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INTRODUCTION 
 

Although there has been a decline in the incidence rate, 

gastric cancer remains the fourth most common 

malignancy and the second most deadly neoplasm 

globally. Over a million newly diagnosed cases 

annually, resulting in 783,000 deaths in 2018 [1]. 

Owing to a lack of specific symptoms in the early stage, 

the majority of patients with GC are diagnosed at 

advanced stages, which reduces the chances for a 

radical resection [2].  

 

Non-coding RNA (ncRNA) does not directly code 

functional protein, but it is abundant in the human 

genome. Accumulating evidence has indicated that 

ncRNAs, including microRNA (miRNA), long 

noncoding RNA (lncRNA) and circular RNA 

(circRNA), play an important role in oncogenesis and 

tumor progression of various cancers such as GC [3–5]. 

ncRNA can combine with protein-coding mRNAs and 

regulate gene expression at the transcriptional and post-

transcriptional levels [6]. Moreover, multiple RNAs can 

interact with each other via miRNA response elements 

and assemble as a competing endogenous RNA 

(ceRNA) network [7]. In this network, lncRNA can act 

as a "sponge" to absorb and bind miRNA, thereby 

weakening its binding ability to mRNA. Emerging data 

have suggested that ceRNA networks play a pivotal role 

in progression and metastasis in breast cancer, ovarian 

cancer and GC [8–10].  
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ABSTRACT 
 

Competing endogenous RNA (ceRNA) pathways play pivotal roles in the formation and progression of gastric 
cancer (GC). Employing multi-omics analysis, we sought to identify a ceRNA network associated with GC 
progression. We analyzed3Gene Expression Omnibus datasets as well as data from The Cancer Genome Atlas to 
identify genes that were differentially expressed in GC tissues. A total of 84 upregulated genes and 106 
downregulated genes were found. Enrichment analysis indicated that some pathways were strongly linked with 
tumor formation and progression. We also screened hub genes to establish a lncRNA-miRNA-mRNA network. 
We ultimately identified 8 hub genes, 6 key miRNAs and 4 key lncRNAs that interact within a common ceRNA 
network. Correlation analysis and in vitro experiments were conducted to verify the regulatory effect of the 
ceRNA network in GC. A knockdown assay confirmed that the DLGAP1-AS1/miR-203a-3p/THBS2 axis is a ceRNA 
network involved in GC progression. In this study, we elucidated the role of the DLGAP1-AS1/miR-203a-
3p/THBS2 ceRNA network in the progression of GC. These molecules maybe evaluated as therapeutic targets 
and prognostic biomarkers for GC. 
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In our work, we determined which genes are 

differentially expressed (DEGs) in GC tissues compared 

to normal tissues. Datasets for analysis were obtained 

from the Gene Expression Omnibus (GEO) and The 

Cancer Genome Atlas (TCGA) databases. Protein-

protein interaction (PPI) networks were constructed by 

a string database and we distinguished the top 10 hub 

genes according to their degrees score. Hub genes refer 

to genes with high connectivity. These genes play a 

crucial role in the biological function of another gene 

that is a functional target. According to the ceRNA 

hypothesis, lncRNA can diminish miRNA activity via 

adsorptive action. Therefore, a qualified candidate 

lncRNA should be negatively linked with miRNA 

expression and positively correlated with the mRNA 

level at the same time [7, 11]. Following this 

hypothesis, we predicted gene-related upstream miRNA 

via the miRecords database, and miRNA-linked 

upstream lncRNA through the miRNet dataset. The 

prognostic properties of the chosen RNAs were 

assessed both in bioinformatics databases and using 

qRT-PCR methods. Ultimately, a promising ceRNA 

regulatory network related to the progression of GC was 

successfully identified.  

 

RESULTS 
 

DEG identification 
 

Three GEO (GSE54129, GSE29272, GSE13911) and 

one TCGA dataset were enrolled in a training group 

comprising663 cancer samples and 223 normal cases. 

Dataset GSE54129 contained111 GC samples and 21 

non-tumor samples; dataset GSE29272 contained 134 

GC samples and 134 non-tumor samples; dataset 

GSE13911 contained 38 GC tissues and 31 non-tumor 

samples; and the TGCA dataset contained 380 GC 

tissues and 37 non-tumor samples. DEGs in the training 

group were identified and are displayed in the volcano 

plot in Figure 1 with thresholds of |log2FC| >1 and a P 

value < 0.05 (Figure 1A–1D). As depicted in Venn plots 

(Figure 1E, 1F), we integrated commonly expressed 

genes that intersected in the training group, and we 

successfully identified 84 upregulated and 106 

downregulated DEGs. The details of these DEGs, which 

were chosen for the following analysis, can be found in 

Supplementary Table 1 (Supplementary Table 1). 

 

Enrichment analysis of DEGs 
 

To detect potential biological functions of upregulated 

and downregulated DEGs, gene ontology (GO) 

enrichment analysis and KEGG pathway analysis were 

conducted. As depicted in Figure 2A, 2B, upregulated 

genes were mainly enriched in the extracellular matrix 

organization and cell adhesion process (Figure 2A). 

Additionally, several cancer-related pathways were 

detected in the KEGG pathway analysis, such as the 

PI3K-AKT signaling pathway and cytokine receptor 

interaction pathway (Figure 2B). Downregulated genes 

were mainly enriched in the oxidation-reduction process 

and xenobiotic metabolic process (Figure 2C). Genes 

associated mainly with the KEGG pathway were those 

involved in cytochrome P450 metabolism and other 

metabolic pathways (Figure 2D). GO enrichment 

analysis of the molecular function and cellular 

component of the DEGs are depicted in Supplementary 

Figure 1. In generally, the results from functional 

enrichment analysis were tightly linked with GC. 

 

Screening and validation of hub genes 

 

To understand the interaction between the upregulated 

DEG group and the downregulated DEG group 

separately, a PPI network was constructed. We 

calculated the node degree of the PPI network using 

cytoHubba tools from Cytoscape software and classified 

the top 20 hub genes into two groups (Figure 2E, 2F). 

Next, to improve our result reliability, we verified the 

top 10 hub genes in the validation group. The 

GSE27342 dataset contained 80 GC samples and 80 

normal samples; theGSE37023 dataset contained112 

tumor samples and 39 normal samples; and 

theGSE65801 dataset contained 32 cancer samples and 

32 normal samples. All the hub genes were involved in 

the validation group (Supplementary Figure 2A, 2B). 

Subsequently, GEPIA and Kaplan Meier (KM) plot 

database was performed to assess each hub gene’s 

expression and its relationship to prognosis. In the 

upregulated hub gene group, 6 genes (COL1A1, 
COL1A2, TIMP1, SPP1, BGN, and THBS2) were not 

only significantly upregulated in GC but also strongly 

correlated with poor GC prognosis (Figure 3A, 3C and 

3E). As for downregulated hub genes, two genes (SST, 

TFF2) were expressed at a low level in GC and were 

correlated with a favorable GC prognosis (Figure 3B, 

3D and 3F). Other candidate hub genes, which were 

chosen for the following analysis, are shown in 

Supplementary Figure 2C–2F). 

 

Identification and validation of upstream miRNA 
 

Based on the results from candidate hub genes, we 

identified the upstream miRNA of those genes through 

the miRNA-target interactions database, miRecords. 

Only miRNAs that appeared at least 3 times were 

considered as candidate miRNAs. A total of 136 

miRNAs were predicted to regulate 6 hub genes. Only 

13 miRNAs that were identified as candidate miRNAs 

(Supplementary Table 2). Additionally, the starBase 

platform was applied to validate the expression role of 

candidate miRNAs, and the KM plot database was used 
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to verify the prognostic value of candidate miRNAs. As 

shown in Supplementary Figures 3 and 4, we confirmed 

that 6 miRNAs are related to upregulated hub genes 

(hsa-miR-203a-3p, hsa-miR-204-5p, hsa-miR-26a-5p, 
hsa-miR-339-5p, hsa-miR-1225-3p and hsa-miR-378a). 

Not only was the expression of these genes 

downregulated in GC, but they were also linked with 

poor prognosis in the disease. However, for 

downregulated hub genes, we found only one miRNA 

(hsa-mir-9-5p) that was upregulated in GC and 

associated with a favorable prognosis. All qualified 

miRNAs were selected for further tests. 

 

Prediction and validation of upstream lncRNA 

 

To predict upstream lncRNA of candidate miRNAs, we 

used the miRNet database. According to the prediction 

in Supplementary Table 3, we identified 139 lncRNAs 

 

 
 

Figure 1. Screening differentially expressed genes (DEGs) between gastric cancer (GC) and normal samples in three GEO 
datasets and TCGA database. (A–D) The volcano plots of DEGs in GSE54129, GSE29272, GSE13911 and TCGA datasets with thresholds of 
|log2FC| > 1, adjust P value < 0.05. The red dots and green dots represent the upregulated and downregulated DEGs separately. The black 
dots mean no significantly different genes. (E, F) The intersection of upregulated DEGs and downregulated DEGs in four datasets, 
respectively. 
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for 6 downregulated miRNAs and 36 lncRNAs for miR-
9-5p. Next, GEPIA and the KM plotter database were 

used to evaluate the expression role and prognostic value 

of predicted lncRNAs. According to the ceRNA 

hypothesis motioned above, we screened out 4 eligible 

lncRNAs (DLGAP1-AS1, PVT1, RECQL4 and HCG18) 

associated with downregulated miRNAs that were both 

significantly upregulated in GC and correlated with very 

poor survival (Figure 4A–4D). However, there was no 

qualified lncRNA that met the expression and prognostic 

criteria of miR-9-5p. Finally, we identified the eligible 

lncRNAs, miRNAs and mRNAs that not only satisfied 

the standards for expression and prognosis but also 

complied with the ceRNA network hypothesis. 

 

 
 

Figure 2. Functional enrichment analysis for the significant DEGs and identification of hub genes. (A, C) The top ten enriched 
biological processes of the significantly upregulated DEGs and downregulated DEGs, respectively. (B, D) The top ten enriched KEGG pathways 
of the significantly upregulated DEGs and downregulated DEGs, respectively. (E, F) The top 20 hub genes of the significantly upregulated 
DEGs and downregulated DEGs separately. 
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Construction and verification of the ceRNA network 
 

We constructed a lncRNA-miRNA-mRNA ceRNA 

network from our previous results. As presented in 

Figure 4E, there were a total of 8lncRNA-mRNA 

groups, 5lncRNA-miRNA groups and 5miRNA-mRNA 

groups. Eligible miRNA has an opposite interaction 

with mRNA and lncRNA, whereas lncRNA has a 

positive co-expression relationship with mRNA. We 

used the starBase platform performed to characterize the 

co-expression relationships among lncRNA-miRNA 

and miRNA-mRNA. Ultimately, we established the 

DLGAP1-AS1/miR-203a-3p/THBS2 ceRNA pathway, 

which was not only significantly associated with the 

prognosis of GC patients but also played pivotal roles in 

the progression of GC (Supplementary Figure 5A–5C). 

Other co-expression networks are depicted in 

Supplementary Figure 5D–5Q. 

 

To further evaluate the reliability of our result, we 

verified the ceRNA network using an in vitro assay. 

First, the relative expression level of DLGAP1-AS1 was 

quantified in 4 GC cell lines (MKN-45, AGS, HGC-27 

and MGC-803), as well as and normal gastric cells

 

 
 

Figure 3. Screening and validating the expression roles and prognosis values of key genes in GC. (A) Screening the key genes with 
high expression and dismal prognosis values in upregulated hub genes. (B) Screening the key genes with low expression and good prognosis 
values in downregulated hub genes. (C–F) Validating expression roles and prognosis values of key genes in hub genes using GEPIA and 
Kaplan–Meier plotter databases. 
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(GES-1). Our results indicated that MKN-45 and AGS 

express higher levels of DLGAP1-AS1 than other cell 

lines (Supplementary Figure 6A). Therefore, we 

designed siRNA assay to knockdown the expression of 

DLGAP1-AS1 in MKN-45 and AGS cell lines separately 

and observed the change in relative expression of 

DLGAP1-AS1, miR-203a-3p, and THBS2. The 

knockdown efficiency was measured by qRT-PCR 

(Supplementary Figure 6B, 6C). As presented in Figure 

5A–5F, the expression levels of DLGAP1-AS1 and 
THBS2 were significantly reduced, while the relative 

expression of miR-203a-3p was enhanced after 

DLGAP1-AS1 knockdown both in MKN-45 and AGS 

cell lines. A CCK-8 assay revealed that silencing 

DLGAP1-AS1 could significantly inhibit gastric cancer 

cell proliferation (Figure 5G, 5H). And the raw data of 

our results are shown in Supplementary Table 4. 

Furthermore, a migration and invasion assay indicated 

that DLGAP1-AS1 knockdown also plays an inhibitor 

role in GC migration and invasion (Supplementary 

Figure 7A–7D). The DLGAP1-AS1/miR-203a-3p/THBS2 

ceRNA pathway and its potential roles in the progression 

of GC is illustrated in schematic representations in 

Figure 6. Altogether, we have described a ceRNA 

 

 
 

Figure 4. Identifying the key long noncoding RNA and constructing the ceRNA network in GC. (A–D) Validating the expression and 
prognostic value of four key lncRNAs using GEPIA and Kaplan–Meier plotter databases. (E) The potential mRNA-miRNA-lncRNA regulatory 
network related to GC prognosis. The ellipse, round and diamond shape represents lncRNAs, miRNA and mRNA respectively. Red and blue 
represent the ups and downs expression, respectively. 
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network that could shed light on the oncogenesis of  

GC and may contain future diagnostic markers and 

therapeutic targets. 

 

DISCUSSION 
 

Some evidence has indicated that lncRNAs play 

regulatory roles in the oncogenesis and tumor 

progression of various cancers [12]. Recent research has 

suggested that lncRNAs interact with miRNA and 

regulate downstream mRNA expression [7]. In GC, 

lncRNAs, miRNA and mRNA function as a unit, not 

simply through one-to-one interactions. For instance, 

Huang et al. reported that lncRNA IGF2-AS was 

involved in encouraging tumor growth and invasion in 

GC through the IGF2-AS/miR-503/SHOX2 ceRNA

 

 
 

Figure 5. Verifying the ceRNA network through knockdown and CCK-8 assay. (A–F) The relative expression of DLGAP1-AS1 and 
THBS2 were significantly reduced after silencing DLGAP1-AS1, whereas the relative expression of miR-203a-3p was significantly increased in 
MKN-45 and AGC cell lines. (G–H) DLGAP1-AS1 knockdown efficiently suppressed MKN-45 and AGC cell proliferation, respectively. (*P < 0.05, 
**P < 0.01, ***P < 0.001) 
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network [13]. Xiao et al. indicated that TRPM2-AS 

functioned in a ceRNA network and negatively 

regulated miR-612 expression, thereby leading to GC 

progression and radio resistance by disrupting the 

expression of IGF2BP1 and FOXM1 [14]. Wei et al. 

demonstrated that the CTC-497E21.4/miR-22-3p/NET1 

ceRNA network played positive roles in GC 

progression via the RhoA signaling pathway [15].  

 

In the present study, we successfully identified  

a promising DLGAP1-AS1/miR-203a-3p/THBS2ce 

RNA network involved in GC progression through 

integrated bioinformatic analysis and verification 

assays. First, we detected 84 upregulated DEGs and 

106 downregulated DEGs that were commonly 

expressed in the training group. GO term and KEGG 

pathway functional analysis revealed that those DEGs 

were significantly enriched in the cancer-related 

process. Then, those DEGs were visualized in the PPI 

network and selected as hub genes according to their 

node degrees, which were calculated by the cytoHubba 

tool. The expression role and survival value of the top 

10 hub genes were validated using GEPIA and KM 

plotter databases. Eight qualified genes met the criteria 

of expression validation and survival analyses. 

Notably, their oncogenic roles were also detected in 

GC progression. For example, the high expression of 

THBS2 and COL1A2 facilitated GC proliferation and 

invasion but inhibited tumor apoptosis through the 

PI3K-Akt signaling pathway [16]. Overexpression of 

COL1A1 was increased cancer invasion and was 

directly regulated by let-7i miRNA [17]. BGN induced 

phosphorylation of FAK and Paxillin in GC 

metastasis, thereby activating the FAK signaling 

pathway [18]. 

 

Additionally, the upstream miRNAs of hub genes were 

predicted and validated by the relational databases 

mentioned above. Seven qualified miRNAs were 

selected as key miRNAs. Some of the miRNAs were 

involved in the development of GC. For instance, Yang 

et al. demonstrate that miR-203a served as a tumor 

suppressor and was able to inhibit the proliferation of 

GC cells by direct bonding with E2F3 [19]. Li et al. 

showed that miR-26a-5p could impede proliferation and 

the invasion of GC cells by targeting COL10A1 [20] 

Zhang et al. demonstrated that miR-204a-5p functioned 

as an oncogene by targeting USP47 and RAB22A in 

stomach cancer [21].  

 

Next, we identified the upstream lncRNAs of key 

miRNAs. Four lncRNAs conformed to expression and 

prognostic standards. DLGAP1-AS1 facilitated HCC 

proliferation and progression via the miR-486-
5p/H3F3B axis [22]. The elevated expression of 

PVT1has been significantly correlated with poor 

prognosis in multiple types of cancer [23, 24], including 

GC [25]. Some interactions within the ceRNA network 

have been previously identified. These include  

the DLGAP-1-AS1/miR-26a-5p axis in GC and the 

PVT1/miR-203a axis in multiple myeloma [26, 27]. 

Finally, we established a novel DLGAP1-AS1/ 

 

 
 

Figure 6. Schematic representations of DLGAP1-AS1/miR-203a-3p/THBS2 ceRNA pathway and its potential roles in the 
progression of GC. 
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miRNA-203a-3p/THBS2 ceRNA network that satisfies 

the conditions of the ceRNA hypothesis. 

 

Bioinformatic analysis had previously been performed on 

a ceRNA network linked with GC [28, 29]. However, few 

studies concentrated on the prognostic value of the 

ceRNA axis using multi-omics analysis combined with 

experimental tests. Furthermore, to our knowledge, this is 

the first study of GC that constructed a ceRNA network in 

the order of the mRNA-miRNA-lncRNA pattern. There 

are some limitations to our study. First, we did not stratify 

the samples based on their clinical characteristics, such as 

sex. A recent study has indicated that incorporating sex as 

a biological variable is reveals new information about 

cancer mechanisms [30]. Second, we verified the 

expression and prognostic value using online databases 

rather than the date from clinical samples. To offset this 

limitation, we constructed the ceRNA axis through 

comprehensive analysis and validated the data under the 

same conditions.  

 

In summary, by multi-omics analysis and experimental 

verification, we successfully constructed a DLGAP1-
AS1/miR-203a-3p/THBS2 ceRNA regulatory network in 

which all RNAs are correlated with the prognosis of GC 

patients. In addition to the prognostic value of this 

network, it also provides some key clues for future 

molecular mechanism explorations. 

 

MATERIALS AND METHODS 
 

Data selection 

 

To identify compressive gene expression patterns in GC 

samples versus normal samples, we obtained the mRNA 

microarray profiles from GEO (www.ncbi.nlm.nih. 

gov/geo/) datasets. Only datasets consisting of at least 20 

samples of both GC and normal tissues were collected. 

Eventually, 6 GEO datasets were selected for subsequent 

analyses. To increase the reliability of our research, 

GSE54129, GSE29272 and GSE13911 were chosen as a 

training group, whereas GSE27342, GSE37023 and 

GSE65801 were selected as a validation group. 

Furthermore, the TCGA database was integrated into the 

training group to enhance the reliability of our results. 

 

Identification of DEGs and functional annotation 

analysis 

 

Raw RNA-seq data were downloaded from the UCSC 

TCGA website. These datasets comprised 380 GC 

samples and 37 normal samples (https://xena.ucsc.edu/ 

public/) [31]. The raw data were annotated by relational 

platforms and standardized by the method of log2(x+1). 

Datasets were normalized using the “normalize between 

array” function of the LIMMA package from R 

Software (version 3.6.1) [32]. The package was used to 

screen differential mRNAs with thresholds of |log2FC| > 

1 and a P value < 0.05. The commonly expressed mRNAs 

in the training group were defined as the DEGs and 

divided into upregulated DEGs and downregulated DEGs. 

These data were visualized through Venn diagrams  

using VENNY 2.1.0 (https://bioinfogp.cnb.csic.es/tools/ 

venny/index.html) [33]. 

 

To elucidate the potential functions of the DEGs, we 

performed the GO functional enrichment analysis and 

KEGG pathway analysis via DAVIDv6.8 (https://david. 

ncifcrf.gov/) [34] and KOBAS 3.0 (http://kobas.cbi. 

pku.edu.cn/) software [35]. The top 10 enriched GO 

terms and KEGG pathways were visualized by the 

“ggplot2” package with cut-off criteria of P< 0.05 [36]. 

 

Hub genes identification and validation 

 

The STRING v11.0 database (https://string-db.org/)  

[37] revealed a PPI network for DEGs with a combined 

confidence score ≥0.4. Next, we utilized cytoHubba, an 

app in Cytoscape software (Version 3.7.2) [38], to 

identify the top 20 hub genes according to their 

connection degree within the PPI network. We validated 

the expression levels of hub genes using the GEPIA 

database to analyze 408 GC samples and 211 normal 

controls from TCGA and Genotype-Tissue Expression 

GTEx data (http://gepia.cancer-pku.cn/index.html) [39]. 

The threshold value was set as |logFC| >1 and P< 0.01. 

Ultimately, the prognostic roles of key genes expressed 

in 436 GC samples were evaluated through the KM 

plotter (http://kmplot.com) [40]. The hazard ratio with a 

95% confidence interval and log-rank P value was 

generated online. P< 0.05 was viewed as a statistically 

significant. 

 

Prediction of upstream miRNA and lncRNA 

 

To obtain comprehensive and reliable prediction results, 

we used the miRecords database that integrates the 

11miRNA target prediction tools to predict the upstream 

miRNAs of hub genes [41]. The tools were DIANA-

micro T, MicroInspector, miRanda, MirTarget2, 

miTarget, NBmiRTar, PicTar, PITA, RNA22, 

RNAhybrid and TargetScan. Only miRNAs that appeared 

at least 3 times were considered as validation miRNAs. 

The miRNet, was employed to find potential lncRNAs 

that would bind to validation miRNAs (https://www. 

mirnet.ca/miRNet/) [42]. GEPIA and KM plot databases 

verified the effectiveness of potential lncRNAs. 

 

Correlation analysis and experimental verification 
 

We used the starBase platform, a tool that evaluates 

potential RNA-RNA interactions [43], to validate 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://xena.ucsc.edu/public/
https://xena.ucsc.edu/public/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/
http://kobas.cbi.pku.edu.cn/
https://string-db.org/
http://gepia.cancer-pku.cn/index.html
http://kmplot.com/
https://www.mirnet.ca/miRNet/
https://www.mirnet.ca/miRNet/
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predicted miRNA and lncRNA. We also assessed the 

entire interrelation among the lncRNA, miRNA and 

genes via the starBase platform. 

 

We validated the regulatory role of the ceRNA network 

in vitro assays. Normal gastric cells (GES-1) and 

Human GC cell lines (MKN-45, AGS, HGC-27 and 

MGC-803) were obtained from the cell bank of the 

Chinese Scientific Academy (Shanghai, China). All 

cells were incubated in RPMI-1640 (Gibco, Life 

Technologies, CA, USA), supplemented with 10% fetal 

bovine serum (Certified, US origin) and incubated at 

37°C and 5% CO2. 

 

Three siRNAs (si-DLGAP1-AS1#1: 5’-GCU AUA 

UGU CUG GUA AAC AGA-3’, si-DLGAP1-AS1#2: 

5’-CAG AAU AAA UAG UAC UUG AGC-3’ andsi-
DLGAP1-AS1#3: 5’-GCU GCU AUA UGU CUG GUA 

AAC-3’) and negative control siRNA were purchased 

from Riobio Company (Guangzhou, China) and 

separately transfected into MKN-45 and AGS cells 

using Lipofectamine 3000 (Invitrogen, USA). Then, the 

qRT-PCR assay was performed to evaluate knockdown 

efficiency and detect the relative expression of 

DLGAP1-AS1, miR-203a-3p and THBS2 through the 

SYBR-green method. Primer sequences were also 

synthesized by Riobio as shown as follows: DLGAP1-

AS1:5’-GGG GCA GGA GTA AAG TGG AC-3’ 

(forward), 5’-CCA GAC ATA TAG CAG CCG GG-3’ 

(reverse); miR-203a-3p: 5’-CAC CAT AAA GAC AGG 

AAC CTG-3’ (forward), 5’-GGA GGT GCC ATC AAT 

ACC TGC-3’ (reverse); THBS2: 5’-TTA TGG CGT 

TGC ATC CAG GT-3’ (forward), 5’-GTG GTG CAG 

AGG AGA TGT GT-3’ (reverse); and GAPDH:5’-GAT 

TTG GTC GTA TTG GGC GC-3’ (forward), 5’-GCG 

CCC AAT ACG ACC AAA TC-3’ (reverse). The 

relative expression levels were quantified using the 

2−ΔΔCt method. 

 

Cell viability detection was measured using the Cell 

Counting Kit-8 (CCK-8) assay according to instructions 

(Dojindo, Kumamoto, Japan). In brief, we incubated 

transfected cells in 96-well plates and then measured 

their viability with the CCK-8 kit at 0, 24, 48, 72 and 96 

hours. The absorbance was detected at 450 nm with a 

microplate reader (BioTek, VT, USA). The result was 

repeated 3 times.  

 

Wound healing, migration and invasion assays were 

performed. For the wound healing assay, the movement 

of cells was measured in a scrape, which was made with 

a sterile 200 μL pipette tip, and the spread of the wound 

closure was observed after 24 hours. The scratched areas 

at 0 and 24 hours were photographed at 100x 

magnification using an inverted microscope (Nikon DS- 

Ri2, Japan). For migration assay, transwell chambers 

with 8-μm porous membranes (Corning, NY, USA) were 

used. 80,000 cells were seeded onto the upper chamber 

with 200 μL serum-free medium, and 800 μL medium 

containing 10% FBS was added to the bottom chambers 

as a chemo-attractant. Following 24 hours of incubation, 

cells that did not migrate to the bottom chambers were 

removed from the top side with a cotton swab. The 

invasion assay was performed in a similar procedure 

except the upper chambers were coated with Matrigel 

(BD Biosciences), which was diluted at 1:10 with serum-

free medium. Cells traversing the membranes were fixed 

and stained with a Hematoxylin-Eosin Staining Kit 

(Solarbio, Beijing, China) according to the 

manufacturer’s instruction. Cell images were captured 

using a microscope (Nikon E800) at 200x magnification 

and 5 random fields per insert were counted. Results 

were presented as cells migrated per field. 

 

Statistical analysis 

 

Most of the statistical analyses was conducted using the 

R Software and the other bioinformatic tools mentioned 

above. GraphPad Prism 7.0 (IBM, New York City, NY, 

USA) software was also utilized to analyze data. The 

two-tailed Student’s t-test was applied to analyze the 

relative expression levels of mRNA, miRNA and 

lncRNA. Correlations between RNA expression were 

evaluated through Pearson correlation analysis. A P 

value<0.05 was considered statistically significant, 

which is presented in figures according to *P< 0.05, 

**P< 0.01 and ***P< 0.001. 

 

AUTHOR CONTRIBUTIONS 
 

ZFQ, HHZ, and LQF designed this project. ZFQ, SJ, 

SWW performed experiments and data analysis. ZFQ, 

LQF, ZH, and LY wrote and revised the manuscript. All 

authors have read and approved the final manuscript. 

 

ACKNOWLEDGMENTS 
 

We sincerely thank the English Editors from Oncotarget 

and Oncoscience for their scientific editing. 

 

CONFLICTS OF INTEREST 
 

The authors declare no conflicts of interest. 

 

FUNDING 
 

Our work was supported by the Shenyang Science and 

Technology Application Research Project (F-18-014-4-

08). 

 



 

www.aging-us.com 20550 AGING 

REFERENCES 
 

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, 
Jemal A. Global cancer statistics 2018: GLOBOCAN 
estimates of incidence and mortality worldwide for 36 
cancers in 185 countries. CA Cancer J Clin. 2018; 
68:394–424. 

 https://doi.org/10.3322/caac.21492 PMID:30207593 

2. Kim SG, Park CM, Lee NR, Kim J, Lyu DH, Park SH, Choi 
IJ, Lee WS, Park SJ, Kim JJ, Kim JH, Lim CH, Cho JY, et al. 
Long-Term Clinical Outcomes of Endoscopic 
Submucosal Dissection in Patients with Early Gastric 
Cancer: A Prospective Multicenter Cohort Study. Gut 
Liver. 2018; 12:402–410. 

 https://doi.org/10.5009/gnl17414 PMID:29588436 

3. Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev 
Pathol. 2009; 4:199–227. 

 https://doi.org/10.1146/annurev.pathol.4.110807.092
222 PMID:18817506 

4. Huarte M. The emerging role of lncRNAs in cancer. Nat 
Med. 2015; 21:1253–61. 

 https://doi.org/10.1038/nm.3981 PMID:26540387 

5. Wang Y, Mo Y, Gong Z, Yang X, Yang M, Zhang S, Xiong 
F, Xiang B, Zhou M, Liao Q, Zhang W, Li X, Li X, et al. 
Circular RNAs in human cancer. Mol Cancer. 2017; 
16:25. 

 https://doi.org/10.1186/s12943-017-0598-7 
PMID:28143578 

6. Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding 
RNAs in development and disease: background, 
mechanisms, and therapeutic approaches. Physiol Rev. 
2016; 96:1297–325. 

 https://doi.org/10.1152/physrev.00041.2015 
PMID:27535639 

7. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A 
ceRNA hypothesis: the rosetta stone of a hidden RNA 
language? Cell. 2011; 146:353–58. 

 https://doi.org/10.1016/j.cell.2011.07.014 
PMID:21802130 

8. Zhong G, Lou W, Yao M, Du C, Wei H, Fu P. 
Identification of novel mRNA-miRNA-lncRNA 
competing endogenous RNA network associated with 
prognosis of breast cancer. Epigenomics. 2019; 
11:1501–18. 

 https://doi.org/10.2217/epi-2019-0209 
PMID:31502865 

9. Lou W, Ding B, Zhong G, Du C, Fan W, Fu P. 
Dysregulation of pseudogene/lncRNA-hsa-miR-363-3p-
SPOCK2 pathway fuels stage progression of ovarian 
cancer. Aging (Albany NY). 2019; 11:11416–39. 

 https://doi.org/10.18632/aging.102538 
PMID:31794425 

10. Qi M, Yu B, Yu H, Li F. Integrated analysis of a ceRNA 
network reveals potential prognostic lncRNAs in gastric 
cancer. Cancer Med. 2020; 9:1798–817. 

 https://doi.org/10.1002/cam4.2760 PMID:31923354 

11. Thomson DW, Dinger ME. Endogenous microRNA 
sponges: evidence and controversy. Nat Rev Genet. 
2016; 17:272–83. 

 https://doi.org/10.1038/nrg.2016.20 PMID:27040487 

12. Guo LL, Song CH, Wang P, Dai LP, Zhang JY, Wang KJ. 
Competing endogenous RNA networks and gastric 
cancer. World J Gastroenterol. 2015; 21:11680–87. 

 https://doi.org/10.3748/wjg.v21.i41.11680 
PMID:26556995 

13. Huang J, Chen YX, Zhang B. IGF2-AS affects the 
prognosis and metastasis of gastric adenocarcinoma 
via acting as a ceRNA of miR-503 to regulate SHOX2. 
Gastric Cancer. 2020; 23:23–38. 

 https://doi.org/10.1007/s10120-019-00976-2 
PMID:31183590 

14. Xiao J, Lin L, Luo D, Shi L, Chen W, Fan H, Li Z, Ma X, Ni 
P, Yang L, Xu Z. Long noncoding RNA TRPM2-AS acts as 
a microRNA sponge of miR-612 to promote gastric 
cancer progression and radioresistance. Oncogenesis. 
2020; 9:29. 

 https://doi.org/10.1038/s41389-020-0215-2 
PMID:32123162 

15. Zong W, Feng W, Jiang Y, Cao Y, Ke Y, Shi X, Ju S, Cong 
H, Wang X, Cui M, Jing R. LncRNA CTC-497E21.4 
promotes the progression of gastric cancer via 
modulating miR-22/NET1 axis through RhoA signaling 
pathway. Gastric Cancer. 2020; 23:228–40. 

 https://doi.org/10.1007/s10120-019-00998-w 
PMID:31451992 

16. Ao R, Guan L, Wang Y, Wang JN. Silencing of COL1A2, 
COL6A3, and THBS2 inhibits gastric cancer cell 
proliferation, migration, and invasion while promoting 
apoptosis through the PI3k-Akt signaling pathway. J 
Cell Biochem. 2018; 119:4420–34. 

 https://doi.org/10.1002/jcb.26524  
PMID:29143985 

17. Shi Y, Duan Z, Zhang X, Zhang X, Wang G, Li F. Down-
regulation of the let-7i facilitates gastric cancer 
invasion and metastasis by targeting COL1A1. Protein 
Cell. 2019; 10:143–48. 

 https://doi.org/10.1007/s13238-018-0550-7 
PMID:29858755 

18. Hu L, Duan YT, Li JF, Su LP, Yan M, Zhu ZG, Liu BY, Yang 
QM. Biglycan enhances gastric cancer invasion by 
activating FAK signaling pathway. Oncotarget. 2014; 
5:1885–96. 

 https://doi.org/10.18632/oncotarget.1871 
PMID:24681892 

https://doi.org/10.3322/caac.21492
https://pubmed.ncbi.nlm.nih.gov/30207593
https://doi.org/10.5009/gnl17414
https://pubmed.ncbi.nlm.nih.gov/29588436
https://doi.org/10.1146/annurev.pathol.4.110807.092222
https://doi.org/10.1146/annurev.pathol.4.110807.092222
https://pubmed.ncbi.nlm.nih.gov/18817506
https://doi.org/10.1038/nm.3981
https://pubmed.ncbi.nlm.nih.gov/26540387
https://doi.org/10.1186/s12943-017-0598-7
https://pubmed.ncbi.nlm.nih.gov/28143578
https://doi.org/10.1152/physrev.00041.2015
https://pubmed.ncbi.nlm.nih.gov/27535639
https://doi.org/10.1016/j.cell.2011.07.014
https://pubmed.ncbi.nlm.nih.gov/21802130
https://doi.org/10.2217/epi-2019-0209
https://pubmed.ncbi.nlm.nih.gov/31502865
https://doi.org/10.18632/aging.102538
https://pubmed.ncbi.nlm.nih.gov/31794425
https://doi.org/10.1002/cam4.2760
https://pubmed.ncbi.nlm.nih.gov/31923354
https://doi.org/10.1038/nrg.2016.20
https://pubmed.ncbi.nlm.nih.gov/27040487
https://doi.org/10.3748/wjg.v21.i41.11680
https://pubmed.ncbi.nlm.nih.gov/26556995
https://doi.org/10.1007/s10120-019-00976-2
https://pubmed.ncbi.nlm.nih.gov/31183590
https://doi.org/10.1038/s41389-020-0215-2
https://pubmed.ncbi.nlm.nih.gov/32123162
https://doi.org/10.1007/s10120-019-00998-w
https://pubmed.ncbi.nlm.nih.gov/31451992
https://doi.org/10.1002/jcb.26524
https://pubmed.ncbi.nlm.nih.gov/29143985
https://doi.org/10.1007/s13238-018-0550-7
https://pubmed.ncbi.nlm.nih.gov/29858755
https://doi.org/10.18632/oncotarget.1871
https://pubmed.ncbi.nlm.nih.gov/24681892


 

www.aging-us.com 20551 AGING 

19. Yang H, Wang L, Tang X, Bai W. miR-203a suppresses 
cell proliferation by targeting E2F transcription factor 3 
in human gastric cancer. Oncol Lett. 2017; 14:7687–90. 

 https://doi.org/10.3892/ol.2017.7199 PMID:29344215 

20. Li HH, Wang JD, Wang W, Wang HF, Lv JQ. Effect of 
miR-26a-5p on gastric cancer cell proliferation, 
migration and invasion by targeting COL10A1. Eur Rev 
Med Pharmacol Sci. 2020; 24:1186–94. 

 https://doi.org/10.26355/eurrev_202002_20170 
PMID:32096148 

21. Zhang B, Yin Y, Hu Y, Zhang J, Bian Z, Song M, Hua D, 
Huang Z. MicroRNA-204-5p inhibits gastric cancer cell 
proliferation by downregulating USP47 and RAB22A. 
Med Oncol. 2015; 32:331. 

 https://doi.org/10.1007/s12032-014-0331-y 
PMID:25429829 

22. Peng X, Wei F, Hu X. Long noncoding RNA DLGAP1-AS1 
promotes cell proliferation in hepatocellular carcinoma 
via sequestering miR-486-5p. J Cell Biochem. 2020; 
121:1953–62. 

 https://doi.org/10.1002/jcb.29430 PMID:31633236 

23. Liu HT, Fang L, Cheng YX, Sun Q. LncRNA PVT1 regulates 
prostate cancer cell growth by inducing the methylation 
of miR-146a. Cancer Med. 2016; 5:3512–19. 

 https://doi.org/10.1002/cam4.900  
PMID:27794184 

24. Wan L, Sun M, Liu GJ, Wei CC, Zhang EB, Kong R, Xu TP, 
Huang MD, Wang ZX. Long noncoding RNA PVT1 
promotes non-small cell lung cancer cell proliferation 
through epigenetically regulating LATS2 expression. 
Mol Cancer Ther. 2016; 15:1082–94. 

 https://doi.org/10.1158/1535-7163.MCT-15-0707 
PMID:26908628 

25. Kong R, Zhang EB, Yin DD, You LH, Xu TP, Chen WM, Xia 
R, Wan L, Sun M, Wang ZX, De W, Zhang ZH. Long 
noncoding RNA PVT1 indicates a poor prognosis of 
gastric cancer and promotes cell proliferation through 
epigenetically regulating p15 and p16. Mol Cancer. 
2015; 14:82. 

 https://doi.org/10.1186/s12943-015-0355-8 
PMID:25890171 

26. Lin Y, Jian Z, Jin H, Wei X, Zou X, Guan R, Huang J. Long 
non-coding RNA DLGAP1-AS1 facilitates tumorigenesis 
and epithelial-mesenchymal transition in 
hepatocellular carcinoma via the feedback loop of miR-
26a/b-5p/IL-6/JAK2/STAT3 and Wnt/β-catenin 
pathway. Cell Death Dis. 2020; 11:34. 

 https://doi.org/10.1038/s41419-019-2188-7 
PMID:31949128 

27. Yang M, Zhang L, Wang X, Zhou Y, Wu S. Down-
regulation of miR-203a by lncRNA PVT1 in multiple 
myeloma promotes cell proliferation. Arch Med Sci. 

2018; 14:1333–39. 
 https://doi.org/10.5114/aoms.2018.73975 

PMID:30393487 

28. Pan H, Guo C, Pan J, Guo D, Song S, Zhou Y, Xu D. 
Construction of a competitive endogenous RNA 
network and identification of potential regulatory axis 
in gastric cancer. Front Oncol. 2019; 9:912. 

 https://doi.org/10.3389/fonc.2019.00912 
PMID:31637209 

29. Zhang QN, Zhu HL, Xia MT, Liao J, Huang XT, Xiao JW, 
Yuan C. A panel of collagen genes are associated with 
prognosis of patients with gastric cancer and regulated 
by microRNA-29c-3p: an integrated bioinformatics 
analysis and experimental validation. Cancer Manag 
Res. 2019; 11:4757–72. 

 https://doi.org/10.2147/CMAR.S198331 
PMID:31213898 

30. Wilson MA, Buetow KH. Novel mechanisms of cancer 
emerge when accounting for sex as a biological 
variable. Cancer Res. 2020; 80:27–29. 

 https://doi.org/10.1158/0008-5472.CAN-19-2634 
PMID:31722998 

31. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, 
Zahler AM, Haussler D. The human genome browser at 
UCSC. Genome Res. 2002; 12:996–1006. 

 https://doi.org/10.1101/gr.229102 PMID:12045153 

32. Smyth GK, Michaud J, Scott HS. Use of within-array 
replicate spots for assessing differential expression in 
microarray experiments. Bioinformatics. 2005; 
21:2067–75. 

 https://doi.org/10.1093/bioinformatics/bti270 
PMID:15657102 

33. Oliveros JC. (2007-2015) Venny. An interactive tool for 
comparing lists with Venn's diagrams. 
https://bioinfogp.cnb.csic.es/tools/venny/index.html. 

34. Huang da W, Sherman BT, Lempicki RA. Systematic and 
integrative analysis of large gene lists using DAVID 
bioinformatics resources. Nat Protoc. 2009; 4:44–57. 

 https://doi.org/10.1038/nprot.2008.211 
PMID:19131956 

35. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, 
Gao G, Li CY, Wei L. KOBAS 2.0: a web server for 
annotation and identification of enriched pathways 
and diseases. Nucleic Acids Res. 2011; 39:W316–22. 

 https://doi.org/10.1093/nar/gkr483 PMID:21715386 

36. Maag JL. Gganatogram: an R package for modular 
visualisation of anatograms and tissues based on 
ggplot2. F1000Res. 2018; 7:1576. 

 https://doi.org/10.12688/f1000research.16409.2 
PMID:30467523 

37. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, 

https://doi.org/10.3892/ol.2017.7199
https://pubmed.ncbi.nlm.nih.gov/29344215
https://doi.org/10.26355/eurrev_202002_20170
https://pubmed.ncbi.nlm.nih.gov/32096148
https://doi.org/10.1007/s12032-014-0331-y
https://pubmed.ncbi.nlm.nih.gov/25429829
https://doi.org/10.1002/jcb.29430
https://pubmed.ncbi.nlm.nih.gov/31633236
https://doi.org/10.1002/cam4.900
https://pubmed.ncbi.nlm.nih.gov/27794184
https://doi.org/10.1158/1535-7163.MCT-15-0707
https://pubmed.ncbi.nlm.nih.gov/26908628
https://doi.org/10.1186/s12943-015-0355-8
https://pubmed.ncbi.nlm.nih.gov/25890171
https://doi.org/10.1038/s41419-019-2188-7
https://pubmed.ncbi.nlm.nih.gov/31949128
https://doi.org/10.5114/aoms.2018.73975
https://pubmed.ncbi.nlm.nih.gov/30393487
https://doi.org/10.3389/fonc.2019.00912
https://pubmed.ncbi.nlm.nih.gov/31637209
https://doi.org/10.2147/CMAR.S198331
https://pubmed.ncbi.nlm.nih.gov/31213898
https://doi.org/10.1158/0008-5472.CAN-19-2634
https://pubmed.ncbi.nlm.nih.gov/31722998
https://doi.org/10.1101/gr.229102
https://pubmed.ncbi.nlm.nih.gov/12045153
https://doi.org/10.1093/bioinformatics/bti270
https://pubmed.ncbi.nlm.nih.gov/15657102
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://doi.org/10.1038/nprot.2008.211
https://pubmed.ncbi.nlm.nih.gov/19131956
https://doi.org/10.1093/nar/gkr483
https://pubmed.ncbi.nlm.nih.gov/21715386
https://doi.org/10.12688/f1000research.16409.2
https://pubmed.ncbi.nlm.nih.gov/30467523


 

www.aging-us.com 20552 AGING 

Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, 
Bork P, Jensen LJ, Mering CV. STRING v11: protein-
protein association networks with increased coverage, 
supporting functional discovery in genome-wide 
experimental datasets. Nucleic Acids Res. 2019; 
47:D607–13. 

 https://doi.org/10.1093/nar/gky1131  
PMID:30476243 

38. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. 
cytoHubba: identifying hub objects and sub-networks 
from complex interactome. BMC Syst Biol. 2014 (Suppl 
4); 8:S11. 

 https://doi.org/10.1186/1752-0509-8-S4-S11 
PMID:25521941 

39. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web 
server for cancer and normal gene expression profiling 
and interactive analyses. Nucleic Acids Res. 2017; 
45:W98–102. 

 https://doi.org/10.1093/nar/gkx247 PMID:28407145 

40. Gyorffy B, Lánczky A, Szállási Z. Implementing an online 
tool for genome-wide validation of survival-associated 
biomarkers in ovarian-cancer using microarray data 
from 1287 patients. Endocr Relat Cancer. 2012; 
19:197–208. 

 https://doi.org/10.1530/ERC-11-0329  
PMID:22277193 

41. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an 
integrated resource for microRNA-target interactions. 
Nucleic Acids Res. 2009; 37:D105–10. 

 https://doi.org/10.1093/nar/gkn851 PMID:18996891 

42. Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. 
miRNet - dissecting miRNA-target interactions and 
functional associations through network-based visual 
analysis. Nucleic Acids Res. 2016; 44:W135–41. 

 https://doi.org/10.1093/nar/gkw288  
PMID:27105848 

43. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: 
decoding miRNA-ceRNA, miRNA-ncRNA and protein-
RNA interaction networks from large-scale CLIP-seq 
data. Nucleic Acids Res. 2014; 42:D92–97. 

 https://doi.org/10.1093/nar/gkt1248  
PMID:24297251 

  

https://doi.org/10.1093/nar/gky1131
https://pubmed.ncbi.nlm.nih.gov/30476243
https://doi.org/10.1186/1752-0509-8-S4-S11
https://pubmed.ncbi.nlm.nih.gov/25521941
https://doi.org/10.1093/nar/gkx247
https://pubmed.ncbi.nlm.nih.gov/28407145
https://doi.org/10.1530/ERC-11-0329
https://pubmed.ncbi.nlm.nih.gov/22277193
https://doi.org/10.1093/nar/gkn851
https://pubmed.ncbi.nlm.nih.gov/18996891
https://doi.org/10.1093/nar/gkw288
https://pubmed.ncbi.nlm.nih.gov/27105848
https://doi.org/10.1093/nar/gkt1248
https://pubmed.ncbi.nlm.nih.gov/24297251


 

www.aging-us.com 20553 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 

 
 

Supplementary Figure 1. Functional enrichment analysis for the significant DEGs. (A, C) The top ten enriched cellular components 
of the significantly upregulated DEGs and downregulated DEGs respectively. (B, D) The top ten enriched molecular function of the 
significantly upregulated DEGs and downregulated DEGs respectively.  
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Supplementary Figure 2. Verifying the distribution of hub genes in the validation group and identifying key genes in GC. (A,  
B) The intersection of the top ten key hub genes in the validation group (GSE27342, GSE37023, and GSE65801). (C–F) Validating expression 
roles and prognosis values of key genes in hub genes using GEPIA and Kaplan–Meier plotter databases. 
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Supplementary Figure 3. Screening and validating the expression roles of key miRNAs in GC. (A–F) Validating expression roles of 
key miRNAs using GEPIA databases. 

 

 
 

Supplementary Figure 4. Screening and validating the prognostic values of key miRNAs in GC. (A–F) Validating prognosis values 
of key miRNAs using Kaplan–Meier plotter databases. 
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Supplementary Figure 5. Identifying the qualified ceRNA network through correlation analysis. Only DLGAP1-AS1/ miR-203a-
3p/THBS2 ceRNA axis met the correlation analysis according to the ceRNA hypothesis (A–C). Other ceRNA networks failed the criteria that 
lncRNAs positively associated with mRNAs while miRNAs negative related to lncRNAs and mRNAs (D–Q). 
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Supplementary Figure 6. Detecting the expressed of DLGAP1-AS1 in GC cell lines and assessing knockdown efficiency. (A) The 
expression of DLGAP1-AS1 in GC cell lines (MKN-45, AGS, HGC-27, and MGC-803) and a normal cell line GSE-1 detected by RT-qPCR. (B, C) 
Knockdown efficiency of DLGAP1-AS1 in MKN-45 and AGS cells. 
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Supplementary Figure 7. Cell migration and invasion assays in MKN-45 and AGS cells. (A) Cell migration and invasion assays in si-
NC, si-DLGAP1-AS1-1 and si-DLGAP1-AS1-2 transfected MKN-45 cells. (B) Cell migration and invasion assays in si-NC, si-DLGAP1-AS1-1 and si-
DLGAP1-AS1-2 transfected AGS cells. (C) Wound-healing assay assays in si-NC, si-DLGAP1-AS1-1 and si-DLGAP1-AS1-2 transfected MKN-45 
cells. (D) Wound-healing assay assays in si-NC, si-DLGAP1-AS1-1 and si-DLGAP1-AS1-2 transfected MKN-45 cells. Data are presented as means 
of three different experiments. Bars indicate ± SE. * P<0.05, **P<0.01, and ***P<0.001 compared with control groups. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 2 to 4. 

 

Supplementary Table 1. The commonly upregulated or downregulated genes in GSE54129, GSE29272 and GSE13911 
datasets and TCGA databases. 

Upregulated genes Downregulated genes 
APOE ACER2 
ASPN ADH1C 
BGN ADH7 
CDH11 ADHFE1 
CDH3 ADRB2 
CEMIP AKR1B10 
CHI3L1 AKR1B15 
CLDN1 AKR1C1 
CLEC5A AKR7A3 
COL10A1 ALDH3A1 
COL11A1 ALDH6A1 
COL12A1 ALDOB 
COL1A1 AMPD1 
COL1A2 ANXA10 
COL3A1 ATP4A 
COL4A1 ATP4B 
COL5A2 B3GNT6 
COL8A1 BHLHA15 
COMP CA2 
CPXM1 CAPN9 
CST1 CCKAR 
CST2 CCKBR 
CTHRC1 CHGA 
CXCL1 CKB 
CXCL10 CKM 
CXCL8 CKMT2 
CXCL9 CLIC6 
DTL CPB1 
ECT2 CTSE 
F2RL2 CYP2C18 
FAP CYP2C19 
FKBP10 CYP2C9 
FNDC1 DPT 
HOXA10 DUOX1 
HOXA13 EPN3 
HOXC10 ESRRG 
HOXC6 ETNPPL 
IFITM1 FAM46C 
IGF2BP3 FBP2 
INHBA FCGBP 
ITGBL1 FMO5 
KLK6 GATA5 
LAIR2 GCNT4 
LIF GHRL 
LIPG GIF 
LOX GKN1 
LY6E GKN2 
MAGEA6 GPER1 
MFAP2 GRIA4 
MMP11 GSTA1 
MMP12 GSTA3 
MMP3 GUCA2B 
MMP7 HDC 
MSR1 HOMER2 
NOX4 IGJ 
OLFM4 IRX3 
OLFML2B KCNE2 
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OLR1 KCNJ13 
P4HA3 KCNJ15 
PDGFRB KCNJ16 
PLA2G2A KLF4 
PLA2G7 KRT20 
PLAU LDHD 
PMEPA1 LTF 
PRRX1 MAMDC2 
RARRES1 MAOA 
SALL4 MT1E 
SERPINE1 MT1G 
SERPINH1 MT1H 
SFRP4 MT1M 
SNX10 MT1X 
SPARC MUC6 
SPP1 MYRIP 
SULF1 NKX6-2 
THBS2 NR0B2 
THY1 PDIA2 
TIMP1 PGA4 
TNFAIP6 PGC 
TNFRSF11B PIGR 
TNFSF4 RAB27A 
TREM1 RDH12 
TREM2 REG3A 
VCAN SCGB2A1 
WNT2 SCNN1B 
 SCNN1G 
 SH3GL2 
 SIDT2 
 SLC26A7 
 SLC5A5 
 SMPD3 
 SOX21 
 SPTSSB 
 SST 
 SSTR1 
 SULT2A1 
 SYTL5 
 TCN1 
 TFF1 
 TFF2 
 TMED6 
 TNFRSF17 
 UGT2B15 
 UPK1B 
 VSIG1 
 VSIG2 
 VSTM2A 

 
 

 

Supplementary Table 2. The mRNA-miRNA pairs predicted by the miRecords database. 

Supplementary Table 3. The miRNA-lncRNA pairs predicted by the miRNet database. 

Supplementary Table 4. The raw data of Figure 5. 


