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Neurodegenerative diseases are characterized by progressive loss of selectively

vulnerable neuronal populations, which contrasts with selectively static loss of neurons

due to toxic or metabolic disorders. The mechanisms underlying their progressive nature

remain unknown. To date, a timely and well-controlled peripheral inflammatory reaction

is verified to be essential for neurodegenerative diseases remission. The influence of

peripheral inflammation on the central nervous system is closely related to immune cells

activation in peripheral blood. The immune cells activation participated in the uncontrolled

and prolonged inflammation that drives the chronic progression of neurodegenerative

diseases. Thus, the dynamic modulation of this peripheral inflammatory reaction by

interrupting the vicious cycle might become a disease-modifying therapeutic strategy

for neurodegenerative diseases. This review focused on the role of peripheral immune

cells on the pathological progression of neurodegenerative diseases.

Keywords: neurodegenerative diseases, peripheral immune cells, macrophage, dendritic cell, natural killer cell, T
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INTRODUCTION

Neurodegenerative disease is the progressive dysfunction and loss of neurons in the central
nervous system (CNS), including Alzheimer’s disease (AD), Parkinson’s disease (PD) and Multiple
Sclerosis (MS) (1). The mechanisms underlying their progressive nature remain unknown. To date,
aging and immunity are closely associated with the pathogenesis of neurodegenerative diseases.
Immunosenescence refers to the gradual deterioration of the immune system brought on by natural
age advancement. It involves both the host’s capacity to respond to infections and the development
of long-term immune memory, which could accelerate the progression of neurodegenerative
diseases (2).

Despite different triggering events, a common feature is brain inflammation (3). It is clear
that neuroinflammation during compensatory period is beneficial, which help combat infections,
promote tissue repair, remove necrotic cells, shape the brain during development and repair
following damage. Upon decompensatory period, a vicious cycle of glial priming and release of
pro-inflammatory factors promote neuronal damage (4). On the other hand, chronic inflammation,
including chronic intestinal inflammation, diabetes, obesity, and systemic lupus erythema, could
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cause cognitive impairment, learning and memory deficits, and
human depression (5, 6). Moreover, long-term use of non-
steroidal anti-inflammatory drugs would suppress the peripheral
immunity and reduce the incidence of PD by about 50% (7).
In PD mice model, intraperitoneal lipopolysaccharide (LPS)
injection combined with intravenous administration of two
different recombinant α-synuclein (α-syn) pathogenic strains
resulted in overactivation of microglia and further promoted
the recruitment of leukocytes toward the brain and the spinal
cord (8). Likewise, inhibiting migration of T cells or B cells
into the brain rendered the CNS susceptible to devastating
infections. However, the nature of peripheral immune cells in
neurodegenerative diseases progression remains unclear. Thus,
this review summarized the roles of peripheral immune cells on
the pathological progression of neurodegenerative diseases.

ROLES OF PERIPHERAL IMMUNE CELLS
ON NEURODEGENERATIVE DISEASES

Mononuclear Phagocyte System
Monocyte

Monocyte is the largest type of white blood cell in the peripheral
blood that could differentiate into macrophages or dendritic
cells (DCs) (9). Monocyte triggers innate immune responses
by regulating Toll-like receptors (TLRs), scavenger receptors,
phagocytosis and complement-mediated responses. Recent
studies revealed that gut dysbiosis, a primary element behind
various gastrointestinal disorders, might augment LPS, pro-
inflammatory factors and monocytes, thus leading to increased
intestinal and blood brain barrier (BBB) permeability through
microbiota-gut-brain axis. Correspondingly, accumulation of
axonal damage, misfolded proteins and neuronal demyelination
facilitates the pathogenesis of neurodegenerative disorders, such
as AD, PD and MS (10).

In AD patients, a higher proportion of monocytes in
the peripheral blood was discerned, whereas the interaction
between monocytes and platelets in the blood was not altered.
Besides, cathepsin D, a major lysosomal aspartic protease, was
underexpressed in monocytes, causing the defective degradation
of amyloid-β (Aβ) by monocytes (11). However, the sensitivity
of monocytes toward Aβ peptides was decreased, indicating that
there might be a critical link between the interaction of platelets
and monocytes in AD (12).

Transcriptomics analysis showed that monocytes isolated
from peripheral blood of PD patients conferred pro-
inflammatory effects. The increase in the number of classical
monocytes in PD blood and the decrease in the number
of non-classical monocytes might result from the increased
monocyte differentiation or increased migration from the bone
marrow (13). In contrast, monocytes play an important role
in repairing of the injured brain. For example, continuous
low-dose injections of LPS in the periphery caused chronic
inflammation and the tolerance of peripheral monocytes.
Once CNS was stimulated again, dopaminergic neuronal
damage was reduced (14). Of note, PD-associated gene
DJ-1 deficiency attenuated monocyte infiltration into the

damaged brain, which in turn led to delay in repairing of
brain injury in mice (15). Furthermore, the chemotaxis and
phagocytosis of aged monocytes were increased or decreased
under different conditions. In neurodegeneration, an increase
in the number of monocytes and functional changes observed
in peripheral blood might be related to immunosenescence,
but this change was more obvious in age-matched
PD patients (16).

Currently, the blood monocyte counted in the early phase
of MS was robustly associated with the clinical severity of
MS, whereas the counts of the other blood cells were not
related with MS severity (17). Moreover, various animal studies
carried out that monocytes contributed to MS-associated
neuroinflammation. While classically activated monocytes
promoted inflammation, type II-activated monocytes could
improve the progression of MS. Furtherly, antioxidant and
anti-inflammatory alternatives inhibited monocyte secretion of
pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β,
and also suppressed the phagocytosis of monocytes and thus
slowed down the pathological process of MS (18).

Macrophage

In the inflammatory lesions, macrophages are the dominant
cells. Macrophages in peripheral blood can cross BBB to secrete
pro-inflammatory factors in brain to further determine the
survival of neurons (19). Production of these inflammatory
factors in brain is generally considered to be the primary
mechanisms underlying the development of neuronal damage in
response to chronic inflammation (20). Additionally, the renin-
angiotensin system acts on macrophages via different signaling
pathways. Angiotensin (Ang) II type 1 receptors (ATR) drive
pro-inflammatory macrophage responses in neuroinflammation
via regulation of chemokines. Interestingly, macrophages could
secrete pro-inflammatory and anti-inflammatory factors due to
the autoimmune actions of inflammation (21). In CNS, microglia
are the resident macrophages and play vital functions for brain
development and homeostasis. The phenotypic differentiation
between microglia and peripheral macrophages is verified
to be age-dependent. Peripheral macrophages might express
several most commonly described microglia markers in some
developmental stages or pathological conditions, particularly
during chronic neuroinflammation (22). At present, blood-
derived macrophages are thought to contribute to brain damage
and repair in yet unidentified ways (23).

A number of studies demonstrated that defects of
macrophages interfered with brain clearance of Aβ, including
in Aβ phagocytosis and Aβ-induced apoptosis. Macrophages
derived from peripheral blood in AD patients were found to
possess ineffective phagocytosis of Aβ and low resistance to
apoptosis by Aβ (24–26). Another evidences indicated that IL-34
could impair monocyte differentiation into macrophages and
reduce their ability to uptake pathological forms of Aβ. Given
the critical role of macrophage-mediated Aβ clearance in both
murine models and patients with AD, IL-34 might be relevant
to innate immune responses in AD (27). Besides, in clinical
studies, the highly reactive compound, methylglyoxal, has been
implicated in the development of AD and methylglyoxal might
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be produced by macrophages during sepsis and further fasten
the pathological process of AD (28).

In addition, modulation of the secretion of anti-inflammatory
factors by macrophages might be a reasonable way to
control chronic inflammation and delay the progression of
neurodegenerative diseases. In PD patients, niacin could reduce
the expression level of GPR109a in macrophages and increase
the secretion of anti-inflammatory factors by macrophages in
blood, that thereby slowing the progression of PD (29, 30).
On the other hand, intraperitoneal injection of 1-methyl-4-
phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in mice increased
peripheral macrophages levels (31). Also, macrophages can
activate PD-related genes, such as LRRK2, by pathogen-
or sterile-induced endomembrane damage (32). Meanwhile,
glial cell-line derived neurotrophic factor (GDNF) delivery
mediated by macrophages from bone marrow was confirmed
to improve neuroinflammation and inhibit dopaminergic
neurodegeneration (33).

Macrophages are the predominant cell type in acute
inflammatory brain lesions of MS, which can produce pro-
inflammatory and toxic molecules and promote demyelination,
although macrophages of peripheral origin were not normally
present in the parenchyma of healthy CNS (34, 35). In detail, in
response to experimental autoimmune encephalomyelitis (EAE,
the induced variant of MS in animals, usually in mice) induction,
they were recruited and infiltrated into the CNS and, together
with residential microglia, contributed to the pathogenesis of MS
(36). Moreover, IL-10 and IL-4 immunoreactivity were shown in
active demyelinating lesions and the rim of chronic active lesions
of human MS brain, with receptors for these cytokines highly
expressed bymacrophages in parenchymal and perivascular areas
(37). Of note, myelin-laden macrophages expressing high levels
of macrophages-associated CD163 and CD206 were discerned in
MS patient lesions (38).

Dendritic Cells (DCs)
DCs had various functions and were recognized as a translator
for innate and adaptive immunity. They integrated signals
from tissue infection or injury, migrated inflammatory sites
and processed antigens to be presented to secondary lymphoid
organs. Also, DCs provided a variety of soluble and surface-
bound signals to help guide T cell differentiation (39). Generally,
decreased number of DCs and decline in DCs functions are
the key hallmarks of immunosenescence. Changes of DCs
in neurodegenerative diseases patients thus closely resemble
classical immunosenescence, and cannot be excluded that
neurodegenerative diseases were just characterized by accelerated
aging of the immune system.

Multiple studies demonstrated that during inflammation
of CNS, activated DCs migrated to cervical lymph nodes,
where DCs activated naive lymphocytes and then migrated
to the site of inflammation (40). Although DCs were easily
found in cerebrospinal fluid, they were not protected by
BBB in the perivascular space. Additionally, the resident or
infiltrating DCs exerted anti-inflammatory functions. Intranasal

application of vesicular stomatitis virus (VSV) could cause
acute infection of CNS. However, in DCs-deficient mice, the
interferon-γ (IFN-γ) response induced by VSV in CNS was still
intact. Therefore, it was still believed that inflammation and
certain components of the adaptive primary anti-viral immune
response in CNS were dependent on the peripheral DCs in
the body (41).

The presence of DCs was still a matter of debate in AD.
However, a surprising decline in the population of precursors
of DCs in peripheral blood of AD patients with concomitant
decline in blood myeloid DCs (MDC) was reported (42).
Depletion of DCs by systemic injection of diphtheria toxin, which
selectively targeted and eliminated bone-marrow-derived DCs,
led to the increased levels of amyloid plaques in AD animal
models. These findings suggested that the peripheral DCs were
recruited in the brain and participated in the clearance of amyloid
plaques (43). This phenomenon appeared mainly linked to AD
progression and influenced by acetylcholinesterase inhibitors
treatment (44). What’s more, AD-afflicted hippocampi were also
composed of more active DCs and fewer resting DCs than
healthy people (45). Furthermore, the activation of DCs prior
to the gradual loss of neighboring sensory neurons suggested an
early involvement of immune cells in tau-associated pathology
originating in CNS (46). Otherwise, studies on the ability of DCs
to induce protective immunity to neurodegenerative diseases
might have important implications for the development of
novel strategies for prophylactic and therapeutic immunizations
against microbial pathogens. Vaccination of DCs sensitized
to Aβ with a T cell epitope mutation generated antibody
responses in AD mice (43). These above findings indicated
that DCs might play a critical role in the pathogenesis
of AD.

In PD patients, the functional changes of DCs in the
peripheral system were well-studied. For example, changes in
circulating MDC and lymphocyte-like DCs (LDC) on the serum
of PD patients were detected. MDC migrated in inflamed tissues
and lymph nodes and recognized pathogens. LDC differentiated
into typical DCs and mainly produced interferon (47). Recently,
it was suggested that peripheral DCs in PD mice model might
enter the brain and located in the choroid plexus ormeninges and
then react with various antigens to promote neuroinflammatory
processes (48). In addition, tolerogenic bone marrow-derived
DCs induced neuroprotective regulatory T cells (Tregs) in
MPTP-induced PD mice model (49). Surprisingly, dendritic cell
factor 1 (DCF1), a membrane protein that plays important
roles on nerve development in mouse, could prevent α-syn-
induced dopaminergic neuron loss by aggregating α-syn in the
dorsomedial region of Drosophila (50).

Migration of DCs to CNS was also a critical event in the
pathogenesis of MS. Upon the trafficking of human DCs subsets,
circulating MDC and LDC in the blood of MS patients were
exhibited, although the exact role of LDC in the pathogenesis
of MS remained controversial. Importantly, LDC activation
was enhanced in MS and the costimulatory molecules, such
as OX40-L, HLA-DR, and CD86 expressed on LDC, could
mediate a protective response against the viral trigger of
autoimmunity (51).
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Natural Killer (NK) Cell
NK cells were active members of the innate immunity response
system and act as a first-line defense or as non-specific effectors
(52). It is found that the number of NK cells increases
with age, but changes in NK cells function are less clear.
The overwhelming evidence indicated the depressed NK cells
function in old individuals. The clinical manifestations attributed
to immunosenescence could also be the result of age-dependent
alterations in NK cells number and function (53).

At present, the roles of NK cells on the pathogenesis
of neurodegenerative diseases were still unilluminated. For
example, changes of peripheral NK cells functions in patients
with AD and healthy elderly people were shown, while NK
cells killing activity and degranulation (CD107 expression) were
unchanged. The underlying mechanisms were unrevealed (54).
Moreover, there was no significant difference in the frequency
of NK cells in AD patients, but increased spontaneous release
of IFN-γ and TNF-α from NK cells was exhibited compared
to healthy subjects (55). In addition, compared with healthy
subjects, circular RNA changes in AD patients, and these RNAs
were related to NK cell-mediated cytotoxicity (56). In PD
patients, the percentage of NK cells was increased, while the
activity of NK cells was not changed (57). Amounts of evidence
showed that NK cell levels might be positively associated with
the severity of PD (58). Additionally, NK cells modulated α-syn
pathology and motor symptoms in α-syn transgenic mice model
(59). Besides, the level of NK cells in peripheral blood of MS
patients was increased (60). However, the roles of NK cells on
MS were still controversial with studies reporting both protective
and damaging roles in MS animal models (61). Collectively, the
potential role of NK cells on neurodegenerative diseases warrants
deep illustration.

T Cell
T cells could penetrate into CNS after being damaged, which
affected the activation of glial cells and the degeneration
of neurons (62). The activation of T cells depends on
the antigen-presenting cells (APCs). The blood cerebrospinal
fluid lacks APCs. APCs are recruited in cerebrospinal fluid
of neurodegenerative diseases. Then, APCs present antigens
peptides through major histocompatibility complex (MHC) class
II molecules to further activate infiltrating T cells and the
process of their surface T cell receptor (TCR) bound these
presented antigen peptides. The TCR-MHC interaction induces
the production of CD4+ T cells and CD8+ T cells (63).
Undifferentiated CD4+ T cells activated by APCs differentiated
into different functional phenotypes under different mediators.
CD4+ T cells tended to become T-helper 1 (Th1) phenotype
and Th17 inflammatory phenotype, which was closely related
to neuroinflammation and neuronal damage (64). On contrast,
CD4+ T cells could differentiate into the functional Th2 and
Tregs. These phenotypes played a fundamental role on inhibitory
effects on the inflammatory functions of T cells and the
reduction of neuroinflammation (65, 66). Recently, as shown
in Figure 1, studies indicated that Th1 and Th17 cells secreted
pro-inflammatory factors, such as TNF-α and INF-γ, to induce

microglia activation and the subsequent release of other pro-
inflammatory factors (67), whereas Th2 cells and Tregs produced
IL-4 and IL-10 to promote the shift of microglia from pro-
inflammatory to anti-inflammatory phenotypes (68).

Fundamentally, brain aging drives systemic aging of whole
body, including aging-associated changes of immune system. In
turn, the immune system aging, particularly immunosenescence
and T cell aging, initiated by thymic involution that are sources
of chronic inflammation in the elderly (termed inflammation),
potentially elicits brain aging and neurodegeneration in a
reciprocal manner (69). In detail, mounting evidence have also
emphasized that peripheral T lymphocytes played an essential
role on the process of neuroinflammation in AD pathogenesis.
Furthermore, role of Aβ-specific T cells in AD was bidirectional
that they might act in either protective or damaging properties
(70). On the other hand, T cells promoted hippocampal
neurogenesis in AD mice model and T cells deficiency restricted
neuronal regeneration in the hippocampus. The mechanisms
underlying the promotion of neuronal regeneration by T cells
were mediated by an up-regulated expression of peripheral T
cells and brain microglial neurotrophic factors release (71, 72).
Recently, a T-cell population called CD8+ effector memory
CD45RA+ T cells (TEMRA cells) was identified to be closely
associated with AD. In cohort of 29 AD patients and 35
healthy controls, CD8+ TEMRA cells correlated with cognitive
dysfunctions, and the presence of these T cells could predict the
disease severity with 80% accuracy (73, 74).

In PD patients, T cell levels were down-regulated in peripheral
blood (75). Cognitive impairment was associated with higher
number of circulating lymphocytes and dysregulation of Tregs
compartment (76). It was interesting to note that levels of
IL-1β, TNF-α, IL-2 and peripheral blood lymphocytes in the
serum and cerebrospinal fluid of patients with PD were
quite high, suggesting CD4+ and CD8+ T lymphocytes were
involved in PD progression (77). In addition, Tregs might
exert immunoregulatory functions through the interaction of
the peripheral and central immune systems. Indeed, it has
been demonstrated that in MPTP-induced PD mouse model,
Tregs conferred neuroprotection against dopaminergic neuronal
loss in the substantia nigra (78). Similarly, Tregs functions
were apparently decreased in the periphery of 6-OHDA-induced
PD rat model, in which T cell infiltration occurred when
neuronal loss in substantia nigra reached 80% (79). Moreover, a
relationship between α-syn-specific T cells and PD emerged that
the presence of these T cells might be a feature of preclinical and
early motor PD (80).

MS was traditionally recognized as a predominantly T cell-
mediated autoimmune disease (81). First, the MHC class II allele
was known for several decades to be the strongest genetic risk
factor forMS.MHC class II proteins were expressed on APCs and
required for antigen presentation to CD4+ T cells (82). Second,
the elevated expression of multiple TGF-β-targeting miRNAs
in naive CD4+ T cells of patients with MS impaired TGF-β
signaling, and dampened Tregs development, thereby enhancing
the susceptibility to developing MS (83). Otherwise, Th cell-
induced expression of IL-26 was up-regulated in the blood and
cerebrospinal fluid of patients with MS. In EAE, IL-26 reduced
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FIGURE 1 | Roles of peripheral immune cells on the pathogenesis of neurodegenerative diseases. The antigen stimulated the immune response of macrophages and

B cells. Macrophages engulfed antigens and presented them to T cells. The cytokines of IL-4, IL-6, IL-12, and TGF-β released by T cells regulated the development of

Th2, Treg, Th1, and Th17 cells, respectively. Then, these cells secreted anti-inflammatory or pro-inflammatory factors to regulate neuronal survival. In addition,

antigens could directly stimulate B cells. Upon activation, B cells produced pro-inflammatory factors, which entered the brain along blood vessels and participated in

neurodegeneration. On the other hand, activated T cells secreted lymphokines to activate B cells and activated B cells could proliferate and differentiate into plasma

cells. Subsequently, the plasma cells-produced cytokines and antibodies, such as anti-Aβ or anti-α-synuclein antibodies, went across blood brain barrier and entered

the brain and thus attenuated neurons degeneration.

disease severity and pro-inflammatory lymphocyte infiltration
into CNS, while increasing infiltration of Tregs (84, 85). To
date, most studies of the human microbiome have focused on
the roles of gut microbiota on MS. Gut microbiota regulates T
cell functions throughout whole body. Microbiota transplants
from MS patients into germ-free mice resulted in more severe
symptoms of EAE and the decreased proportions of IL-10+ Tregs
(86). On the other hand, higher Th1 and Th17 proportion in
MS patients was closly associated with more frequent relapse and
more severe clinical disability (87).

B Cell
B cells are involved in adaptive immunity and considered to
be an important component to participate in the pathological

process of neurodegenerative diseases (95). Besides, as shown
in Figure 1, B cells performed various functions, including the
antigen presentation to T cells, production of pro-inflammatory
factors and secretion of anti-inflammatory cytokines (96). In
detail, auto-reactive B cells played a pivotal role in autoimmune
neurological disorders. B cells released cytokines to promote
inflammatory responses of IL-6 and TNF-α and granulocyte-
macrophage colony-stimulating factor (GM-CSF) to promote
the differentiation of pro-inflammatory factors (97). On the
other hand, B cells could secrete IL-10 and IL-35 to exert anti-
inflammatory effects.

B cell population has been shown to decline due to age,
contributing substantially to immunosenescence (98). B cell
immunosenescence induces lower antibody specificity. Also, the
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TABLE 1 | Effects of peripheral immune cells on the pathogenesis of neurodegenerative diseases.

Alzheimer’s disease (AD) Parkinson’s disease (PD) Multiple Sclerosis (MS)

Monocyte • A higher proportion of monocytes in the

peripheral blood (11)

• The sensitivity of monocytes toward Aβ

peptides decreased (12)

• Not only exerted pro-inflammatory effects

but also participated in repair of injured

brain (14)

• The number and function of monocytes

increased in age-matched PD patients (16)

• The counts of blood monocytes associated with

the clinical severity of MS (17)

• Contributed to MS-associated

neuroinflammation (18)

Macrophage • Increased peripheral macrophages in AD

mice (26)

• Mediated the clearance and degradation of

Aβ (24, 25)

• Increased peripheral macrophages in PD

mice (31)

• Produced pro-inflammatory and

anti-inflammatory factors (30)

• Activated LRRK2 after being stimulated by

pathogens (32)

• Main cell type involved in MS (34)

• Produced pro-inflammatory factors and

promoted demyelination (35)

• Infiltrating macrophages and microglia promoted

the pathogenesis of MS (36)

Dendritic Cell (DC) • Vaccination of DCs sensitized to Aβ

generated antibody responses (43)

• Tolerogenic bone marrow-derived DCs

induced neuroprotective regulatory T cells

(Tregs) (49)

• Circulating myeloid DCs (MDC) and lymphocyte-

like DCs (LDC) in the blood of MS patients

exhibited

• LDC activation enhanced in MS and the

costimulatory molecules expressed on LDC,

mediated a protective response against the viral

trigger of autoimmunity

Natural Killer (NK) Cell • Increased spontaneous release of IFN-γ

and TNF-α from NK cells (55)

• NK cell levels positively associated with the

severity of PD (59)Modulated α-synuclein

pathology (59)

• The level of NK cells in peripheral blood of MS

patients increased (60)

• Conferred both protective and damaging roles in

MS (61)

T Cell • Might act in either protective or damaging

properties (70)

• Promoted hippocampal neurogenesis in

AD mice (71, 72)

• T cell levels down-regulated in peripheral

blood (75)

• Cognitive impairment associated with

higher number of circulating lymphocytes

and dysregulation of Tregs compartment

(76)

• Tregs might exert immunoregulatory

functions through the interaction of the

peripheral and central immune systems

(78, 79)

• MS traditionally recognized as a predominantly T

cell-mediated autoimmune disease (81).

• Higher Th1 and Th17 proportion in MS patients

closely associated with more frequent relapse

and more severe clinical disability (87)

B Cell • Decreased levels of peripheral B cell

subsets detected in AD patients (88)

• Played an essential role on cerebral Aβ

pathology (89, 90)

• Not detected in the brain, while IgG

precipitates found in dopaminergic neurons

and IgG coated in Lewy bodies (91)

• Memory B cell repertoire of PD patients

might represent a potential source for

biomarkers and therapies (92)

• Were discerned in CNS lesions in early to late

stages of MS (93)

• Involved in neuroinflammation of cortical cells,

leading to neuronal death and subpial

demyelination and thus contributing to clinical

progression of MS (94)

antibody specificity is altered by aging. The impairments affecting
B cells during aging are reduction of B cell number and decreased
sensitivity to antigens. Thus, the senescence of B cells affects the
pathological process of neurodegenerative diseases. For example,
the decreased levels of peripheral B cell subsets were detected in
AD patients, which might be associated with the genetic changes
in these cells (88). Furthermore, differences of levels of anti-Aβ

antibodies in serum or cerebrospinal fluid between AD patients
and healthy controls were indicated. These inconsistencies might
be related to the increased binding of anti-Aβ antibodies to Aβ in
AD patients (89, 90). There is growing evidence that a reduced Aβ

pathology was indicated in an amyloid precursor protein (APP)
transgenic mouse model of AD lacking functional B cell. Overall,
these results demonstrated an essential role Of B cells on cerebral
Aβ pathology.

Additionally, there are several types of receptors on the surface
of B cell membranes, which express IgM, IgD, IgG, IgA, and IgE.

These immunoglobulins were important characteristic markers
for B cells and bound to the corresponding receptors on immune
cells to present different functions. In PD patients, B cells were
not detected in the brains, while IgG precipitates were found
in dopaminergic neurons and IgG coated in Lewy bodies (91).
Although the exact specificity of the transferred IgG antibody was
not defined, previous studies confirmed that in passive transfer
experiments, a large amount of IgG derived from PD patients
caused the gradual loss of selective dopaminergic neurons.
Importantly, detection of cell levels in the serum of PD patients
demonstrated that the decrease in CD4+ Th cells and CD19+

B cells was worsened with the increased clinical severity (99–
101). On the other hand, through interrogating peripheral IgG+

memory B cells from PD patients for reactivity to α-syn, naturally
occurring antibodies derived from PD patients suppressed α-
syn seeding in vitro and recognized Lewy pathology. This
finding suggests that the memory B cell repertoire of PD
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patients might represent a potential source for biomarkers and
therapies (92).

What’s more, B cells could be discerned in CNS lesions in
early to late stages of MS and most B cells were confined to the
perivascular space (93). B cells in MS were verified to display
a pro-inflammatory cytokine profile. Furthermore, in human
cytomegalovirus (HCMV)-encoded antigens in patients with
MS, B cells from HCMV(–) MS patients induced an enhanced
pro-inflammatory profile compared to HCMV(+) MS cases,
suggesting that persistent HCMV infection might reduce the
inflammatory responses of B cells in MS (102). Besides, injection
of TNF+ IFN-γ viral vectors elicited extensive B cells and
macrophages infiltration in the meninges. These results implied
that B cells could activate TNF signaling pathways in cortical cells
leading to neuronal death and subpial demyelination and thus
contribute to clinical progression of MS (94). Furthermore, B cell
activation inhibitors inhibited the release of pro-inflammatory
factors and impaired the capacity of B cells to act as APCs
for the development of encephalitogenic T cells, resulting in
selectively interfering with MS (103). In addition, anti-CD20-
mediated B cell depletion effectively reduced acute MS flares.
Currently, all approved MS disease-modifying therapies altered
the frequency, phenotype or homing of B cells in one way
or another. The importance of this action has been enhanced
by the successful development and clinical testing of B cell-
depleting monoclonal antibodies targeting the CD20 surface
antigen (104). In addition, peripheral CD19+ B cells counts and
infusion intervals were verified as a surrogate for long-term B
cell depleting therapy in MS (105). Together, B cell-directed
therapy in MS could be possibly advanced by integrating the

emerging information on B cell regulation in MS into future
therapeutic avenues.

CONCLUSION

At present, as shown in Table 1, our understanding of the
interaction between peripheral inflammatory mechanisms and
neurodegenerative diseases and mutual regulation progressed
greatly over decades. Peripheral immune cells are essential but
not sufficient to cause neurodegenerative diseases. Additional
triggers are clearly necessary for disease onset. Although
enormous progress on the etiology of neurodegenerative diseases
has been made, further critical investigation is warranted. The
dynamic modulation of these peripheral inflammatory reactions
by targeting peripheral immune cells might become a disease-
modifying therapeutic strategy for neurodegenerative diseases.
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