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Torsins are essential, disease-relevant AAA+ (ATPases associated with various cellular

activities) proteins residing in the endoplasmic reticulum and perinuclear space, where

they are implicated in a variety of cellular functions. Recently, new structural and functional

details about Torsins have emerged that will have a profound influence on unraveling the

precise mechanistic details of their yet-unknown mode of action in the cell. While Torsins

are phylogenetically related to Clp/HSP100 proteins, they exhibit comparatively weak

ATPase activities, which are tightly controlled by virtue of an active site complementation

through accessory cofactors. This control mechanism is offset by a TorsinA mutation

implicated in the severe movement disorder DYT1 dystonia, suggesting a critical role

for the functional Torsin-cofactor interplay in vivo. Notably, TorsinA lacks aromatic pore

loops that are both conserved and critical for the processive unfolding activity of

Clp/HSP100 proteins. Based on these distinctive yet defining features, we discuss how

the apparent dynamic nature of the Torsin-cofactor system can inform emerging models

and hypotheses for Torsin complex formation and function. Specifically, we propose that

the dynamic assembly and disassembly of the Torsin/cofactor system is a critical property

that is required for Torsins’ functional roles in nuclear trafficking and nuclear pore complex

assembly or homeostasis that merit further exploration. Insights obtained from these

future studies will be a valuable addition to our understanding of disease etiology of

DYT1 dystonia.

Keywords: AAA+ proteins, TorsinA, dystonic disorders, nuclear membrane, nuclear pore complex, DYT1 dystonia,

protein quality control, ubiquitin

INTRODUCTION

Torsin ATPases are essential and broadly conserved AAA+ proteins whose discovery was tied to
the characterization of the TorsinA DYT1 mutation found in patients with early-onset torsion
dystonia, a highly debilitating hereditary movement disorder (Ozelius et al., 1997). Torsins have
recently garnered increasing interest in conjunction with pivotal discoveries about their structure
and molecular mechanism of activation, as well as compelling insights into their cellular functions.
As the sole AAA+ ATPase found in the endoplasmic reticulum (ER) and nuclear envelope (NE),
Torsins were implicated in equally broad and critical functions including lipid synthesis (Grillet
et al., 2016), regulation of membrane morphology (Rose et al., 2014), and protein quality control
(Chen et al., 2010; Nery et al., 2011) as well as the ER redox sensing (Zhu et al., 2008, 2010; Nery
et al., 2011; Zhao et al., 2016).

In addition to these roles in the ER, Torsins fulfill distinct functions at the NE. TorsinA
and its cofactor LAP1 are essential for proper assembly of fibroblast nuclear envelope-anchored
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transmembrane actin-associated nuclear (TAN) lines (Luxton
et al., 2011), which are comprised of arrays of linker of
nucleoskeleton and cytoskeleton (LINC) complexes associated
with retrograde flowing actin. TorsinA modulates the rearward
motion of nuclei during centrosome positioning and is
implicated in maintaining cell polarity in migrating cells
(Saunders et al., 2017). A second intriguing role for Torsins at
the nuclear periphery is their involvement in modulating nuclear
envelope architecture. Deletions of Torsins in human, mouse,
worm, and fly cells lead to the formation of omega-shaped “bleb”
compartments within the nuclear envelope (Goodchild et al.,
2005; Jokhi et al., 2013; Liang et al., 2014; VanGompel et al., 2015;
Laudermilch et al., 2016; Tanabe et al., 2016). These perinuclear
blebs have been shown to harbor ubiquitinated proteins (Liang
et al., 2014; Laudermilch et al., 2016) as well as nuclear pore
complex components (Laudermilch et al., 2016). Thus, a picture
is emerging in which Torsins accomplish a variety of tasks both
at the NE and the ER, and that at least some of these functions
are most critical during early developmental stages in neurons
(Tanabe et al., 2016). In addition to these functional insights
in the cellular context, the recently solved crystal structures of
wild-type and DYT1 dystonia mutant Torsin in complex with
its cofactor LULL1 confirmed functionally significant structural
features that were previously unappreciated (Demircioglu et al.,
2016). Several reviews have summarized the current state of the
Torsin field (Rose et al., 2015; Laudermilch and Schlieker, 2016;
Cascalho et al., 2017); thus, the purpose of the forgoing is to
spotlight current hypotheses surrounding the Torsins’ roles at
the inner nuclear membrane and their dynamic assembly into an
active, functional complex.

STRUCTURAL INSIGHTS INTO TORSIN
COMPLEXES

Though homology to other AAA+ proteins suggested that
Torsins were capable of ATP hydrolysis-driven mechanical work
from the very beginning, the question of whether they were
active ATPases or degenerate AAA+ scaffolds was unresolved
until Torsins were functionally reconstituted in vitro (Zhao
et al., 2013). TorsinA, -B, and -3A have ATPase activity in the
presence of ATP and the luminal domain of the ER-resident
protein LULL1 while TorsinA and -B alone are activated by
the luminal domain of LAP1, which resides in the NE (Foisner
and Gerace, 1993; Goodchild and Dauer, 2005; Zhao et al.,
2013). The DYT1 dystonia mutant of TorsinA is refractory to
the activation by these cofactors, thus presenting one line of
evidence for a loss-of-function mechanism in early-onset torsion
dystonia (Zhao et al., 2013). These cofactors have degenerate
AAA+ scaffolds lacking the motifs needed for ATP binding,
and they activate Torsin ATPase activity by complementing
the Torsin active site with an arginine finger residue that
is absent in Torsins (Brown et al., 2014; Sosa et al., 2014)
(Figures 1A–C).

The structure of the TorsinA-LULL1 heterodimer
unambiguously confirmed the critical role of a catalytic
arginine (Demircioglu et al., 2016). This arginine is positioned

to stabilize the negative charge of the transition state, thus
lowering the free energy of the nucleotide hydrolysis reaction
(Scheffzek et al., 1998). As suggested by biochemical studies
(Brown et al., 2014; Rose et al., 2014) the TorsinA-LULL1 crystal
structure confirmed the critical role of Torsin’s C-terminal
helix region for forming interactions with LULL1 (Demircioglu
et al., 2016) (Figure 1C). It is now apparent that the deletion
of E303 in the DYT1 dystonia mutant TorsinA perturbs a
critical helix at the cofactor interface (Demircioglu et al., 2016),
providing an atomic-level rationale for the observation of
reduced cross-linking of the conserved C-terminal TorsinA
aromatic residues with the cofactor in the TorsinA disease
variant (Brown et al., 2014), and the resulting failure to trigger
ATP hydrolysis (Zhao et al., 2013) (for additional details on
disease implications, see Rose et al., 2015; Cascalho et al.,
2017).

The complementation mechanism for ATPase activation and
the presence of a degenerated AAA+ fold is unusual but
not unprecedented. The bacterial clamp loader has an inactive
δ′ subunit that activates the adjacent γ ATP-binding AAA+
subunit (Hedglin et al., 2013; Kelch, 2016). Torsins and their
cofactors stand out for the fact that they have different modes of
staying anchored in their cellular environment: TorsinA and -B
have an N-terminal signal sequence followed by a hydrophobic
domain while Torsin2A and -3A do not have a hydrophobic
domain, and LULL1 and LAP1 are type-II transmembrane
proteins. LULL1 is localized throughout the ER (Goodchild
and Dauer, 2005), while the nuclear domain of LAP1 binds to
the nuclear lamina and therefore resides in the inner nuclear
membrane (Foisner and Gerace, 1993). From an evolutionary
standpoint, the added complexity of such a distinctive multi-
component ATPase system likely evolved out of the need to create
more diverse roles at precise cellular loci, especially in higher
organisms. Dependence on the cofactors for at least some of
their functions likely allows cells to leverage the common Torsin
scaffold to perform more varied functions in targeted locations
and potentially relay signals from or to the nucleus and cytoplasm
as well.

Though the stoichiometry of the Torsin/cofactor complex
under equilibrium conditions remain to be established, recent
data point to a dynamic assembly. Three distinct models exist:
(a) an alternating, symmetric Torsin/cofactor ring assembly; (b)
homo-oligomeric Torsin rings; and (c) a Torsin/cofactor dimer
(Figure 1D). Though low-resolution structural (Sosa et al., 2014)
data and crosslinking data (Brown et al., 2014) are consistent
with the formation of an alternating assembly into a closed
ring structure, the major limitation of several approaches aimed
at a determination of the (hetero)oligomeric state is that they
were mostly carried out with hydrolysis-deficient “trap” variants
of TorsinA. These variants are refractory to cofactor-induced
hydrolysis (Zhao et al., 2013) and bind the cofactor tightly
(Naismith et al., 2009; Zhu et al., 2010; Zhao et al., 2013), a
situation that is certainly not representative of the dynamic
equilibrium in a cell. The rationale for the second model with
Torsin-Torsin homo-oligomers is based on data showing that
Torsin assembles into hexameric structures on its own in blue
native PAGE experiments, and that ATP is often required to allow
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FIGURE 1 | Structural features of TorsinA and its dynamic complexes with cofactors (A). TorsinA (blue) exhibits high levels of conservation both on the

activator and “back” interface. Torsins have a C-terminal helix bundle that serves to form intra-protomer contacts in related AAA+ proteins but lack the aromatic pore

loops that usually serve to thread substrates through the central pore. The membrane-associated N-terminal hydrophobic domain was omitted for clarity. (B) The

cofactor LAP1 (maroon) luminal domain, which adopts a AAA+ fold, lacks the critical four-helix bundle and exhibits a low level of conservation on its “back” interface

opposite the more conserved activator binding face. (C) Cartoon representation of the TorsinA-LULL1 crystal structure (PDB code 5J1S; the nanobody used for

crystallization was omitted for clarity). Note that the luminal domains of LAP1 and LULL1 are 60% identical. The cofactor/Torsin complex features a tightly apposed

interface in the presence of ATP (orange), with the cofactor supplying a catalytic arginine finger (magenta) that reaches into the nucleotide binding site of Torsin to

activate its ATPase activity. (D) Three different models exist for the active assembly of Torsins: (I) a homo-oligomeric (likely hexameric) ring; (II) a trimer of heterodimers;

(III) a Torsin-LAP1 heterodimer. (E) Predicted model of active Torsin complex formation with its cofactors. Torsin forms homo-oligomeric complexes in the presence of

nucleotide that could adopt either a planar (I) or a stacked spiral (II) conformation. Cofactor binding to the Torsin active site destabilizes the Torsin ring. Torsin-Torsin

rings are eventually dismantled because the cofactors lack the necessary four-helix bundle and conserved residues to form stable closed ring structures. The

Torsin-cofactor complex is also transient and dynamic: ATP hydrolysis generates ADP-bound Torsin, destabilizing both the Torsin-Torsin and the Torsin-cofactor

interaction. Note that the transmembrane domain of LAP1 was omitted for clarity.

oligomerization in AAA+ ATPases (Hanson and Whiteheart,
2005; Vander Heyden et al., 2009; Jungwirth et al., 2010).

Given that previous studies of Torsins were conducted
primarily with “trap” variants that resulted in more static
models, we propose a more dynamic model. This model
is most strongly supported by the following evidence: only
Torsins, but not LAP1 and LULL1, possess the C-terminal helix
bundle that is essential for intra-protomer ring-forming contacts
(Figures 1A–C) among the Clp/Hsp100 AAA+ proteins (Mogk
et al., 2003); the high level of conservation observed in Torsin
residues on the “back” interface opposite the cofactor binding
face (Figures 1A,B) (Demircioglu et al., 2016) suggesting that
these residues participate in homotypic Torsin intra-protomer

contacts; and the observation of higher-order Torsin oligomers
(cf. Figure 1D) via blue native PAGE (Vander Heyden et al.,
2009; Jungwirth et al., 2010; Goodchild et al., 2015). Given the
cofactors’ lack of a four-helix bundle and the low level of “back”
interface conservation on either cofactor (Demircioglu et al.,
2016), and the fact that Torsin oligomerization itself is ATP-
dependent, it is conceivable that activation of ATP hydrolysis
by the bound cofactors would effectively disrupt homotypic
intra-ring contacts, as proposed previously (Rose et al., 2015;
Demircioglu et al., 2016).

One important point of discussion in the context of this model
is how the cofactor luminal domains, which would effectively
compete with other Torsin subunits in the ring for a nearly
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identical interface would manage to initially pervade the ring,
gaining access to an ATP-bound Torsin subunit. One possibility
(Figure 1E–II) is that Torsin oligomers adopt a split lock washer
or spiral conformation, similar to NSF (Zhao et al., 2015), in
which parts of the nucleotide binding face of Torsin would
be rendered accessible to the cofactor. The flexibility of the
unstructured region after the hydrophobic domain but before the
AAA+ domain (residues 44-57) could impart additional degrees
of translational freedom (a ∼49 Å radius of flexibility, based
on Cα-Cα distance) to Torsin subunits, thus also allowing the
membrane-anchored cofactors to access the nucleotide binding
site, which is about 30 Å from the membrane-anchored N-
terminus. Considering that ATP binding is broadly required for
oligomerization in AAA+ ATPases, hydrolysis and transition
to the ADP-bound state would shift the equilibrium to free
Torsin and cofactor subunits (Figure 1E I-II). Adding to the
complexity of the system is the fact that LULL1 has been
shown to form higher-order structures (Goodchild et al., 2015),
thus creating an equilibrium reaction between Torsin-engaged,
free, and homo-oligomeric or otherwise engaged cofactors.
Furthermore, it is possible that the cofactors are themselves
regulated by an additional layer of control: for example via
posttranslational modifications, through dynamic interactions
with other proteins on either side of the membrane, or even
within the lipid bilayer. In either case, the known properties
of the Torsin-cofactor complex are not consistent with a static
assembly.

Unlike the Clp/Hsp100 proteins which Torsins are most
phylogenetically similar to, the Torsin structure (Demircioglu
et al., 2016) further established that Torsins lack the central
hydrophobic pore loops that are used to drive substrate
translocation through the central channel of other related
hexameric AAA+ proteins (Olivares et al., 2016). Combined
with the extremely slow ATPase activity (0.006 nucleotides/s),
relative to its AAA+ counterparts which can hydrolyze >1.3
nucleotides/s (Martin et al., 2008), these observations render
it improbable that Torsin acts in a processive manner to
translocate substrates through the inner cavity of the Torsin
ring (Zhao et al., 2013; Rose et al., 2015). Instead, Torsins
likely interact with substrates with a more transient mechanism
such as that of a holder chaperone that quickly binds and
releases its substrates, either by lateral diffusion into the axial
pore or by binding substrates at the periphery of its assembly.
Determining the three dimensional structure of higher-order
Torsin assemblies using e.g., cryo-electron microscopy might
provide important insights in the future. Though characterizing
the precise mechanisms of how ATP hydrolysis translates to
work exerted on substrates remains challenging even for well-
characterized AAA+ proteins, recent studies on NSF, the yeast
chaperone Hsp104, and mitochondrial Pex1/Pex6 by cryo-EM
have revealed that progression through multiple asymmetric
states in stacked spirals, open lock-washers, or more planar
assemblies are key drivers for performing work during successive
ATP hydrolysis events (Blok et al., 2015; Zhao et al., 2015;
Yokom et al., 2016). Given the Torsins assembly’s dynamic
nature, predicted non-processive action, and similarity to clamp
loaders, it is probable that the presence of asymmetric states

will also play a role in its activation mechanism and should be
accounted for in data analysis and interpretation. Asymmetric
hydrolysis events could, for example, couple various asymmetric
states to the insertion of the Torsins’ own hydrophobic domains
or interaction with the transmembrane cofactors, which could in
turn modulate membrane curvature and remodeling or substrate
interactions. It will be important to examine these states both in
the presence and absence of cofactors and, once they have been
identified, the Torsin substrates that have eluded the field thus
far.

How can we begin to form a mechanistic explanation for
the Torsins’ exquisite spatiotemporal control during phases
of neuronal development while also accounting for their
redundancy (Laudermilch et al., 2016; Tanabe et al., 2016)? One
likely scenario, is the formation of an anti-parallel gradient
by the cofactors LULL1 in the ER and LAP1 at the nuclear
envelope that dictate when and where Torsins are activated by
cofactors to perform their function (Rose et al., 2015). LULL1
could activate Torsin’s chaperone function in the ER, perhaps
in response to a flux in redox potential or cofactor density
in this compartment. The membrane association of TorsinA is
controlled by cleavage of a scissile bond that removes the N-
terminal hydrophobic domain during B cell differentiation (Zhao
et al., 2016), suggesting an additional layer of control that could
modulate substrate specificity, for example from membrane-
associated to soluble ER-luminal species, during ER expansion.
TorsinA species with a mass identical to this cleavage product
have been observed in organ homogenates (Goodchild et al.,
2005; Jungwirth et al., 2010).

A NOVEL ROLE FOR TORSINS IN
NUCLEAR PORE BIOGENESIS OR
HOMEOSTASIS

The hallmark phenotype seen upon Torsin manipulation or
deletion is the “blebbing” or herniation of the inner nuclear
membrane into the perinuclear space (Figure 2A; Goodchild
et al., 2005; Jokhi et al., 2013; Liang et al., 2014; Pappas et al.,
2015; VanGompel et al., 2015; Laudermilch et al., 2016; Tanabe
et al., 2016). This phenotype has been observed in neural tissues
of knockout mouse models of TorsinA (Goodchild and Dauer,
2005) and in HeLa cells with combined knockouts of multiple
Torsins (Laudermilch and Schlieker, 2016). Similar herniations
have also been observed after manipulation of the respective
Torsin variants in Drosophila melanogaster and Caenorhabditis
elegans (Jokhi et al., 2013; VanGompel et al., 2015), suggesting
that Torsin function at the nuclear envelope is conserved.

One formidable challenge to deciphering Torsin function
has been the remarkable redundancy between the four Torsin
proteins encoded in mammalian genomes. In TorsinA knockout
mice, blebbing is observed strictly in neural tissue (Goodchild
et al., 2005), where TorsinA is highly expressed (Jungwirth
et al., 2010). However, in fibroblasts from TorsinA knockout
mice, additionally depleting TorsinB is sufficient to induce
blebbing (Kim et al., 2010). In TorsinA knockout mice, blebbing
is restricted to a specific developmental window, and the
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FIGURE 2 | Torsin function at the nuclear envelope. (A) EM cross section of nuclear envelope blebbing observed in Torsin-deficient HeLa cells. N, nucleus; C,

cytoplasm; black arrowhead, ONM; white arrow, INM; white arrowhead, electron density at the base of the blebs containing nucleoporins. (B) Model depicting how

blebs could arise from stalled NPC assembly. In this model, Torsin would function at a step prior to or at membrane fusion. (C) Hypothetical model for Torsins as a

trafficking chaperones that deliver proteins to the inner nuclear membrane. INM-resident proteins are sequestered by Torsins during de novo synthesis in the ER or the

contiguous ONM, preventing their premature assembly into protein-protein complexes that would compromise or prevent their trafficking through the pore membrane.

Upon arrival at the INM, the high local concentration of LAP1 would trigger ATP hydrolysis in Torsins, leading to the disassembly of the Torsin ring and substrate

release. Released substrates can then engage in protein-protein complex formation at the INM.

resolution of the blebs in later stages is dependent on increasing
expression levels of TorsinB (Tanabe et al., 2016). Finally,
deletion of TorsinA or TorsinB individually in HeLa cells shows
little perturbation to normal nuclear envelope architecture, but
deleting all four Torsins results in robust blebbing (Laudermilch
et al., 2016).

While the precise composition of the blebs and Torsins’ role in
their formation is still being determined, several recent findings
linked Torsins to nucleoporins (nups) (VanGompel et al., 2015;
Laudermilch et al., 2016). In C. elegans, Torsin manipulation
resulted in nup mislocalization and altered nuclear import
kinetics (VanGompel et al., 2015). In Torsin-deficient HeLa cells,
a subset of nups localize specifically to the base or “neck” of
the blebs at the inner nuclear membrane (Laudermilch et al.,
2016) (Figure 2A). Collectively, these observations suggest that
Torsin plays a role in nuclear pore complex (NPC) biogenesis or
homeostasis. The NPC is a massive structure found in the nuclear
envelope through which nucleocytoplasmic transport occurs
(Field et al., 2014; Knockenhauer and Schwartz, 2016; Kosinski
et al., 2016; Lin et al., 2016). While the precise mechanism of
NPC assembly is still actively investigated, there are two distinct
assembly pathways: one occurs post-mitotically while the nuclear
envelope reforms and the other occurs during interphase (Doucet
et al., 2010). Interphase assembly begins from the INM and
proceeds outward toward the ONM. After several subcomplexes
have assembled, the inner and outer nuclear membranes fuse
together, and at least some components of the cytoplasmic region
are added to the NPC after this fusion event (Otsuka et al., 2016).

Here we propose two models for a functional link between
Torsins and nups. Importantly, the shape and dimensions

of the blebs are highly similar to normal interphase NPC
assembly intermediates (Laudermilch et al., 2016; Otsuka et al.,
2016). Thus, the blebs could represent frozen NPC assembly
intermediates that require the action of Torsins for their
completion. These intermediates would be frozen at a step
prior to the fusion of the inner and outer nuclear membranes
(Figure 2B). Thus, cytoplasmic nups would be expected to be
absent from the base of the blebs in this model, while other
subcomplexes would be present. Therefore, it will be critical
to perform a detailed compositional analysis of the blebs. A
diagnostic absence of cytoplasmic nups would support the idea
of a frozen assembly intermediate. That Torsin-deficient cells
remain viable albeit exhibiting slower growth (Laudermilch et al.,
2016) could be attributed to the contribution of unperturbed
NPC assembly proceeding through the Torsin-independent
postmitotic insertion pathway.

Alternatively, the blebs could result from sealing of nascent
NPCs by endosomal sorting complexes required for transport
(ESCRT) components, analogous to a process that has recently
been described in yeast in which ESCRT proteins and the
AAA+ ATPase Vps4 participate in a pathway that surveils NPCs
(Webster et al., 2014; Webster and Lusk, 2016).

We envision two general mechanistic models to explain
why blebs form in the absence of Torsin. In the first model,
Torsin would act directly in NPC biogenesis. For example,
Torsin might participate in the fusion of the inner and outer
nuclear membranes during NPC assembly, probably in complex
with other proteins. In the second model, Torsin would act
upstream of NPC biogenesis or surveillance. Specifically, Torsins
could act as trafficking chaperones by binding newly synthesized
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proteins in the endoplasmic reticulum and delivering them to
sites of NPC assembly in the nuclear envelope (Figure 2C).
Torsin could traffic transmembrane nups, or it could deliver
proteins that are essential for NPC assembly or surveillance.
One reason for invoking such a function is the presence of a 60
kDa transport limit for the nuclear domains of transmembrane
proteins residing in the INM (Ungricht et al., 2015). NE proteins
assembling into higher-order oligomeric structures must be held
competent for trafficking through the pore membrane in a
monomeric state to bypass the 60 kDa size limitation imposed by
the NPC. For example, trimeric Sun proteins (Sosa et al., 2012)
at INM harbor sizable nuclear domains (∼34 kDa for Sun1).
Trafficking through the pore membrane in a trimeric state would
be difficult to reconcile with this 60 kDa size limit. Our specific
proposal here is that Torsins could stabilize the monomeric form
by association with the luminal domains of NE proteins, while the
nuclear domains of NE proteins will ensure INM targeting. Upon
arrival at the INM, substrates will be released from Torsins due to
the high local concentration of the Torsin activator LAP1 at the
INM resulting in disassembly of the Torsin ring and allowing the
released substrate to engage in complex formation (Figure 2C).
While hypothetical, this model would be consistent with the
observation that a hydrolysis-deficient trap variant of TorsinA
accumulates in the NE (Goodchild and Dauer, 2004; Naismith
et al., 2004), which can be attributed to a failure of LAP1 to
catalyze the release of Torsin from its NE-targeted clients.

Our model could also explain the accumulation of K48-
ubiquitylated proteins in the nuclear periphery in Torsin
deficient cells (Laudermilch et al., 2016). Given that the INM
of mammalian cells was recently shown to be competent for

the degradation of membrane proteins (Tsai et al., 2016), it
will be critical to determine if the half life of otherwise stable
NPC/INM proteins (Doucet et al., 2010; Toyama et al., 2013)
is compromised in Torsin-deficient cells due to the absence
of normally stabilizing interactions that are perturbed due to
trafficking defects, and to discern a (mis)localization of INM
proteins to the ONM vs. INM upon Torsin manipulation.

In conclusion, we have now reached a stage in our
understanding of Torsin biology that is sufficient to begin
formulating more precise hypotheses about their mechanism
and their functions that can be tested by definitive experiments.
The likelihood that further genetic experiments within a
cellular context will yield the holy grail of the Torsin field—
the elusive substrates that trigger the changes affected by
Torsins in the ER and at the nuclear envelope—is more
probable than ever. Merging these functional details with a
structural understanding of the Torsins’ action will provide
the necessary basis for developing targeted DYT1 dystonia
therapies.
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