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ABSTRACT Epstein-Barr virus (EBV) is convincingly associated with gastric cancer,
nasopharyngeal carcinoma, and certain lymphomas, but its role in other cancer
types remains controversial. To test the hypothesis that there are additional can-
cer types with high prevalence of EBV, we determined EBV viral expression in all the
Cancer Genome Atlas Project (TCGA) mRNA sequencing (mRNA-seq) samples (n �

10,396) from 32 different tumor types. We found that EBV was present in gastric ad-
enocarcinoma and lymphoma, as expected, and was also present in �5% of samples
in 10 additional tumor types. For most samples, EBV transcript levels were low,
which suggests that EBV was likely present due to infected infiltrating B cells. In or-
der to determine if there was a difference in the B-cell populations, we assembled
B-cell receptors for each sample and found B-cell receptor abundance (P � 1.4 �

10�20) and diversity (P � 8.3 � 10�27) were significantly higher in EBV-positive sam-
ples. Moreover, diversity was independent of B-cell abundance, suggesting that the
presence of EBV was associated with an increased and altered B-cell population.

IMPORTANCE Around 20% of human cancers are associated with viruses. Epstein-
Barr virus (EBV) contributes to gastric cancer, nasopharyngeal carcinoma, and certain
lymphomas, but its role in other cancer types remains controversial. We assessed the
prevalence of EBV in RNA-seq from 32 tumor types in the Cancer Genome Atlas
Project (TCGA) and found EBV to be present in �5% of samples in 12 tumor types.
EBV infects epithelial cells and B cells and in B cells causes proliferation. We hypoth-
esized that the low expression of EBV in most of the tumor types was due to infil-
tration of B cells into the tumor. The increase in B-cell abundance and diversity in
subjects where EBV was detected in the tumors strengthens this hypothesis. Overall,
we found that EBV was associated with an increased and altered immune response.
This result is not evidence of causality, but a potential novel biomarker for tumor
immune status.
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Approximately 20% of human cancers are associated with infectious agents (1),
many with DNA tumor viruses. Simply finding DNA sequences or evidence of viral

transcription in a given tumor does not necessarily mean that the virus contributes
mechanistically to tumorigenesis. That determination requires fulfilling Koch’s postu-
lates or their modern, genomic-based equivalents (2). Examples of overinterpreted
reports abound, many due to laboratory contaminations (3), as in the case of simian
virus 40 (SV40) (4), xenotropic murine leukemia virus-related virus (5), or the finding of
HeLa cell-resident human papillomavirus type 18 in non-cervical cancer Cancer Ge-
nome Atlas Project (TCGA) mRNA sequencing (mRNA-seq) data (6, 7). This led to very
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stringent criteria, such as requiring at minimum 1,000 bp of combined genome cover-
age or �1,000 individual reads/sample. We hypothesized that the tumor represents a
specialized environment within the body, which may selectively attract, retain, and/or
foster localized replication of viruses and of virus-infected cells, even if these viruses did
not have a causal role in tumor development. These would be present at low levels.
Accordingly, it is important to view the results presented here not as evidence for
causality, but as potentially novel biomarkers with clinical implications.

Epstein-Barr virus (EBV) is a human herpesvirus, and like the other seven human
herpesviruses, EBV establishes lifelong persistence in the human host, a state that is
termed latency. Over 90% of adults are infected with EBV by age 50, and at any given
time, a third of seropositive persons shed infectious virus in saliva (8). Once infected, the
EBV genome is continuously present in circulating CD38-positive memory B cells (9).
During this state, no or only a very few viral mRNAs are transcribed. Spontaneous
mononucleosis or immunodeficiency-associated reactivation events result in amplifi-
cation of EBV-infected cells and extended mRNA transcription. De novo B-cell and
epithelial cell infection are associated with widespread, promiscuous transcription
across the entire �172,000-bp viral genome. Unlike the other human herpesviruses,
except for human herpesvirus 8 (Kaposi sarcoma-associated herpesvirus), EBV is
strongly associated with cancer and able to transform primary human B cells in culture.
There exists sufficient evidence to associate EBV infection with Burkitt lymphoma (BL),
Hodgkin’s disease (HD), posttransplant lymphoproliferative disease (PTLD), and rare
forms of non-Hodgkin’s lymphoma, such as those localized to the central nervous
system in AIDS patients (AIDS-CNS lymphoma) (1). These cancers originate from B cells,
and the virus is present at multiple copies in every tumor cell. The exception is HD,
where only a fraction of the proliferative compartment, the Reed-Sternberg cell, is EBV
positive. HD is one example of a cancer that is convincingly and causally virus
associated, yet the virus is present in only a fraction of the cells in the lesion. In addition,
EBV is associated with the epithelial cancers nasopharyngeal carcinoma (NPC) and
gastric cancer. Here again, the EBV genome and EBV mRNAs are found in every single
tumor cell. Because cancers are a heterogeneous group of diseases, the EBV association
ranges from �90% in AIDS-CNS lymphoma to approximately 10% in gastric cancer (10).
Furthermore, many associations depend on geographic locale. For instance, most cases
of EBV-positive NPC are observed in southern China and among the Inuit in the Arctic
(11).

In addition to these bona fide associations, which are verified by multiple, indepen-
dent epidemiological studies, EBV DNA, protein, and RNAs have been found in the
biopsy material of many other cancers. In the case of breast cancers, discordant results
“for” and “against” the presence of EBV in a given tumor have been published (12, 13).
In these cases, it is unclear if (i) EBV contributes mechanistically to tumor development,
(ii) is a “passenger” virus due to the presence of infected, infiltrating B cells, or (iii)
represents isolated instances of local abortive infection. To more broadly explore the
association between EBV and cancers of different lineages, we queried the entire TCGA
mRNA-seq data set, representing 10,396 cancer cases, for the presence of EBV tran-
scripts.

RESULTS
Epstein-Barr virus is present in many tumor types. To detect viruses from

RNA-seq data, we used VirDetect, software based on the principles of digital subtraction
(14). We deployed the algorithm on the Google Compute platform. We developed
VirDetect for two reasons: (i) we could not find public work flows for detection of many
viruses at once, and (ii) many of the published work flows require manual curation after
alignment due to poor specificity. The poor specificity is caused by the areas of low
complexity and human homology found in some viral genomes. The added value of
VirDetect is the masked genome, which leads to very few false-positive alignments. To
test VirDetect’s ability to detect selected viruses, we simulated random reads from EBV
and four other viruses from different genomic classes (see Fig. S1 in the supplemental
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material). We estimated the false-positive rate as 0% and the false-negative rate as 8%
for EBV: i.e., 8% of reads drawn from EBV did not realign back to an EBV genome as
masked by VirDetect. These represent repeat and/or low-complexity regions that are
present in the virus.

We used VirDetect to query all mRNA-seq samples from the TCGA (n � 10,396
samples, 32 tumor types) for evidence of transcripts originating from any of 1,894
vertebrate viruses. EBV was present in at least some samples among most tumor types,
and present in �10 samples in 13 tumor types (Fig. 1A). We required a minimum of 10
samples per tumor type for exploratory association analyses; further analyses focused
only on these tumor types. The EBV mRNA-positive (EBV�) tumor types included
stomach cancer (STAD) and diffuse large B-cell lymphoma (DLBCL), as expected. The
remaining tumor types were breast, bladder, cervical, colon, esophageal, head and
neck, liver, lung (both adenocarcinoma and squamous cell carcinoma), rectal, and skin
cutaneous melanoma. As a positive control, we used human endogenous retrovirus
transcription (HERV-K group) mRNA, which was detected in every sample (15).

EBV was present in only a few DLBCL samples, as the TCGA data set is comprised
largely of sporadic DLBCL and contains very few pediatric Burkitt, CNS, or HIV-
associated DLBCLs. In one striking case, EBV-mapped read counts peaked at over
100,000 reads, which amounted to 0.5% of all mapped reads for this sample (Fig. 1B).
EBV was detected in 45% of STAD samples. The expression of EBV in STAD was bimodal,
with two populations (a) ranging from 2 to 200 and (b) 1,000 to 100,000 counts (Fig. 1B

FIG 1 EBV prevalence and abundance in 10,396 (n) human tumors. (A) Bar plot of the percentage of samples with EBV mRNA (at least one paired-end read
that aligned to the EBV genome) for all TCGA tumor types. Dark gray indictates that tumor type had at least 10 samples with EBV mRNA; light gray indicates
there were �10 samples. The number before each bar is the number of samples in each cohort. (B) EBV expression (log10 [raw EBV counts]) for tumor types
with at least 10 subjects with EBV expression. Boxes represent median 	 interquartile range and whiskers median 	 1.5� interquartile range. The color of the
box represents if the tumor type was determined by WHO to be associated with EBV (blue) or not (black). The color of the dot represents EBV transcript level
(gray, �10; yellow, 10 to 100; orange, 100 to 1,000; red, �1,000. (C) Density distribution for all tumor types except gastric cancer (STAD [gray]), colon, rectal,
and esophageal combined (black), and STAD (purple). Note the pronounced bimodal distribution of EBV read count for STAD.
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and C). STAD samples with the higher range of EBV expression were independently
determined as belonging to the EBV molecular subtype (see Fig. S2 in the supplemental
material) (16). For these, we expect that EBV was present in the epithelial lineage tumor
cell itself. EBV expression in the lower range, which was predominant among all other
positive cancer types, may be due to infiltrating B cells, as previously described by Ryan
et al. (10) for gastric adenocarcinoma samples.

Esophageal carcinoma had the second highest percentage of samples with EBV
mRNAs (40%), which may be due to some of the samples being in anatomical proximity
to the stomach and occasionally indistinguishable from gastric cancer samples (17, 18).
The esophageal carcinoma samples collected from the junction between the esopha-
gus and the stomach were significantly enriched for EBV� samples compared to
samples from other esophageal anatomical sites (chi-square test, P � 0.0004 [see
Fig. S3 in the supplemental material]) and were among the “high” read class (red in
Fig. 1B). EBV mRNA was also present in colon and rectal cancers at elevated frequencies,
but with low read counts. These broad tumor types—stomach, esophageal, colon, and
rectal— have a commonality in that each was from a digestive gastrointestinal organ.

A number of TCGA samples had adjacent nontumor material available from the
same patient. Nine of 13 tumor types had �10 samples with matched adjacent tissue.
Among this set of matched samples, EBV expression was enriched in the tumor overall
(chi-square test, P � 6.6 � 10�8) and increased individually in most tumor types (see
Fig. S4 in the supplemental material). Observing an enrichment in tumor tissue com-
pared to nontumor tissue is consistent with the hypotheses that EBV (i) was present
in the tumor cell itself or (ii) was present due to infiltrating B cells. Observing an
enrichment is inconsistent with the hypothesis of random sample contamination. B
cells should not be present at large amounts in nonlymphatic and noncancerous tissue,
unless there is an infection, but B cells may be abundant in tumors due to increased
angiogenesis or the immune response to the tumor.

Epstein-Barr virus is associated with B-cell signatures. To formally test the hypoth-
esis that EBV positivity was associated with a specific tumor resident or infiltrating cell
type, we tested if any gene expression module (a group of correlated genes, summa-
rized by a single value [19]) was differentially expressed between EBV� and EBV�

samples. Eighty out of 485 gene expression modules tested were significantly differ-
entially expressed (Mann-Whitney U test, q � 0.01, after false-discovery rate [FDR]
adjustment by the Benjamini-Hochberg procedure) in at least one tumor type and 43
in two or more tumor types (Fig. 2A). Most of the modules were immune related, such
as natural killer (NK) and B- and T-cell modules (all upregulated in EBV� samples),
consistent with the hypothesis that infiltrating immune cells are the carrier of the EBV
signal. Other modules were tumor or inflammation related, such as P53 and STAT3. In
9/13 (69%) tumor types, B-cell-associated modules were significantly differentially
expressed (maximum q value of �0.01 across these tumor types).

The B-cell gene expression module had significantly higher median expression in
EBV� samples compared to EBV� samples in 11/13 (84%) tumor types (linear regression
conditioning on tumor type, P � 2 � 10�16) (Fig. 2B). As expected B-cell gene expres-
sion was not increased in EBV� stomach cancer, as the virus resides in epithelial cells
(Fig. 2B, orange). Also, as expected, DLBCL did not show an increase in B-cell gene
expression, since by definition all DLBCLs are of a B-cell lineage. As a control, we
evaluated the association between B-cell gene expression and human cytomegalovirus
(HCMV/HHV5), a ubiquitous herpesvirus of comparable genome size. There was no
significant association with the presence of this virus and B-cell gene expression, except
in bladder cancer (unadjusted P value of �0.02 by Mann-Whitney U test, FDR-adjusted
q value of �0.17) (Fig. 2B). The association between the B-cell gene expression and
HCMV in bladder cancer is consistent with the biology of HCMV. Whereas there is not
enough evidence to establish a direct connection between HCMV and bladder cancer,
one would expect to find HCMV in bladder tissue, as this herpesvirus, unlike EBV, is
transmitted to a large degree by urine and shed continuously throughout life (20).
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Among the tumor types, melanoma and liver cancer had the greatest increase of the
B-cell gene expression module in EBV� samples compared to EBV� samples.

Memory B-cell phenotype is enriched in tumor samples with Epstein-Barr virus.
EBV establishes latency in memory B cells, and at any given time, a percentage of
EBV-positive CD20� IgD� CD38� memory B cells are circulating in the blood (9). In
contrast, active EBV replication/reactivation induces a B-cell blast phenotype and
results in the de novo infection of naive B and epithelial cells. To test the hypothesis that
memory B cells were enriched in EBV� tumors, we used machine learning to build a
classifier from previously published transcription profiles of sorted human B cells

FIG 2 EBV presence is associated with altered gene expression. (A, B, and C) Tumor types with �10 EBV� samples are included. (A) Differential expression of
gene expression module heat map for samples with and without expression of EBV. The color of the tile represents –log10 (FDR-adjusted P value) determined
by Mann-Whitney U test. If the P value is �0.01, then it is colored from yellow to red to black: otherwise the tile is white. The modules included have at least
two cancer types with a corrected Q value of �0.01. (B) Median expression of B-cell gene expression module for each tumor type, separated by expression status
(“With virus”) or no expression (“No virus”) of virus (either EBV or CMV), normalized to 1 for no virus. Each tumor type is represented by a different color. The
top panel shows results for EBV, and the bottom panel shows results for CMV. (C) Stacked proportional bar plot separated by EBV expression (EBV�) or no EBV
expression (EBV�) for each tumor type. Color represents the classification for BAGS (see methods), either memory or other B-cell types. Asterisks indicate
nominal significant enrichment of a classification determined using chi-square test: *, P � 0.05; ****, P � 0.001.
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(GSE56315) (21). The B-cell transcriptional profiles were divided into memory, centro-
blast, centrocyte, plasmablast, and naive B-cell types. We classified all the tumor
samples according to which cell type had the greatest similarity by expression using
distance-weighted discrimination (22, 23). Using a generalized linear model and ad-
justing for tumor type, we found that the assigned memory phenotype probability was
significantly higher (P � 4.1 � 10�7), while the naive, nonactivated, phenotype was
significantly lower in the EBV� samples (P � 1.1 � 10�12) (Table 1). Assessing each of
the 13 tumor types individually, we found that EBV-positive samples were enriched in
the memory B-cell phenotype in 6/13 (46%) tumor types by chi-square test (P � 0.05)
(Fig. 2C). This observation is consistent with the hypothesis that the tumor-associated
EBV signal stems from tumor-infiltrating, perhaps activated, memory B cells rather than
naive B cells.

Epstein-Barr virus is associated with increased B-cell diversity. EBV infection is
known to induce cell proliferation and expansion of the infected B cells. Hence, one
would expect that a reactivation or de novo infection event would lead to a change in
B-cell diversity. To assess B-cell diversity in EBV� tumor samples, we assembled B-cell
receptors (BCRs) using V’DJer (24) and calculated diversity using Shannon entropy. The
discussed BCRs are from heavy-chain IgG, which is the chain associated with an
activated B-cell response (naive B cells bear IgD or IgM isotypes). Using linear regres-
sion, conditioning on the 13 tumor types with more than 10 EBV samples, we found
that samples with EBV had (i) significantly increased total BCR counts (P � 1.4 � 10�20)
and (ii) higher BCR diversity (P � 8.3 � 10�27). We also tested each cancer type
individually, using the Mann-Whitney U test. As expected, DLBCL, which is a monoclo-
nal cancer of B cells, exhibited the lowest diversity (median � 0.29) and had no
difference between samples by EBV status (Fig. 3A). In contrast, stomach cancer
exhibited the highest diversity and had a significant enrichment of diversity in EBV�

samples (P � 0.001) (Fig. 3A). Most tumor types had higher BCR abundance as well as
BCR diversity in the EBV� samples.

Shannon entropy is a composite measure of both species evenness and abundance.
To determine if Shannon entropy was only higher due to its dependence on abun-
dance, or whether there was truly a diversity difference in samples with EBV expression,
we tested a model conditioning on all 13 cancer types together as well as counts and
found that diversity was still significant after conditioning on counts (P � 3.61 � 10�14

by linear regression) (Fig. 3B). In particular, melanoma, lung adenocarcinoma, head and
neck cancers, and bladder urothelial carcinoma were significantly associated with
diversity after first conditioning on counts (P � 0.01, 0.004, 0.009, and 0.009, respec-
tively).

We assessed if the presence of any other virus was associated with BCR abundance
and diversity and found that only EBV was associated with these two parameters (see
Fig. S5 in the supplemental material); however, as most of the other viruses were not
as prevalent as EBV, we had less power to detect such an association. These data are
consistent with enrichment of class-switched, polyclonal B cells in EBV� tumor samples.

DISCUSSION

We affirmed an association of EBV with DLBCL and a subset of gastric cancer (18, 25).
In the case of esophageal carcinoma, the detection rate of EBV was associated with

TABLE 1 EBV presence is associated with different B-cell phenotypes

Phenotypea P value Effect size

Centroblast 0.05 �0.43 (�0.85 to 0.00)
Centrocyte 0.02 0.24 (0.04 to 0.45)
Memory 4.1 � 10�7 0.70 (0.42 to 0.96)
Naïve 1.1 � 10�12 �0.59 (�0.75 to �0.43)
Plasmablast 0.14 �0.09 (�0.22 to 0.03)
aShown are the P value and effect size from a generalized model with EBV status and cancer type as the
predictor and logit transformation of the B-cell phenotype probabilities as the outcome.
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proximity to the stomach. As recently reported, it is difficult to distinguish some
esophageal from gastric tumors (16, 17). EBV is ubiquitous in the adult population (26).
EBV genomes are detectable in 0.004 to 0.01% of mononuclear cells in a healthy human
(9). It is thus not surprising that we detected low-level EBV transcription in many
samples. This likely stems from infiltrating B cells that carry EBV, as we observed an
association between the overall B-cell expression signature and the presence of EBV.

In addition to EBV, other herpesviruses are also ubiquitous in the human population,
such as HCMV/HHV5. We observed evidence of HHV5 transcription in a number of
samples. Yet, HHV5 was not associated with B-cell gene expression, consistent with
HHV5 establishing latency in myeloid progenitors and replicating in endothelial cells,
but not B cells (27, 28).

In several tumor types, B-cell diversity was significantly increased even after first
conditioning on B-cell content. This observation argues against selective retention or
local expansion of a singular, EBV-infected clone. In a few tumor types, either EBV
positivity alone or added as an interacting factor was associated with survival; however,
we had limited confidence in these results due to the heterogeneity of how TCGA
clinical data were collected and the heterogeneity of treatment of the cancer within a
cohort. Nevertheless, it is easy and economical to test for EBV-specific transcripts in
tumor biopsy specimens. Such a test may have utility as a predictive or prognostic
biomarker. Examples for its use can be found in posttransplant lymphoproliferative
disease, other types of EBV� lymphoma (29–31), and NPC (32).

This study is an attempt to use systems biology to relate viral infections to immune
responses as defined by transcript patterns, cell-type signatures, BCR diversity, and
histopathology, such as inflammation and cancer immunotherapy. Immune signatures
have been heralded as an assumption-free method of diagnosis driven by advances in
machine learning, including many studies based on BCR diversity (33).The current data
set was extremely heterogenous. This study could not decide whether EBV was first and
inflammation and inflammatory cell (B, T, and NK) influx were second, or whether
EBV-infected B cells were the result of tumor-associated inflammation, which attracted
EBV-positive as well as EBV-negative B cells and led to EBV reactivation. Those insights
are more likely to emerge in studies on specific tumors and populations: e.g., upper
gastric carcinomas or response to immune modulatory therapy (34).

This study analyzed one of the most comprehensive mRNA-seq data sets to date to
query the status of human viruses in cancer, both in terms of tumor diversity and total

FIG 3 EBV� samples have increased B-cell receptor diversity. (A and B) Boxes represent median 	 interquartile range and whiskers median 	 1.5� interquartile
range. White indicates EBV-positive and gray EBV-negative samples. The tumor types included have EBV expression in �10 subjects. (A) Box plots displaying
Shannon entropy. (B) Plotted residuals from a generalized linear model with cancer types as the predictor and Shannon entropy as the outcome. *, P � 0.05;
**, P � 0.01; ***, P � 0.001; ****, P � 0.001. Outliers are not present.
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number of samples and reads. Prior studies had looked at the presence or absence of
viruses in subsets of the TCGA (35–38) or across the general population (39) and thus
had less power to detect possible virus-tumor associations. We used a variant of digital
subtraction on RNA-seq data (14), thus requiring that viral mRNAs or long noncoding
RNAs (lncRNAs) were expressed. This data set does not capture microRNAs. Digital
subtraction and variations thereof represent the most widely used approach to “hunt”
for viruses in sequencing data (40, 41) and have been credited with the detection of
Merkel cell polyomavirus, among others (42). It has been validated for the detection of
EBV in cell lines and other samples (39, 43, 44). We improved on the previous iterations
of digital subtraction by first masking areas of low complexity and human homology.
This masking step led to almost complete specificity. Hence, a less conservative
threshold could be applied to identify EBV-positive samples than before. While this
increased sensitivity is not necessarily supportive of establishing virus-tumor associa-
tions, it allows, for the first time exploration of an association between the presence of
a virus (only EBV was found) and immune signatures of tumor-infiltrating cells.

As these were existing RNA-seq data, rather than biological specimens, we were not
able to enrich for viral sequences by biochemical means prior to sequencing as in other
studies using local patient cohorts (45–47). Thus, the sequencing depth of the original
sample and the level of viral mRNAs limit this study’s sensitivity. In the context of cancer
biology, this could be considered a strength and measure of specificity, as one would
expect human oncoviruses to transcribe copious amounts of at least one of their
oncogenes or oncogenic RNAs.

Because of the biology of human tumor viruses, this approach differs from broad
metagenomic surveys (48)— e.g., of environmental samples or of diseases caused by
acutely replicating viruses. Metagenomics is the description of all genome sequences
within a sample and based on the assumption that multiple species coexist and all have
some bearing on the necessarily composite phenotype. In contrast, of all viral tumors
described to date, only a single virus—in fact a single strain or clonal integration
event—is found in high abundance in the tumor biopsy specimen, and that virus
transcribes a defined set of viral oncogenes, may they be protein-coding or noncoding
RNAs. (The exception here is cancers caused by retroviral integration, where the virus
induced the aberrant expression of human, but not viral, oncogenes [49].) EBV may be
the one human virus most useful to evaluate with regard to tumor immune status.

MATERIALS AND METHODS
Virus detection, VirDetect. VirDetect is available at https://github.com/dmarron/virdetect. RNA-seq

reads were aligned to hg38 (without chrEBV) using STAR v2.4.2a (1,080 multi-maps, 10 mismatches).
Unmapped reads were next aligned to a masked viral FASTA using STAR v2.4.2a (52 multi-maps, 5
mismatches). Vertebrate viral FASTA (1,894 viruses) was downloaded from GenBank. Viral FASTA was
masked for increased specificity. Regions were masked in two ways. (i) Viral reads of length 75 were
simulated from the entire viral FASTA and then mapped to hg38 using STAR v2.4.2a (1,080 multi-maps,
5 mismatches). If the virus simulated reads mapped to the human genome, they were masked in the viral
FASTA. (ii) Areas of low complexity (9 or more repeating single nucleotides, 7 or more repeating double
nucleotides, 4 or more repeating nucleotide patterns of 3, 3 or more repeating nucleotide patterns of 4,
2 or more repeating patterns of 5, or 2 or more repeating nucleotide patterns of 5) were masked. Viruses
were then quantified using the resultant SAM file.

In silico simulations. Simulations were created using in-house scripts. A simulated sample was com-
prised of 1,000 50-bp paired-end reads randomly chosen (with replacement) from the genomes of 5 different
viruses: NC_002549.1 (Ebola), NC_001802.1 (HIV-1), NC_001475.2 (dengue virus 3), NC_007605.1 (EBV),
and NC_001716.2 (herpesvirus 7). For each virus, 100 samples were simulated.

Computing gene expression modules. Gene expression modules are groups of highly correlated
genes together in a “module” (50). Each module was computed by Z-scaling each of the genes and then
taking the median of value of the scaled genes.

Assembly of B-cell receptors. B-cell receptor repertoires were assembled for the immunoglobulin
heavy chain across all TCGA mRNA-seq samples using V’DJer as described by Mose et al. (24).

B-cell-type classification. BAGS classifier (GSE56315) was built using linear distance-weighted
discrimination (dwdLinear from the R package Caret) of genes with a standard deviation of log2-
transformed RNA-seq of �0.2. The classification subtype of each sample was called by the subclassifi-
cation with the highest probability.

Statistical analysis. All statistical analyses and plots were generated using R. Kaplan-Meier plots and
Cox proportional hazards regression models were implemented using the R package survival. The R
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packages used for analyses were stats, plyr, reshape2, doMC, and caret. The R packages used for
generating plots are ggplot2 and survival.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00081-18.
FIG S1, TIF file, 0.1 MB.
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