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Abstract

Chronic stress accounts for billions of dollars of economic loss annually in the United States alone, and is recognized as a

major source of disability and mortality worldwide. Robust evidence suggests that chronic stress plays a significant role in the

onset of severe and impairing psychiatric conditions, including major depressive disorder, bipolar disorder, and posttraumatic

stress disorder. Application of molecular imaging techniques such as positron emission tomography and single photon

emission computed tomography in recent years has begun to provide insight into the molecular mechanisms by which

chronic stress confers risk for these disorders. The present paper provides a comprehensive review and synthesis of all

positron emission tomography and single photon emission computed tomography imaging publications focused on the

examination of molecular targets in individuals with major depressive disorder, posttraumatic stress disorder, or bipolar

disorder to date. Critical discussion of discrepant findings and broad strengths and weaknesses of the current body of

literature is provided. Recommended future directions for the field of molecular imaging to further elucidate the neurobio-

logical substrates of chronic stress-related disorders are also discussed. This article is part of the inaugural issue for the

journal focused on various aspects of chronic stress.

Keywords

depression, posttraumatic stress disorder, bipolar disorder, positron emission tomography, single photon emission computed

tomography

Received 20 January 2017; Revised 30 April 2017; Accepted 1 May 2017

Introduction

The experience of chronic psychological stress is asso-
ciated with a variety of serious physical, financial, and
emotional consequences at both individual and societal
levels.1 The World Health Organization has labeled stress
as a ‘‘worldwide epidemic’’ in recognition of the magni-
tude of its deleterious effects.2 The American Institute
of Stress estimates that the effects of chronic stress cost
US companies over 300 billion dollars annually.3 More
gravely, stress and resultant changes in affect are asso-
ciated with increased morbidity and mortality,4 including
increased rates of mental illness and suicide.5 Robust evi-
dence has linked the experience of chronic stress to onset
of major depressive disorder (MDD), which is the leading
cause of disability worldwide.1,6,7 Likewise, onset of bipo-
lar (BD) and posttraumatic stress (PTSD) disorders, both
of which are associated with substantial emotional,

physical, and financial burden,8,9 has been linked to
chronic stress. Unfortunately, the molecular mechanisms
by which chronic stress confers risk for mental health
problems are poorly understood, hindering the develop-
ment of critical interventions to resolve and prevent
chronic stress-related disorders.
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Application of Positron Emission Tomography and
Single Photon Emission

Computed tomography (SPECT) has begun to provide
information concerning how the brain changes following
chronic stress on a molecular level. Positron emission
tomography (PET) and SPECT molecular imaging tech-
niques allow for the quantification of biochemical pro-
cesses, including those known to play a pivotal role in the
pathophysiology of psychiatric disorders in the living
human brain.10 Both techniques rely on the injection of
a ‘‘radiotracer,’’ a physiologically active compound with
affinity for a specific target, which has been tagged with a
small amount of radioactive isotope. This review is
part of the journal’s inaugural issue, which is designed
to comprehensively describe the neurobiological and neu-
roclinical effects of chronic stress. The role of this review
is to summarize the existing molecular imaging work in
psychiatric conditions known to be associated with
chronic stress—MDD, BD, and PTSD—and recommend
directions for future research.

Methods

Separate searches of the PubMed database were con-
ducted for each disorder. In each case, the following
standard prompts were used: ‘‘positron emission tomog-
raphy’’ OR ‘‘PET’’ OR‘‘single photon emission com-
puted tomography’’ OR ‘‘SPECT’’ OR ‘‘single photon
emission tomography’’ OR ‘‘SPET’’). Distinct specifiers
were then added for each of the three disorders: AND
(‘‘depression’’ OR ‘‘MDD’’), AND (‘‘bipolar disorder’’
OR ‘‘mania’’), AND (‘‘posttraumatic stress disorder’’
OR ‘‘PTSD’’). Searches for MDD, BD, and PTSD ini-
tially yielded 2, 302, 447, and 158 PubMed article results,
respectively. Studies were included in this review if they
satisfied the following criteria: (1) articles focused on the
use of PET or SPECT techniques, (2) articles describing
original research, (3) articles presenting in vivo results in
human participants, and (4) articles focused on the ima-
ging of specific molecule/receptor types (i.e. excluding
glucose metabolism and cerebral blood flow). Following
careful review, 126 MDD, 22 BD, and 15 PTSD articles
were retained.

Results

Major Depressive Disorder

A substantial body of research supports the assertion that
stress, both chronic and acute, is causally related to the
onset of MDD.11 Recent research suggests that exposure
to chronic or ‘‘every day’’ stress in financial, occupa-
tional, or personal settings alone, or in combination
with acute stress exposure is more powerfully predictive

of MDD than acute stress exposure alone.12–14 While
short-term stress can be adaptive, prolonged, or chronic
exposure to stress can lead to long-term dysregulation of
many physiological and neurochemical processes. PET
and SPECT research has provided more precise insight
into the nature of the chronic stress-related alterations
associated with the onset and persistence of MDD
(Table 1).

The majority of existing PET and SPECT research in
MDD populations has focused on the functioning of two
monoaminergic neurotransmitters: serotonin and dopa-
mine. Focus on monoamine functioning in depression
resulted in part from the monoaminergic hypothesis,97

which postulates that alterations in the function of mono-
aminergic neurotransmission play a causal role in the
development of MDD.

Serotonin. Between 1991 and 2016, 71 molecular imaging
studies meeting the criteria specified above were pub-
lished. Strong evidence supports the role of the seroto-
nergic (5HT) system, which plays a role in the regulation
of sleep, stress responses, and affective cognition98 in the
development and continuation of depressive symptoms.99

However, the exact nature of the relationship between
5HT functioning and MDD is still under debate. Both
preclinical and postmortem evidence suggests that sero-
tonergic dysfunction and specifically deficits in serotonin
are central to the pathophysiology of MDD.100,101 In line
with such findings, evidence from PET work suggests
lower serotonin synthesis in MDD individuals relative
to healthy control,15–19 and that treatment with selective
serotonin reuptake inhibitor (SSRI) resulted in increased
serotonin synthesis.16

The serotonin transporter (SERT) plays a key role in
modulation of brain 5HT levels via reuptake into pre-
synaptic neurons,98 and is the primary target of action
for many commonly prescribed antidepressant medica-
tions.102 Interest in SERT has been motivated in part
by evidence suggesting that expression of the SERT
gene (5HTT) may moderate emotional and behavioral
responses to stress,103 such that individuals displaying a
specific 5HTT polymorphism (associated with decreased
serotonergic functioning in preclinical studies103,104) were
more likely to develop MDD and suicidal behavior fol-
lowing stress.105 Evidence from a recent SPECT study
similarly found lower SERT availability in the thalamus
and that high levels of life stress interacted to predict
depressive symptom severity, suggesting that SERT may
play a specific role in the development of depression
following chronic stress.106 Miller et al.25 observed
lower SERT availability across brain regions in individ-
uals reporting a history of child abuse who went on to
develop MDD, but not PTSD, relative to MDD individ-
uals without an abuse history. Further, support for the
relationship between SERT and stress comes from an
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Table 1. Radiotracers used for in vivo molecular imaging in individuals with major depressive disorder.

Molecular target

(receptor) MDD Radiotracer (full name) Abbreviation(s) Main findings

Serotonin synthesis a-[11C]methyl-L-tryptophan a-[11C]- MTrp #Serotonin synthesis in MDD15–17

5-hydroxytryptophan (5-HTP) labelled

with 11C in the ß position

[ß-11C]5-HTP #Serotonin synthesis in MDD18,19

Serotonin transporter

(SERT)

(3-amino-4-(2-dimethylami-nomethyl-

phenylsulfanyl)-benzonitrile)

[11C]DASB #SERT availability in MDD;20–22 mixed

findings23,24

(11)C-(þ)-6b -(4Methylthiophenyl)-

1,2,3,5,6alpha,10b hexahydropyrrolo

[2,1-a] isoquinoline

[11C]McN5652 #SERT availability in MDD;25,26
"SERT

availability in MDD27,28

[123I] 2-((2-((dimethylamino)methyl)

phenyl) thio)-5-iodophenylamine

(aDaM)

[123I]-ADAM #SERT availability in MDD;29–,32
"mid-

brain SERT availability in suicide

attempters33

N, N-dimethyl-2-(2-amino-4-

[18F]fluorophenylthio)benzylamine

(4-[18F]-aDaM)

(4-[18F]-ADAM) Suicidal ideation positively correlated

with SERT availability34

Carbon-11 labeled 2b-carbomethoxy-3b-

[40-((Z)-2-iodoethenyl)phenyl]nortropane

[11C]-ZIENT PET #SERT availability in MDD suicide

attempters35

Serotonin 1A (5HT1A)

receptors

carbon11–labeledN-(2-1-4-2-methoxyphe-

nyl)-1piperazinyl)ethyl))- N-(2-pyridyl)-

cyclohexanecarboxamide

[11C]WAY-100635 "5HT1A availability in MDD26,36–40;

#5HT1A availability in MDD41–48

No-carrier-added 4-(20-methoxyphenyl)-

1-[20-(N-2-pyridinyl)-p-[18F]

fluorobenzamido]ethylpiperazine)

[18F]MPPF #5HT1A availability in MDD49

(cont.)

Serotonin 1B (5HT1B)

receptors

(R-1-[4-(2-methoxy-isopropyl)-phenyl]-3-

[2-(4-methyl-piperazin-1-yl)benzyl]-

pyrrolidin-2-one)

[11C]P943 #5HT1B availability in MDD50

(5-methyl-8-(4-methyl-piperazin-1-yl)-

4-oxo-4H-chromene-2-carboxylic

acid (4-morpholin-4-yl-phenyl)-amide)

[11C]AZ10419369 #5HT1B availability in MDD;51
#5HT1B

availability in MDD following

therapy52

Serotonin 2A (5HT2A)

receptors

123iodinated 4-amino-N-1-

[3-(4-fluorophenoxy)propyl]-4-methyl-4-

piperidinyl] 5-iodo-2-methoxybenzamide

123I-5-I-R91150 #5HT2A availability in MDD53

[18F]altanserin #5HT2A availability in MDD54,55

((R)-(þ)-4 -(l-hydroxy-1-

(2,3-dimethoxyphenyl)methyl)-N

-2-(4-fluorophenylethyl)piperidine)

labeled with 11C

[11C]MDL 100,907 "5HT2A availability in individuals with a

history of MDD56

[18F]fluoroethylspiperone [18F]FESP #5HT2A availability in drug-naı̈ve MDD,

not different from HC in SSRI

responders57

[18F]setoperone #5HT2A availability in MDD;58,59

"5HT2A availability in MDD60,61

Serotonin receptor type 4

(5HT4)

[11C]SB207145 #5HT4 availability in healthy individuals

with family history of MDD62

SERT/dopamine trans-

porter (DAT)

123I-labelled 2b-carbomethoxy-3

b-(4-iodophenyl)-tropane

[123I]I-ß-CIT #SERT/DAT availability in MDD63–66

[123I]nor-ß-CIT #SERT/DAT availability in MDD67,68

(2b-carbomethoxy-3b-

(4- iodophenyl)-tropane

[123I-labeled b -CIT Mixed results69,64

Dopamine synthesis [18F]fluorodopa [18F]DOPA #Dopamine synthesis70

(continued)
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experimental study of HPA axis dysfunction, as measured
by the dexamethasone suppression test,107 showing an asso-
ciation with reduction in SERT levels. Evidence points to
lower SERT availability in multiple brain areas, most com-
monly the thalamus,20,29 and midbrain21,22,30,31,67 or brain-
stem,63,69 areas responsible for regulation of sleep/wake
cycles which are frequently disrupted in MDD.

Importantly, SERT levels appear to be related to
antidepressant treatment outcome and illness progres-
sion.32,108,109,110,111 Increase in midbrain SERT

availability is associated with depressive symptom remis-
sion following antidepressant treatment,109,111,112 and
Amsterdam et al.110 showed a significant increase
in both midbrain and medial temporal lobe SERT avail-
ability in treatment responders following 12 weeks of cog-
nitive behavioral therapy. Conversely, in participants
whose MDD symptoms did not remit following a year
of antidepressant use, lower SERT availability was
detected in several brain regions in individuals with
MDD relative to healthy controls.27

Table 1. Continued

Molecular target

(receptor) MDD Radiotracer (full name) Abbreviation(s) Main findings

Doapmine synthesis

(cont)

11C-labeled 3,4-Dihydroxy-phenyl-L-alanine L-[11C]DOPA #Dopamine synthesis102

Dopamine transpoter

(DAT)

((99 m)Tc-[2[[2-[[[3-(4-chlorophenyl)-8-

methyl-8-azabicyclo[3,2,1]-oct-2-yl]-

methyl](2-mercaptoethyl) amino]ethyl]

amino]ethane-thiolato(3-)-

N2,N20,S2,S2]oxo-[1R-(exo-exo)]))

[99mTc] TRODAT-1 #DAT availability in MDD71–76

[11C]RTI-32 PET #DAT availability in MDD77

[123I]N-fluoropropyl-carbomethoxy-3b-

(4-iodophenyl)tropane

#DAT availability in MDD78

Dopamine type 2/3

receptors (D2/3)

[123I]iodo-benzamide ([123I]IBZM) "D 2/3 availability in MDD;62,79 No

differences in D 2/3 availability

between MDD and HC80,74,81,82

[123I]epidepride "D 2/3 availability in MDD68

((S)-N-((1-ethyl-2-pyrrolidinyl)methyl)-

5- bromo-2,3-dimethoxybenzamide)

[11C]FLB 457 No differences in D 2/3 availability

between MDD and HC83

[11C]raclopride [11C]RAC "D1 availability in MDD24

Dopamine Type 1

Receptors (D1)

8-chloro-7-hydroxy-3-methyl-5-

(7-benzofuranyl)-2,3,4,5-tetrahydro-

IH-3-benzazepine)

[11C]NNC-112 #D1 availability in MDD84

((R)-(þ)-8-chloro-2,3,4,5-tetrahydro-

3- methyl-5-phenyl-1H-3-benzazepin-7-ol)

[11C]SCH 23,390 #D1 availability in MDD with anger85

Metabotropic glutamate

receptors type

5 (mGluR5)

(3-(6-methyl-pyridin-2-ylethynyl)-

cyclohex-2-enone-O-(11)

C-methyl-oxime)

[11C]ABP688 #mGluR5 availability in MDD86,87

[18F]FPEB No differences in mGluR5 availability

between MDD and HC88

Translocator protein

(TSPO)

[11C]PBR28 No differences in TSPO availability

between MDD (mild symptom

severity) and HC89

fluorine F 18–labeled N-(2-(2-

fluoroethoxy)benzyl)-N-

(4-phenoxypyridin-3-yl)acetamide

([18F]FEPPA) "TSPO availability in MDD90,91

MAO-A ([11C]harmine) "MAO-A availability in MDD92,93

b-Amyloid F-florbetapir " b-Amyloid availability in MDD94

N-Methyl-[11C]-2-(40methyaminophenyl)-

6-hydroxybenzothiasole

[11C]PIB-PET b-Amyloid availability correlated with

MDD severity95

b2*-nAChR (123I-IA); [123I]-5-iodo-3-[2(S)-

azetidinylmethoxy]pyridine

[123I]5-I-A-85380 No differences in b2*-nAChR between

MDD and HC96

Note. MDD, major depressive disorder; PET, positron emission tomography; MAO, monoamine oxidase; HC, healthy control.
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Of note, in vivo evidence for low SERT in MDD is
strong but not universal. Some studies have reported no
significant differences in SERT availability between
MDD and healthy control groups,23,28,64,113,114 while
others reported higher SERT availability in individuals
with MDD relative to controls.65,113,115 No clear explan-
ation for these discrepant findings is available, though
low sample size due to cost in PET and SPECT studies,
difficulty in recruiting these patients, and cross-sample
variability (e.g. symptom severity, sex, race, medication)
likely play a role. Notably, characteristics of some specific
radiotracers may have biased findings in some cases.
For example, both SPECT tracers, [123I]nor-b-CIT and
[123I]b-CIT, have been shown to bind not only to SERT
but to norepinephrine (NET) and dopamine (DAT)
transporters.116 Thus, depending on the region, quantifi-
cation of SERT might represent SERT and DAT/NET
densities.

A large focus in the serotonergic literature has also
been the 5HT1A receptor, which is a post-synaptic
G-coupled protein receptor and the most common sero-
tonergic receptor in the brain.105 The 5HT1A receptor is
located both in brain areas with projections from
the raphe nuclei (RN), where the serotonergic system is
centralized,117 and in the RN itself. Preclinical research
has shown that animals with higher numbers of 5HT1A
receptors are more vulnerable to stress118 and display
more ‘‘depressive’’ behavior (e.g. helplessness119).
Similarly, some postmortem studies have shown higher
5HT1A density in select brain regions (e.g. midbrain
dorsal RN) of individuals with MDD relative to healthy
controls.49 Based on evidence from other modalities, it is
reasonable to hypothesize observation of similarly
increased 5HT1A availability in vivo.

To date all published 5HT1A studies have used PET,
with all but one using the 5HT1A radiotracer [11C]WAY-
100635 with somewhat mixed findings. Unlike cited
preclinical and postmortem studies, there does not
appear to be a consensus on whether 5HT1A is up or
downregulated in depression: about half the published
studies observed lower 5HT1A availability in MDD par-
ticipants across various brain regions,41–46 whereas the
other half found evidence for higher levels of 5HT1A in
MDD, particularly in treatment-resistant individ-
uals,26,36–39,47,48,120,121 and with only one study reporting
no 5HT1A differences between MDD participants and
controls.40 Interestingly, downregulation in 5HT1A
appears to be associated with treatment response follow-
ing SSRI treatment.39,121

Importantly, a specific, testable explanation for the
observed variability in 5HT1A findings has been pro-
posed. In molecular imaging, there are various ways to
quantify receptor availability, one of which is by the use
of a reference tissue, which should be a region that is
devoid of the target molecule (commonly the cerebellum).

This method has been implemented in the studies that
report lower 5HT1A availability in MDD; however, it
appears that the cerebellum is not devoid of 5HT1A
and there is evidence of lower cerebellar 5HT1A avail-
ability in the control relative to the MDD groups,98

which would bias the results and lead to an underestima-
tion of the true 5HT1A density in MDD. Illustrating this
point, Hesselgrave and Parsey122 showed that the same
data set showed lower 5HT1A availability in MDD when
analyses were completed using the cerebellum as refer-
ence, and the opposite finding when the outcome measure
was a blood derived input function. It has also been
suggested that 5HT1A level varies temporally over the
course of MDD, possibly in part as a function of anti-
depressant exposure.122 At present, all that can be con-
cluded is that the preponderance of evidence suggests
5HT1A is elevated in MDD.

Like 5HT1A, the 5HT1B receptor is an autoreceptor
present in the terminal regions of serotonergic neurons
and plays a role in regulating, specifically decreasing
when activated, the amount of serotonin in the synapse.98

Both clinical123 and preclinical124 studies have shown that
5HT1B agonists have antidepressant properties, suggest-
ing that unlike 5HT1A, lower levels of 5HT1B may be
associated with MDD symptom experience. Although
limited, evidence is somewhat consistent with this
hypothesis with two reports of lower 5HT1B availability
in the ventral striatum and pallidum50 and the anterior
cingulate cortex (ACC), subgenual prefrontal cortex
(PFC), and hippocampus,51 respectively, but another
report of lower 5HT1B availability in the dorsal brain-
stem following cognitive behavioral therapy for MDD.52

The 5HT2A receptor has received significant molecu-
lar imaging research attention, largely because SSRIs are
known to act directly on 5HT2A receptors, leading to
receptor downregulation.125 Importantly, the 5HT2A
receptor has proven responsive to stress exposure;
5HT2A levels have been shown to increase following
exposure to chronic stress in preclinical studies.126,127

Depressive behavior following stress has also been
shown to increase in response to 5HT2A agonists,128,129

further implicating upregulated 5HT2A in the patho-
physiology of MDD. In vivo molecular imaging studies,
however, have shown mixed results. There are several
reports of downregulated53–55,57,58,60 5HT2A in MDD
across several brain regions. However, there are also stu-
dies of no significant differences between untreated MDD
participants and controls,59,130 and two showed higher
levels of 5HT2A in the basal ganglia131 and frontal,
parietal, and occipital cortices56 of unmedicated MDD
participants relative to controls. The reports of higher
5HT2A density in MDD are in agreement with studies
showing a reduction in cortical 5HT2A availability fol-
lowing treatment with tricyclic antidepressants.61,130

In attempting to account for mixed findings concerning
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5HT2A in MDD, Ruhe et al.98 suggested that individuals
with MDD may have lower 5HT2A availability in the
hippocampus due to HPA axis dysregulation and higher
5HT2A availability in other areas (e.g. the frontal
cortex), a pattern that has been shown in animals exposed
to chronic stress. However, this proposed explanation has
not yet been directly tested.132

Finally, a single PET study investigated the relation-
ship between MDD risk and availability of the 5HT4
receptor,62 which has been implicated in recent preclinical
studies as a potential target for rapidly acting antidepres-
sant agents.133 The authors reported that healthy individ-
uals with a family history of MDD have lower 5HT4
availability in the striatum, which was inversely corre-
lated with the number of first degree relatives with
MDD. These findings implicate the 5HT4 receptor as a
potential target subserving familial risk for MDD,
though replication and exploration of this receptor
system in individuals with MDD is warranted.

Dopamine. Another monoaminergic neurotransmitter
implicated in the pathophysiology of MDD is dopamine,
which is known to be associated with emotion regulation,
attention, motivation, and reward.134 Dopaminergic cir-
cuits contribute to the regulation of concentration and
memory functioning, as well as the ability to experience
pleasure, all of which are impaired in MDD.135

Dopaminergic dysfunction (i.e. reduced D2 receptor
function), specifically in the nucleus accumbens, has
also been linked directly to the experience of chronic
stress, and subsequent development of depressive symp-
toms (anhedonia) in preclinical studies.80,136

As with serotonin, early molecular imaging of the
dopamine system sought to examine the neurotransmit-
ter’s synthesis in the brain, speculating in part based on
results from clinical studies,137 that less dopamine synthe-
sis would be observed in depressed individuals.98 This
was verified by some PET studies in limited brain
regions.19,138 A much larger number of studies have
examined the functioning of dopamine transmitters
(DAT) in MDD but have produced incongruent results.
Specifically, genetic research has suggested that a DAT
gene polymorphism, which increases DAT availability, is
associated with higher risk for MDD.70,139 Several post-
mortem studies, however, have observed lower brain-
wide DAT availability in MDD individuals. Findings in
the molecular imaging literature are similarly mixed.
Although there are reports of higher DAT availability
in the striatum,71,140 basal ganglia,72 and other brain
areas73 of MDD participants, others reported no signifi-
cant differences between MDD and healthy control
(HC),74,75 and three reported lower DAT availability in
MDD in the striatum.76,78,141 Furthermore, Meyer et al.76

reported that a downregulation in DAT availability was
related to more severe depressive symptoms. However,

they did not detect a significant change in DAT availabil-
ity before and after bupropion antidepressant therapy,76

suggesting that bupropion treatment did not appear to
target this system or this system may not be significantly
involved in MDD pathophysiology.

Measuring DAT with SPECT has also yielded some
mixed results.28,63,67–69,77,108,109 However, not all of these
studies characterized their results as indicative of DAT
availability because, as noted above, SPECT DAT tracers
are recognized to have affinity for SERT and NET as
well. Results of these studies should therefore be inter-
preted with caution. Furthermore, Camardese et al.66

highlighted the heterogeneity in presentation of MDD
symptoms that can meet diagnosis and the potential
effects of pharmacological treatment history and drug
abuse as potential confounds affecting the observed vari-
ability in findings. As with SERT, inconsistent findings
make it difficult to form a conclusion concerning the rela-
tionship between DAT and MDD at present.

The majority of neuroimaging studies investigating
dopamine receptor availability have focused primarily on
D2/D3 receptors, in part due to these receptors being tar-
gets for antidepressant and antipsychotic therapy.136

Evidence from other modalities implicates possible down-
regulation of D2/3 receptors in MDD. Epigenetic studies
have presented evidence for a link between chronic stress,
D2 downregulation, and the development of depression.66

Similarly, preclinical studies have shown downregulation
of D3 in animals experiencing stress and depression.
However, of the 14 studies which have examined D2/3
availability using PET and SPECT in individuals with
MDD, all but 3 failed to observe differences in both medi-
cated44,81,142,143 and unmedicated26,43,73,79,142 MDD par-
ticipants relative to HCs. The remaining three showed
higher D2/3 availability in MDD in the striatum,82,131

and in the case of Lehto et al.,77 a positive correlation
between MDD symptom severity and D2/3 availability
in the temporal cortex. However, although in vivo evi-
dence suggests no specific D2/3 dysregulation in MDD,
alterations treatment with SSRIs appears to influence
D2/3 availability. For example, Montgomery et al.24

reported lower D2/3 availability in the striatum of MDD
participants using SSRIs, while two other studies observed
increased D2/3 in the basal ganglia136 and striatum83 of
SSRI treatment responders but not non-responders. Of
note, while only two published studies have examined
the D1 receptor in vivo in MDD, both found lower D1
availability in the striatum of MDD relative to control
groups.85,144

Glutamate. More recently, there has been a major focus
on the glutamatergic system in MDD. Glutamate is the
primary excitatory neurotransmitter in the brain, with
80%–90% of synapses in the human brain being gluta-
matergic. Dysfunction of the glutamate system is thought
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to play a role in MDD84 and there is currently an
intensive focus on the glutamate system as a target for
novel treatments for MDD.84 Part of this focus has
been on metabotropic glutamate receptors (mGluRs),
G-protein-coupled receptors that mediate neuromodula-
tory effects of glutamate.145 Indeed, mGluR5 antagonists
have consistently shown antidepressant effects in animal
models of depression.146–151 Lower levels of mGluR5 pro-
tein expression was also found in postmortem PFC tissue
of individuals with MDD;152 however, another study did
not detect differences using autoradiography.86 To date,
there are four PET imaging studies that report on
mGluR5 availability in MDD. Two smaller scale studies
found lower levels of mGluR5 in various brain regions of
those with unmedicated MDD including the PFC, ACC,
and insula.152,153 A recent PET study focusing on late-life
MDD found no differences in mGluR5 availability
between older adults with MDD and matched controls.87

Similarly, a recent study by our group found no differ-
ences in mGluR5 availability in a large group of unme-
dicated MDD individuals compared to HCs. As part of
the same study, we used MRS to assess measures of glu-
tamate and found a negative correlation between
mGluR5 availability and MRS measures of glutamate
in the ACC.154 It is possible, therefore, that higher
levels of glutamate are associated with a downregulation
of mGluR5 in MDD. Furthermore, we recently observed
that rapid downregulation of mGluR5 is associated
with a reduction of somatic anxiety symptoms in MDD
participants, suggesting this might be a treatment target
for anxiety in MDD.153 Further work will be required to
definitively determine whether mGluR5 is a viable treat-
ment target for symptoms of MDD.

Inflammation. Convergent evidence indicates that inflam-
mation plays a significant role in MDD.88,155,156

Inflammatory mechanisms have been proposed to under-
lie the link between chronic stress and depression,33 and
meta-analyses have confirmed elevated inflammatory
markers in individuals with MDD.157–160 However, the
specific role of inflammation in the brain is less clear. It
is possible to measure neuroinflammation with PET and
radioligands that bind to the translocator protein
(TSPO), which is upregulated on activated microglia,
the immune cells of the brain.161 To date, there are two
published PET studies investigating TSPO in depression.
The first found no difference in TSPO availability
between depressed individuals with symptoms of mild
severity and controls.162 The second larger study
showed elevated microglial activation in medication-free
depression of moderate to severe severity, specifically in
the PFC, ACC, and insula.89 This finding has recently
been replicated in a similar sample of medication-free
depressed individuals.90 Interestingly, this study found
elevated TSPO in depressed individuals with versus

without current suicidal thinking, suggesting a role for
neuroinflammation in suicidal ideation specifically.
Indeed, the heterogeneity in MDD symptomatology
may play a role in the expression of neuroinflammation
in MDD and account for divergent findings. PET and the
40þ existing TSPO radioligands provide a unique oppor-
tunity for clarifying the role of neuroinflammation in the
pathophysiology of MDD and evaluating the use of anti-
inflammatory medications in treating its symptoms.

Other Neurotransmitters. In addition to those reviewed
above, PET and SPECT have been used to measure
other systems such as monoamine oxidase (MAO-A), b-
Amyloid, nicotinic acetylcholine receptors (b2*-nAChR),
and g-aminobutyric acid (GABA)—benzodiazepine
receptors (GABAA-BZR). MAO-A is an enzyme known
to be responsible for the regulation of brain monoamine
levels.91 Higher MAO-A availability is observed in MDD
participants relative to HC,91,92 which would be in line
with the studies showing lower monoamine neurotrans-
mission in MDD.

b-Amyloid deposition in the brain, which is associated
with the development of dementia, has been shown to
correlate with history of lifetime MDD episode in post-
mortem work.93 A single PET study by Wu et al.93

showed higher b-Amyloid levels in depressed, but cogni-
tively normal, older adults relative to age-matched HCs
in multiple brain regions. A recent study by Yasuno
et al.94 looking at older adults without clinical MDD
also reported a positive correlation between b-Amyloid
availability averaged across the brain and depressive
symptom severity. The cholinergic system has long been
identified to be dysregulated in MDD,95,163–166 with the
hypothesis of excesses in acetylcholine levels contributing
to the experiences of depression. Specific to the neuroi-
maging literature, the b2*-nAChR has been identified as
potentially relevant to MDD symptom expression,167

although clinical trials with targets to downregulate
b2*-nAChR did not prove efficacious for treatment of
MDD. Combined in vivo/postmortem study from our
group verified that b2*-nAChR does not appear to be
dysregulated in MDD; however, elevations in acetylcho-
line levels might indeed play a role in depression.168

Finally, a single study examined GABAA-BZR availabil-
ity in MDD and found no differences in availability
between MDD and control groups.96

PET and SPECT Literature: Suicidal behavior.

Importantly, while suicidal behavior is most frequently
investigated as an associated feature of MDD, evidence
from clinical research suggests the existence of meaning-
ful neurobiological differences between suicide attempters
and non-attempters.169 For example, platelet studies
showed that suicidal individuals had higher number
for 5HT2A binding sites compared both to MDD
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non-attempters and HCs.169 Similarly, variation in the
DRD2 gene affecting D2 receptor expression has been
consistently associated with risk for suicidal behavior,
but not for MDD.35 To date, seven published studies,
all focused on the serotonergic system, have explicitly
examined associations with current or historical suicidal
behavior (ideation or attempt). Five studies focused on
SERT availability in MDD participants with suicidal
behavior with interesting if mixed results. For example,
Yeh et al. observed a positive correlation between SERT
availability and suicidal ideation across brain regions33

while two other studies observed lower SERT availability
in the midbrain170 and putamen170 of MDD participants
with a history of suicide attempts compared to both
healthy controls and MDD non-attempters. In combin-
ation, these findings suggest that lower midbrain SERT
availability might distinguish between MDD individuals
with and without risk for suicide. Notably, Oquendo
et al.171 failed to confirm midbrain SERT availability as
a predictor of attempts in a recent longitudinal study.
They did, however, observe that increased 5HT1A avail-
ability in the RN predicted both suicidal ideation and
lethality of suicidal behavior.171 In a cross-sectional
study, Sullivan et al. also found that 5HT1A availability
in the RN correlated positively with the lethality of
attempt.90 Thus, 5HT1A availability in the RN serve as
a marker for suicide risk. Of note, a single PET study in
high-lethality suicide attempters across psychiatric diag-
noses found lower serotonin synthesis in the orbital and
ventromedial PFC of attempters relative to HCs.172

These promising results underscore the need for more
molecular imaging work in suicidal individuals.

Bipolar Disorder

Relationship Between BD and Chronic Stress. Stress is also
thought to play a significant role in the development of
bipolar disorder (BD). Stress can trigger the first manic/
hypomanic episode, predict episode recurrence, and lead
to less favorable outcomes.173–177 Thus, there is signifi-
cant interest in stress as a target for treatment and pre-
vention strategies in BD. Molecular imaging can provide
invaluable information on the molecular mechanisms
underlying the link between stress and BD. To date, 22
PET and SPECT studies have been performed in BD
(Table 2), and like MDD, the majority (n¼14) have
focused on the serotonergic system.

PET and SPECT Literature: BD

Serotonin. Serotoninergic function has long been
thought to be central to the development of bipolar dis-
order.58 Prange et al.195 proposed what they termed
the ‘‘permissive hypothesis of 5HT function’’ in bipolar
disorder, which stated that deficient serotonergic

functioning underlies bipolar disorder, and that manic
and depressive episodes specifically would be marked by
low 5HT. Supporting this proposal, a recent meta-analy-
sis confirmed two gene SNPs related to the production of
tryptophan hydroxylase-2, a rate-limiting enzyme for
5HT in the brain, are consistently associated with the
development of bipolar disorder.196 However, existing
PET and SPECT imaging evidence has not yet substan-
tiated the permissive hypothesis. It appears that there is a
variability in SERT availability across mood states in
BD.98 During euthymia, there is lower SERT availability
consistently measured across studies.179–182,184,197 During
depression, studies appear to diverge in their findings,
with reports of no differences in SERT availability
in BD compared to HC,184 lower SERT availability in
thalamus, putamen, amygdala of depressed BD partici-
pants,34 and higher SERT availability in the thalamus
compared to MDD participants, but lower availability
in the RN relative to controls.178 No studies investigating
SERT availability in manic BD participants have been
published to date.

Both 5HT1A and 5HT2A are target receptors for
medications used to treat BD (e.g. lamotrigine198 and
ziprasidone,199 respectively). Further, genetic studies
have found that the presence of specific SNPs in the
5HT1A gene predict both MDD and BD,200 suggesting
a possible similar pattern of 5HT1A upregulation in both
disorders. By contrast, a postmortem study observed
decreased 5HT2A mRNA levels in the hippocampal
region of BD individuals relative to MDD and HC.201

Quantitation of 5HT1A and 5HT2A receptors in
BD in vivo has led to divergence in findings,187,188,202

including lower and higher receptor availability during
depression, and no differences during euthymia.187

5HT2A availability has been examined in bipolar mania
only, with observations of lower availability relative
to HC in all cortical regions,185 and no alterations in
5HT2A availability following three to five weeks treat-
ment with mood stabilizers.186 More research across
mood states is needed to increase understanding of the
potential involvement of both receptors in BD. Of note,
researchers have observed that while serotonin modula-
tion plays a role in antidepressant action in bipolar
depression, based on examination of the most effective
agents for BD depression, it is not sufficient for symptom
relief.198 It is therefore crucial that molecular imaging
research in BD examine other receptor systems.

Dopamine. Dopaminergic dysfunction is also impli-
cated in the development and expression of BD.98

Researchers have suggested that increased dopaminergic
function underlies mania, while the opposite is true for
depressive episodes in BD.203 Many antipsychotic drugs
are commonly prescribed to treat mania block dopamine
receptors, decreasing levels of dopamine in the brain.204
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Indeed drugs known to increase levels of dopamine
(e.g. some tricyclic antidepressants) have also been
shown to induce mania in BD individuals.205,206 Two
postmortem studies have observed upregulation of D2
in the dlPFC of BD.207,208 However, to date, only one
molecular imaging study has examined D2 in BD during
mania, finding no differences in D2 receptor availability
in the striatum of manic BD participants relative to
HCs.191 The remainder of molecular imaging studies
have focused on DAT, dysfunction of which, genetic
research suggests, is associated with risk for BD.209,210

Interestingly, DAT findings in BD diverge based on ima-
ging modality used. More specifically, two studies using
SPECT and [99mTc]TRODAT-1 (a non-selective DAT

tracer98) observed higher DAT availability in the striatum
of both depressed189 and euthymic190 BD participants
relative to HC. By contrast, using PET and a DAT select-
ive tracer ([11C]CFT), Anand et al.208 observed lower
striatal DAT in BD across mood states relative to HC.
As with serotonin, more research is needed to further
clarify the relationship between dopaminergic neuro-
transmission and BD.

Inflammation. Mounting evidence suggests that inflam-
mation plays a key role in BD as well as MDD.211 For
example, pro-inflammatory cytokines have been shown to
be elevated in the blood of BD individuals, during periods
of mania, depression, and euthymia, suggesting that

Table 2. Radiotracers used for in vivo molecular imaging in individuals with bipolar disorder.

Molecular target

(receptor) BD Radiotracer (full name) Abbreviation(s) Major findings

SERT (serotonin

transporter)

trans-1,2,3,5,6,10-

-hexahydro-6-[4-(methylthio)

phenyl]pyrrolo-[2,1-a]-isoquinoline

[11C](þ)-McNeil 5652 #SERT availability in BD178

[11C]-3-amino-4-(2-dimethylaminomethyl-

phenylsulfanyl)-benzonitrile

[11C]DASB Mixed findings65,34

[(123)I]-2-((2-((dimethylamino)methyl)-

phenyl)thio)-

5-iodophenylamine

[123I]-ADAM #SERT availability in euthymic BD179–184

Serotonin 2A receptor

(5HT2A)

[18F]-setoperone Mixed findings185,186

Serotonin type 1A

receptor (5HT1A)

[N-(2-(4-(2-methoxyphenyl)-1-piperaziny-

l)ethyl)-N-(2-

pyridinyl) cyclohexane carboxamide]

[Carbonyl-C-11]WAY-

100635

No differences in 5HT2A availability in

euthymic BD;187
"5HT2A availability

in BD depression123

[18F]trans-

4-Fuoro-N-(2-[4-(2-methoxyphenyl)

piperazino]-ethyl)-N-

(2-pyridyl) cyclohexanecarboxamid

[18F]FCWAY #5HT2A availability in BD

depression188

Dopamine transporter

(DAT)

((99 m)Tc-[2[[2-[[[3-(4-chlorophenyl)-8-

methyl-8-azabicyclo[3,2,1]-oct-2-yl]-

methyl](2-mercaptoethyl) amino]ethy-

l]amino]ethane-thiolato(3-)-

N2,N20,S2,S2]oxo-[1R-(exo-exo)]))

[99mTc]TRODAT-1 "DAT availability in depressed189 and

euthymic BD190

[O-methyl-11C]b

-CFT

[11C]CFT #DAT availability in BD across mood

states

Dopamine type 2

teceptor (D2)

[11C]raclopride. [11C]RAC No differences in D2 availability in

manic BD191

Translocator protein

(TSPO)

[1-(2-chlorophenyl)-N-methyl-N-(1-methyl

propyl)-3-isoquinoline carboxamide]

[11C]-(R)-PK11195 "TSPO availability in euthymic BD

b2*-nAChR 5-iodo-3-(2(S) azetidinylmethoxy) pyridine [123I]5IA No differences in b2*-nAChR availabil-

ity between depressed BD, euthymic

BD, and HC192

Muscarinic type 2 (M2)

receptor

(fluorodopa F 18 [3-(3-[3-fluoroprop-

ly]thio)-1,2,5-thiadiazol-4-yl]-1,2,5,6-tet-

rahydro-1-

methylpyridine)

[18F]FP-TZTP #M2 availability in depressed BD193,194

Note. BP, bipolar disorder.
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low-grade inflammation may be a trait marker of BD.212

Preliminary evidence suggests the presence of inflamma-
tion in the brain as well as the periphery in BD, with one
postmortem study showing upregulation of markers
of neuroinflammation in the frontal cortex in BD.213

One study has investigated neuroinflammation in vivo
using PET to date. Using [11C](R)PK11195, Haarman
et al. reported elevated TSPO levels in the right hippo-
campus of euthymic-medicated BD participants com-
pared to controls.214 Whether these medications impact
neuroinflammation and whether level of measurable neu-
roinflammation differs across mood states remains to be
determined.

Other Neurotransmitters. Cholinergic neurotrans-
mitter systems have also been implicated in the patho-
physiology of BD.193 Both muscarinic agonists and
acetylcholinesterase inhibitors increase cholinergic neuro-
transmission, and have been shown to increase depressive
and decrease manic symptoms.193 They have also been
found to elicit erratic emotional responding—similar to
that manifested in BD—when administered to HCs.215

Additionally, CHRM2, which encodes for muscarinic
receptors (M2) is one of several candidate genes shown
to be expressed more in the ACC of BD individuals rela-
tive to HC in a recent postmortem study. Three molecular
imaging studies have examined the availability of mus-
carinic (mACh) and nicotinic (nACh) receptors in BD.
Cannon et al. first showed lower M2 availability in the
ACC of depressed BD participants relative to HC.193

They then showed that variation in the gene that encodes
for M2, specifically, presence of the TT allele, was
associated with lower M2 availability in the ACC of
BD participants, and with more severe lifetime BD symp-
toms.194 However, we did not find lower b2*-nAChR
in depressed BD participants compared to euthymic BD
and HC individuals, although variability in ACh levels
between depression and euthymia may interfere with
receptor availability quantification.192 Alterations in
ACh levels were not taken into account in the Cannon
et al. studies; therefore, the role of the cholinergic recep-
tors in the pathophysiology of BD needs further research.

Posttraumatic Stress Disorder

Relationship Between PTSD and Chronic Stress. PTSD is a psy-
chiatric condition, which by definition occurs in direct
response to acute stress exposure (i.e. exposure to
trauma). However, while approximately 80% of individ-
uals will be exposed to a traumatic event capable of con-
ferring PTSD (per the DSM-56,21), only 8%–15% of the
general population will go on to develop PTSD.8 One
reliable predictor of developing PTSD following trauma
exposure is historical exposure to chronic stress.217

As with MDD and BD, molecular imaging has the

potential to provide crucial insights into the pathophysi-
ology of PTSD and specifically its relationship to chronic
stress (Table 3).

PET and SPECT Literature: PTSD

Serotonin. As was the case with MDD and BD, altered
serotonergic function has been implicated in the develop-
ment of PTSD.203 More specifically, in contrast to reduc-
tions observed in MDD models, preclinical studies have
reported increased 5HT synthesis in PTSD in multiple
brain regions.231–233 As in MDD, presence of the short
SERT gene allele is a risk factor for PTSD, although a
recent meta-analysis suggests that risk only extends to
highly trauma exposed individuals.234 Published imaging
data suggest lower SERT availability in PTSD as well as
correlations between SERT and severity of PTSD-related
symptomatology.218–220

Focusing on presynaptic serotonin receptors, preclin-
ical evidence suggests that alterations in 5HT1A function
are associated with attentional bias to threat-related
stimuli,235 and exposure to stress reduces functioning of
the 5HT1B receptor.236 In line with preclinical findings,
Sullivan et al.222 observed upregulation of 5HT1A in the
amygdala, RN, and all cortical regions of individuals
with PTSD with and without comorbid MDD relative
to HCs. Of note, an earlier study by Bonne et al.221

observed no differences in 5HT1A availability in PTSD
participants. However, Sullivan et al.222 argued that char-
acteristics of the PET tracer used and issues with the ana-
lytic approach used might have contributed to the
Bonne’s null result. Further, consistent with preclinical
evidence, there is a finding of lower 5HT1B availability
in trauma-exposed control participants relative to HCs
with no previous trauma exposure.50 Earlier age of
trauma exposure appears to be associated with both
lower 5HT1B availability and PTSD symptom severity,
suggesting that 5HT1B availability may be affected by
trauma exposure, particularly during development.

Dopamine. Dopaminergic hyper-functioning has also
been implicated in the development of PTSD, and specif-
ically in the experience of hyperarousal symptoms.237

More specifically, a DAT gene polymorphism has been
shown to be associated with risk for developing PTSD
following trauma exposure.238 In keeping, researchers
found higher availability of DAT in the striatum of
PTSD participants relative to trauma-exposed control
subjects.223

GABAA-BZR. Evidence has shown that exposure to
trauma/acute stress is associated with reduction in
GABAA benzodiazepine receptor (GABAA-BZR) dens-
ity,239 which plays an important role in modulating ner-
vous stress response in the central nervous system.225
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In vivo quantification is in line with the animal studies
reporting lower PFC GABAA-BZR availability in indi-
viduals with combat-related or nonrelated PTSD relative
to HCs.224,225

Other Neurotransmitters. Other neurotransmitters
have also been examined in trauma-related psychopath-
ology: cannabinoid receptor 1 (CB1), NET, b2*-nAChR,
and mGluR5. In line with preclinical reports of an asso-
ciation between chronic stress and altered CB1,240,241

Neumeister et al.226 reported elevated CB1 availability
brain-wide in PTSD participants relative to both

trauma-exposed controls and HCs. In an research
domain criteria approach to examine the patho-
physiology of PTSD, we reported that trauma and
PTSD-related symptomology was associated with higher
amygdalar CB1 availability.227 NET has also been impli-
cated in the development of anxiety-related disorders like
PTSD.242 A single PET study by Pietrzak et al.243 found
lower NET availability in PTSD in the locus coeruleus
relative to healthy controls. However, no significant
differences in NET availability were observed in the
trauma-exposed control group (compared to PTSD and
HC groups).228 b2*-nAChRs availability, which has been

Table 3. Radiotracers used for in vivo molecular imaging in individuals with posttraumatic stress disorder.

Molecular target

(receptor) Radiotracer (full name) Abbreviation(s)

Studies utilizing this tracer

in vivo

Neurokinin 1

Receptor (NK1)

(2 S,3 S)-N-[[2-[11C]Methoxy-5-[5-(trifluoro-

methyl)tetrazol-1-yl]phenyl]methyl]-2-

phenyl-piperidin-3-amine

[11C]GR205171

Serotonin transpoter

(SERT)

[11C]2-(2-(Dimethylaminomethyl)phenylthio)-

5-fluoromethylphenylamine

[11C]AFM #SERT availability in MDD218

[11C]-3-amino-4-(2-dimethylaminomethylphe-

nylsulfanyl)-

benzonitrile

[11C]DASB #SERT availability in

MDD219,220

Serotonin 1B receptor

(5HT1B)

(R-1-[4-(2-methoxy-isopropyl)-phenyl]-3-[2-

(4-methyl-piperazin-1-yl)benzyl]-pyrrolidin-

2-one)

[11C]P943 #5HT1B in trauma exposed

HC50

Serotonin 1A receptor

(5HT1A)

carbon11–labeledN-(2-(1-(4-(2-methoxy-

phenyl)-1piperazinyl)ethyl))-

N-(2-pyridyl)-

cyclohexanecarboxamide

[carbonyl-C-11]WAY-

100635

"5HT1A availability in

MDD221

(N-{2-[4-(2-methoxyphenyl)piperazino]}-N-

(2-pyridinyl)trans-4-

fluorocyclohexanecarboxamide)

[18F]CWAY No differences in 5HT1A

availability in MDD222

Dopamine transporter

(DAT)

((99 m)Tc-[2[[2-[[[3-(4-chlorophenyl)-8-

methyl-8-azabicyclo[3,2,1]-oct-2-yl]-

methyl](2-mercaptoethyl) amino]ethyl]ami-

no]ethane-thiolato(3-)-N2,N20,S2,S2]oxo-

[1R-(exo-exo)]))

[99mTC]-TRODAT-1 "DAT availability in PTSD223

GABAA-BZR [123I]iomazenil " GABAA-BZR availability in

PTSD224

[11C]flumazenil " GABAA-BZR availability in

PTSD225

Cannabinoid receptor

1 (CB1)

([11C]JHU75528) [11C]OMAR "CB1 availability in

PTSD226,227

Norepinephrine

Transporter (NET)

[11C]methylreboxetine ([11C]MRB) #NET availability in PTSD

relative to HC, but not

trauma controls228

ß2*-nAChR (123I-5-IA; [123I]-5-iodo-3-[2(S)-

azetidinylmethoxy]pyridine)

[123I]5-IA-85380

([123I]5-IA)

" ß2*-nAChR availability in

PTSD229

K- Opioid Receptor [11C]LY2795050 #KOR availability associated

with severity of loss

symptoms in trauma

survivors
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implicated in regulation of memory and arousal which
function abnormally in PTSD,244 appears to be upregu-
lated in the mesiotemporal cortex of PTSD individuals
relative to HCs. This receptor also appears to be impli-
cated in the re-experiencing symptoms in PTSD.229

Finally, mGluR5 has emerged as a target of interest in
PTSD245 due to its role in fear conditioning and emotion
regulation. In a recent pilot study, we observed increased
mGluR5 availability in PTSD participants relative to HC
across cortical regions. MGluR5 availability was also
correlated with severity of PTSD avoidance symptoms.
The cause of this dysregulation is not clear; however,
postmortem examination and preclinical data suggest
deficits in glucocorticoid functioning may be impacting
mGluR5 density. Based on this preliminary evidence,
CB1, NET, b2*-nACh, and mGluR5 may all play roles
in the pathophysiology of PTSD; however, the limited
numbers of studies preclude firm conclusions.

Discussion

In the last 20 years, molecular imaging has made a sub-
stantial contribution to the understanding of the neuro-
biological alterations underlying chronic stress-related
disorders. The reviewed studies have enriched our under-
standing of how and why existing psychotherapeutic
agents affect neurotransmitter function and have impli-
cated novel targets for optimizing treatment efficacy.246

To begin, they have confirmed the presence of in vivo
alterations in serotonergic and dopaminergic functioning
in at least some subgroups of MDD, BD, and PTSD
individuals and provided preliminary evidence that
other neurotransmitter systems play a role in these dis-
orders.247 Areas of overlap between molecular imaging
evidence and other research modalities (e.g. lower
SERT in MDD) lend confidence to assertions concerning
the role of some receptors and psychiatric diagnoses.
Areas of discrepancy, however, encourage critical exam-
ination of explanations for such incongruity like that
proposed and tested by Hesselgrave and Parsey122 to
explain discrepant in vivo 5HT1A results in MDD.

While PET and SPECT have been confirmed as
powerful and highly useful clinical research tools,228 as
it stands, the molecular imaging literature on MDD, BD,
and PTSD raises as many questions as it answers. One
exciting novel application of molecular imaging with the
potential to reduce variability in findings is transdiagnos-
tic research. As noted, the experience of chronic stress
conveys risk for complex and highly comorbid psychiatric
diagnoses (e.g. MDD and PTSD). Heterogeneous symp-
tom presentation within wide and overlapping diagnostic
categories makes the systematic study of these disorders
by obtaining a ‘‘representative sample’’ extremely chal-
lenging. Transdiagnostic designs could eliminate a signifi-
cant source of error by basing analyses on the presence or

absence of a specific symptoms in lieu of diagnosis (i.e.
using research domain criteria248). In a recent example,
Pietrzak et al.249 examined the availability of Kappa-
opioid receptors (KORs) in individuals with a range of
trauma-related pathology (including MDD and PTSD).
Instead of examining the relationship between diagnostic
status and receptor density, they used principal compo-
nents analysis to group symptoms into transdiagnostic
‘‘threat’’ and ‘‘loss’’ categories, and observed that low
KOR availability in the amygdalar-ACC-ventral striatal
circuit was associated with severe loss, but not threat
symptoms, suggesting the use of molecular imaging to
investigate the relationship between receptor availability
and transdiagnostic aspects of chronic stress-related psy-
chopathology may be an important next step.

In summary, molecular imaging has provided unique
insight into the neurobiological underpinnings of chronic
stress-related disorders. Despite inconsistencies in specific
findings, the wide-reaching impact of chronic stress, and
subsequent disorders like MDD, BD, and PTSD, is evi-
dent. The ability to confirm preclinical and postmortem
findings, and to quantify the action of pharmacological
agents in vivo has allowed for identification of bio-
markers to improve risk assessment, progress toward
optimization of pharmacotherapy, and identification of
promising new treatment targets.
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220. Frick A, Åhs F, Palmquist ÅM, et al. Overlapping expres-

sion of serotonin transporters and neurokinin-1 receptors
in posttraumatic stress disorder: a multi-tracer PET study.
Mol Psychiatry 2015; 21(10): 1400–1407.

221. Bonne O, Bain E, Neumeister A, et al. No change in sero-
tonin type 1A receptor binding in patients with posttrau-
matic stress disorder. Am J Psychiatry 2005; 162(2):

383–385.
222. Sullivan GM, Ogden RT, Huang Y-Y, Oquendo MA,

Mann JJ, Parsey RV. Higher in VIVO Serotonin 1A bind-

ing in posttraumatic stress disorder: a pet study with [11C]
way 100635. Depress Anxiety 2013; 30(3): 197–206.

223. Hoexter MQ, Fadel G, Felı́cio AC, et al. Higher striatal

dopamine transporter density in PTSD: an in vivo SPECT
study with [99mTc] TRODAT-1. Psychopharmacology
2012; 224(2): 337–345.

224. Bremner JD, Innis RB, Southwick SM, Staib L, Zoghbi S,
Charney DS. Decreased benzodiazepine receptor binding
in prefrontal cortex in combat-related posttraumatic stress

disorder. Am J Psychiatry 2000; 157(7): 1120–1126.
225. Geuze E, Van Berckel B, Lammertsma A, et al. Reduced

GABAA benzodiazepine receptor binding in veterans with

post-traumatic stress disorder. Mol Psychiatry 2008; 13(1):
74–83.

226. Neumeister A, Normandin MD, Pietrzak RH, et al.

Elevated brain cannabinoid CB1 receptor availability in
post-traumatic stress disorder: a positron emission tomog-
raphy study. Mol Psychiatry 2013; 18(9): 1034–1040.

227. Pietrzak RH, Huang Y, Corsi-Travali S, et al.
Cannabinoid type 1 receptor availability in the amygdala
mediates threat processing in trauma survivors.

Neuropsychopharmacology 2014; 39(11): 2519–2528.
228. Redpath HL, Cooper D, Lawrie SM. Imaging symptoms

and syndromes: similarities and differences between

schizophrenia and bipolar disorder. Biol Psychiatry 2013;
73: 495–496.

229. Czermak C, Staley JK, Kasserman S, et al. b2 Nicotinic
acetylcholine receptor availability in post-traumatic stress
disorder. Int J Neuropsychopharmacol 2008; 11(3):

419–424.
230. Krystal JH, Neumeister A. Noradrenergic and serotoner-

gic mechanisms in the neurobiology of posttraumatic

stress disorder and resilience. Brain Res 2009; 1293: 13–23.
231. Bruening S, Oh E, Hetzenauer A, et al. The anxiety like

phenotype of 5 HT1A receptor null mice is associated with

genetic background specific perturbations in the prefrontal
cortex GABA–glutamate system. J Neurochem 2006;
99(3): 892–899.

232. Amato JL, Bankson MG, Yamamoto BK. Prior exposure
to chronic stress and MDMA potentiates mesoaccumbens
dopamine release mediated by the 5-HT1B receptor.

Neuropsychopharmacology 2007; 32(4): 946–954.
233. Mitsushima D, Yamada K, Takase K, Funabashi T,

Kimura F. Sex differences in the basolateral amygdala:

the extracellular levels of serotonin and dopamine, and
their responses to restraint stress in rats. Eur J Neurosci
2006; 24(11): 3245–3254.

234. Gressier F, Calati R, Balestri M, et al. The 5 HTTLPR
polymorphism and posttraumatic stress disorder: a meta
analysis. J Trauma Stress 2013; 26(6): 645–653.

235. Klemenhagen KC, Gordon JA, David DJ, Hen R, Gross
CT. Increased fear response to contextual cues in mice
lacking the 5-HT1A receptor. Neuropsychopharmacology

2006; 31(1): 101–111.
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