(c)).
Table 1 shows the coefficient, hazard ratio (HR), 95% confi-
dence interval of HR, and p value of each lncRNA pair
included in the model. Besides, we analyzed the AUC curve
and found the point of which the sum of sensitivity and
specificity reached the highest (Figure 3(d)), and we consid-
ered this value to be the cut-off point to divide the patients
into two groups (high-risk and low-risk, Supplementary

material 5). And we conducted univariate and multivariate
Cox analyses, which indicated that 7 pairs were related to
the overall survival (Figures 3(e) and 3(f)).

3.3. Validation of the Prognostic Model of the lncRNA Pairs.
According to the cut-off point, we divided the patients into
two groups, one containing 102 high-risk patients and the
other containing 272 low-risk patients (Figure 4(a); Supple-
mentary material 5). In addition, we draw the scatter figure
to show the survival status and the risk score of each
patient (Figure 4(b)). KM analysis showed that the patients
with high-risk score survived shorter (p value <0.001,
Figure 4(c)). The ROC curves at 1, 2, and 3 years indicated that
all AUC were more than 0.7 (Figure 4(d)). What is more, the
ROC curve at 1 year compared with other common clinico-
pathological parameters suggested that the model we devel-
oped had a perfect prediction ability (Figure 4(e)).

3.4. Clinical Evaluation of the Prognostic Model by lncRNA
Pairs. The chi-square test suggested that age was signifi-
cantly associated with the risk score (p < 0:001), but in the
clinical stage, tumor grade had no differences between the
two groups (Figure 5(a)). The risk scores of these clinico-
pathological features comparing between different groups
by the Wilcoxon signed-rank test indicated that age had a
positive correlation with the risk score (Figure 5(b)), while
the other had no correlation (Figures 5(c) and 5(d)). The
univariate (Figure 5(e)) and multivariate (Figure 5(f)) Cox
regression analyses confirm that the model can be used to
predict the prognosis independently.

mRNA expression data from TCGA of ovarian cancer

lncRNA
expression data
from TCGA of
ovarian cancer 

Clinical data
from TCGA of
ovarian cancer

Differentially expressed immune-related lncRNA(DEirlncRNA)

Prognostic model by lncRNA pairs

Univariate and multivariate cox analysis

Immune related differentially expressed RNA

KM-plotter analysis and ROC curve

Clinical characteristics analysis

Tumor microenvironment related analysis

Unicox, lasso
and multivariate

cox analysis

lncRNA pairs matrix according to the relative expression level

Figure 1: The flow chart of whole process of data analysis.
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Figure 2: Screening the differentially expressed immune-related lncRNA (DEirlncRNA) in the TCGA datasets. The results were shown in
the form of heatmap (a) (noted that the redder square in the heatmap meant the higher gene expression level, while the bluer ones meant the
lower gene expression level) and volcano plot (b) (noted that the red dots in the volcano meant the upregulated genes, while the black ones
meant the downregulated genes).
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Figure 3: Continued.
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Figure 3: Continued.
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3.5. Evaluation of Immune-Infiltrating Cells and Immune
Checkpoint Genes Expression by the Prognostic Model of
the lncRNA Pairs. Through analysis based on several
immune-related databases, we concluded that patients with

different risk score had different immune cells infiltrating
(Figure 6(a); Supplementary material 6). Through spear-
man analysis, we concluded that the high-risk scores were
positively correlated with high infiltration of neutrophil,

USP30-AS1|AC008649.2

AC007389.5|AC073046.1

AC005884.2|AL163051.1

U62317.1|HOXB-AS2

BMPR1B−DT|UNC5B-AS1
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NR4A1AS|LINC00893
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Figure 3: Construction of the prognostic model by lncRNA pairs. 7 immune-related lncRNA pairs were identified by a lasso regression
analysis; (a) penalty term parameters to choose lambda value and (b) the relationship between lambda and regression coefficient. (c) The
ROC of 7 immune-related lncRNA pairs had the maximum AUC (AUC = 0:746). (d) The ROC curve was evaluated to determine the
point of which the sum of sensitivity and specificity reached the highest, which was considered as the cut-off point to distinguish
between the high-risk and low-risk scores of OC patients (cut − off value = 1:620). Univariate (e) and multivariate (f) Cox analysis results
of immune-related lncRNA pairs and survival time (p < 0:01 of each lncRNA pair included in the model).

Table 1: The coefficient, HR, 95% confidence interval of HR, and p value of each lncRNA pair include in the model.

Id Coef HR HR.95L HR.95H p value

USP30-AS1|AC008649.2 -0.37265831 0.688900583 0.503499614 0.942570759 0.019821465

AC007389.5|AC073046.1 -0.393910582 0.674414359 0.503652282 0.903072901 0.00818398

AC005884.2|AL163051.1 0.506623749 1.659678235 1.124429293 2.44971548 0.010762253

U62317.1|HOXB-AS2 -0.522539129 0.593012898 0.434220372 0.80987517 0.001015862

BMPR1B-DT|UNC5B-AS1 -0.731071092 0.481393097 0.334014628 0.693799896 0.00000884

AL035701.1|AC106900.1 -0.540417777 0.582504844 0.429107585 0.790738512 0.000528994

NR4A1AS|LINC00893 0.396416384 1.486488139 1.108818372 1.992794349 0.008033751
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endometrial cell, macrophage, cancer-associated fibroblast, T
cells, and mast cells (Figures 6(b)–6(g)). What is more, we
evaluated the immune checkpoint genes expression levels
between two groups, indicating that CD244, LAG3, ICOS,
CTLA4, CD48, TNFRSF4M, CD80, TMIGD2, IDO1,
TNFRSF18, CD274, and CD40 were significantly lower in
the high-risk group, while CD276 and TNFRSF25 were
higher (Figure 7; Supplementary material 7).

4. Discussion

Since OC causes so many deaths in the world every year, it
deserves more in-depth exploration and research. TCGA
and GTEx are platforms collecting clinical data, genomic var-
iation, mRNA expression, miRNA expression, methylation,
and other data of patients with or without human cancers,
which is a very important data source for cancer researchers.
Here, the clinical data and mRNA expression data of OC in
TCGA database and the mRNA expression data of patients
without OC in GTEx database were downloaded. First, we
used coexpression analysis to get the differentially expressed
immune-related lncRNA. Then, we constructed a novel
model to predict the prognosis of OC based on lncRNA pair-
ing. At the same time, we got the cut-off point to divide the
patients into the high-risk and low-risk group. This model
was verified by ROC curves and survival analysis, as well as
the relationship between risk score and other clinicopatholo-
gical parameters or immune-infiltrating cells. The results
indicated that this model can instruct the prognosis predic-
tion and immune therapy of OC.

There were many studies involving the role of lncRNA in
OC, where lncRNA expression data was analyzed and
lncRNA model was constructed to predict the prognosis of
patients with OC [44–48]. Nevertheless, this model needed
to measure the exact expression level of the lncRNA, which
requires equipment with higher quality and expert to read
the results. Besides, this model was verified by multivariate
Cox analysis with a p value of 0.02. In our study, we used
lncRNA pairing method in OC prognosis, with which we
only needed to check the relative expression of the lncRNA
pair instead of the exact expression level of each lncRNA.
And we did the multivariate Cox analysis with a p value
<0.001. It is reported that USP30-AS1 in our model also par-
ticipated in the other immune-related lncRNA model based
on TCGA and GTEx database, implying the importance of
USP30-AS1 in OC [48]. Besides, several studies reported
the role of USP30-AS1 in carcinogenesis [48–52]. But there
were no studies of USP30-AS1 in OC, which needed to be
future explored. lncRNA UNC5B-AS1 in our model had
been reported to be an oncogenic gene in OC through regu-
lating the H3K27me on NDRG2 via EZH2 [53]. Other
lncRNA in our model had been reported in other cancer
types, but no reports in OC. Therefore, we also need to do
a lot of work, including not only prospectively collecting
clinical samples to verify our model, but also studying the
specific role of lncRNA involved in the model in ovarian
cancer.

What is more, we first combined lncRNA with tumor
immune-infiltrating cell condition in OC. We found that
the proportion of neutrophil, endometrial cell, macrophage,
cancer-associated fibroblast, T cells, and mast cells was
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Figure 4: Validation of the prognostic model of the lncRNA pairs. Risk score values (a) and survival status (b) of OC patients. (c) KM plot of
our model showed a good prognosis predicting potential (p < 0:001). (d) The ROC curve at 1, 2, and 3 years (AUC of 1 year at 0.746, AUC of
2 years at 0.707, and AUC of 3 years at 0.686). (e) The 1-year cliROC curve (AUC of risk scores at 0.746, AUC of age at 0.585, AUC of grade
at 0.535, and AUC of stage at 0.528).
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Figure 5: Continued.
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higher in the high-risk group with p value lower than 0.05.
The M2 macrophage significantly accumulates in the tumor
niche and plays a role in promoting tumor development
and immunosuppression, which can be a therapeutic target
for treating OC [54–57]. Zhang et al. reported a targeted
nanocarrier that could deliver M1-polarizing transcription
factors to reprogram TME [58]. Besides, Rodriguez-Garcia

et al. reported that folate receptor β+ tumor-associated
macrophages had the characteristics of macrophages M2,
and selective elimination of them by chimeric antigen
receptor T cell could retard tumor growth and remodel
the TME, which inaugurated a new era in adjuvant therapy
of conventional immunotherapy [59]. All these promoted
the progress of immune therapy in OC. In recent years,
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Figure 5: Clinical evaluation of the prognostic model by lncRNA pairs. (a) The chi-square test and (b–d) the Wilcoxon signed-rank test of
risk score and clinicopathological parameters showed that age was significantly lower in the low-risk group (p = 0:0017), while grade and
stage were higher in the high-risk group without significance. (e) UniCox and (f) multiCox analysis to predict the mode independence in
prognosis (p < 0:001 of risk score calculated by the model).

11BioMed Research International



Neutrophil_CIBERSORT
Eosinophil_CIBERSORT

Mast cell resting_CIBERSORT
Mast cell activated_CIBERSORT

Myeloid dendritic cell activated_CIBERSORT
Myeloid dendritic cell resting_CIBERSORT

Macrophage M2_CIBERSORT
Macrophage M1_CIBERSORT
Macrophage M0_CIBERSORT

Monocyte_CIBERSORT
NK cell activated_CIBERSORT

NK cell resting_CIBERSORT
T cell gamma delta_CIBERSORT

T cell regulatory (Tregs)_CIBERSORT
T cell follicular helper_CIBERSORT

T cell CD4 + memory activated_CIBERSORT
T cell CD4 + memory resting_CIBERSORT

T cell CD4 + naive_CIBERSORT
T cell CD8+_CIBERSORT

B cell plasma_CIBERSORT
B cell memory_CIBERSORT

B cell naive_CIBERSORT
Neutrophil_CIBERSORT−ABS
Eosinophil_CIBERSORT−ABS

Mast cell resting_CIBERSORT−ABS
Mast cell activated_CIBERSORT−ABS

Myeloid dendritic cell activated_CIBERSORT−ABS
Myeloid dendritic cell resting_CIBERSORT−ABS

Macrophage M2_CIBERSORT−ABS
Macrophage M1_CIBERSORT−ABS
Macrophage M0_CIBERSORT−ABS

Monocyte_CIBERSORT−ABS
NK cell activated_CIBERSORT−ABS

NK cell resting_CIBERSORT−ABS
T cell gamma delta_CIBERSORT−ABS

T cell regulatory (Tregs)_CIBERSORT−ABS
T cell follicular helper_CIBERSORT−ABS

T cell CD4 + memory activated_CIBERSORT−ABS
T cell CD4 + memory resting_CIBERSORT−ABS

T cell CD4 + naive_CIBERSORT−ABS
T cell CD8+_CIBERSORT−ABS

B cell plasma_CIBERSORT−ABS
B cell memory_CIBERSORT−ABS

B cell naive_CIBERSORT−ABS
Uncharacterized cell_EPIC

NK cell_EPIC
Macrophage_EPIC

Endothelial cell_EPIC
T cell CD8+_EPIC
T cell CD4+_EPIC

Cancer associated fibroblast_EPIC
B cell_EPIC

Cancer associated fibroblast_MCPCOUNTER
Endothelial cell_MCPCOUNTER

Neutrophil_MCPCOUNTER
Myeloid dendritic cell_MCPCOUNTER

Macrophage/Monocyte_MCPCOUNTER
Monocyte_MCPCOUNTER

B cell_MCPCOUNTER
NK cell_MCPCOUNTER

Cytotoxicity score_MCPCOUNTER
T cell CD8+_MCPCOUNTER

T cell_MCPCOUNTER
Uncharacterized cell_QUANTISEQ

Myeloid dendritic cell_QUANTISEQ
T cell regulatory (Tregs)_QUANTISEQ

T cell CD8+_QUANTISEQ
T cell CD4+ (Non-regulatory)_QUANTISEQ

NK cell_QUANTISEQ
Neutrophil_QUANTISEQ
Monocyte_QUANTISEQ

Macrophage M2_QUANTISEQ
Macrophage M1_QUANTISEQ

B cell_QUANTISEQ
Myeloid dendritic cell_TIMER

Macrophage_TIMER
Neutrophil_TIMER

T cell CD8+_TIMER
T cell CD4+_TIMER

B cell_TIMER
Microenvironment score_XCELL

Stroma score_XCELL
Immune score_XCELL

T cell regulatory (Tregs)_XCELL
T cell CD4 + Th2_XCELL
T cell CD4 + Th1_XCELL

T cell gamma delta_XCELL
B cell plasma_XCELL

Plasmacytoid dendritic cell_XCELL
T cell NK_XCELL

NK cell_XCELL
Neutrophil_XCELL
B cell naive_XCELL

Monocyte_XCELL
B cell memory_XCELL

Mast cell_XCELL
Macrophage M2_XCELL
Macrophage M1_XCELL

Macrophage_XCELL
Hematopoietic stemcell_XCELL

Granulocyte-monocyte progenitor_XCELL
Cancer associated fibroblast_XCELL

Eosinophil_XCELL
Endothelial cell_XCELL

Myeloid dendritic cell_XCELL
Common myeloid progenitor_XCELL

Common lymphoid progenitor_XCELL
Class-switched memory B cell_XCELL
T cell CD8 + effector memory_XCELL
T cell CD8 + central memory_XCELL

T cell CD8+_XCELL
T cell CD8 + naive_XCELL

T cell CD4 + effector memory_XCELL
T cell CD4 + central memory_XCELL

T cell CD4 + (Non-regulatory)_XCELL
T cell CD4 + naive_XCELL

T cell CD4 + memory_XCELL
B cell_XCELL

Myeloid dendritic cell activated_XCELL

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Correlation coefficient

Im
m

un
e c

el
l

Im
m

un
e c

el
l

Software

XCELL
TIMER
QUANTISEQ
MCPCOUNTER

EPIC
CIBERSORT−ABS
CIBERSORT

(a)

Figure 6: Continued.
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with the development of targeted immune-suppressive ther-
apy, immune checkpoint inhibitors (ICIs) identify specific
antigen in the immune cells, help regulate the immune

response, and perform the antitumor effect [60–62]. There-
fore, we also evaluated the ICIs expression level between
two groups, which could future instruct the targeted immune
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Figure 7: Evaluation of immune checkpoint genes expression by the prognostic model of the lncRNA pairs. CD244, LAG3, ICOS, CTLA4,
CD48, TNFRSF4M, CD80, TMIGD2, IDO1, TNFRSF18, CD274, and CD40 were significantly lower in the high-risk group, while CD276
and TNFRSF25 were higher (∗∗∗ means p < 0:001, ∗∗ means p < 0:01, and ∗ means p < 0:05).
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Figure 6: Evaluation of immune-infiltrating cells by the prognostic model of the lncRNA pairs. (a) Patients with different risk score had
different immune cells infiltrating (p < 0:05). (b–g) Spearman correlation analysis of risk score and tumor-infiltrating immune cells
showed high infiltration of neutrophil, endometrial cell, macrophage, cancer-associated fibroblast, T cells, and mast cells in the high-risk
group (p < 0:01).
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therapy. In conclusion, the results of these studies inspire us
to future explore better immunotherapy strategies in OC.

5. Conclusion

In summary, by collecting and analyzing the RNA-seq and
clinical information of OC samples from TCGA and GTEx
database, we identified a new immune-related lncRNA pair-
ing model to predict the prognosis and immune-infiltrating
cell condition in human OC, which thus further can instruct
immunotherapy. However, a prospective, large-scale, multi-
center clinical cohort to validate the prognostic model as
well as experimental studies of cell biology to explore the
role of related lncRNA in OC is needed.
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