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Evidence that duplications of 22q11.2 protect against
schizophrenia
E Rees1, G Kirov1, A Sanders2,3, JTR Walters1, KD Chambert4, J Shi5, J Szatkiewicz6, C O’Dushlaine4, AL Richards1, EK Green1,7, I Jones1,
G Davies1, SE Legge1, JL Moran4, C Pato8, M Pato8, G Genovese4, D Levinson9, J Duan2,3, W Moy2, HHH Göring10, D Morris11,
P Cormican11, KS Kendler12, FA O’Neill13, B Riley12, M Gill11, A Corvin11, Wellcome Trust Case Control Consortium19, N Craddock1,
P Sklar14, C Hultman15, PF Sullivan16,17,18, PV Gejman2,3, SA McCarroll4, MC O’Donovan1 and MJ Owen1

A number of large, rare copy number variants (CNVs) are deleterious for neurodevelopmental disorders, but large, rare, protective
CNVs have not been reported for such phenotypes. Here we show in a CNV analysis of 47 005 individuals, the largest CNV analysis
of schizophrenia to date, that large duplications (1.5–3.0 Mb) at 22q11.2—the reciprocal of the well-known, risk-inducing deletion of
this locus—are substantially less common in schizophrenia cases than in the general population (0.014% vs 0.085%, OR¼ 0.17,
P¼ 0.00086). 22q11.2 duplications represent the first putative protective mutation for schizophrenia.
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Large, rare copy number variants (CNVs) at several genomic loci
increase risk for schizophrenia and other neurodevelopmental
disorders including intellectual disability (ID), autism spectrum
disorders and attention-deficit hyperactivity disorder.1,2 The first
CNV to be unequivocally implicated in schizophrenia was the
22q11.2 deletion, which also causes most cases of DiGeorge and
Velocardiofacial Syndromes (OMIM #188400 and #192430).3 The
22q11.2 deletion is estimated to occur in about 1 in 4000 live
births4, and is one of the most common CNVs associated with ID.1

It is also the strongest known specific risk factor for developing
schizophrenia in adulthood.5,6 22q11.2del is also associated with
psychiatric problems in childhood such as attention-deficit
hyperactivity disorder, autism, depression and anxiety as well as
a range of physical phenotypes.7

CNVs arise at this locus from non-allelic homologous recombi-
nation between low copy repeats8 and, as a result, the deletions
occur in a set of low copy repeat-dependent sizes, the majority
being about 3 Mb, and most of the remainder (o10%) being
nested deletions of 1.5 Mb within that region.9 Even among those
with the same sized CNV, the phenotype of 22q11.2del carriers is
highly heterogeneous with respect to physical, psychiatric and
cognitive sequelae,9 suggesting the involvement of other genetic,
environmental or stochastic factors.

Given the non-allelic homologous recombination mechanism
by which deletions are produced, it is not surprising that
reciprocal 22q11.2 duplications also arise in human populations,10

although to date fewer such events have been ascertained. There
are several reports that the phenotypic spectrum of 22q11.2dup
is wide, including apparently unaffected transmitting parents.11,12

As well as having a variety of physical manifestations, 22q11.2dup
is reported to associate with ID and developmental delay in
children1,12,13 and a wide range of psychiatric and beha-
vioral abnormalities have been reported including attention-
deficit hyperactivity disorder and autism, as well as other social
and behavioral problems.1,12,14 The prevalence of the dupli-
cation in adults with psychiatric disorders has not been widely
studied.

In the present study, we have established the rate of
22q11.2dup in a discovery sample of 6882 schizophrenia cases
and 11 255 controls. The schizophrenia cases were genotyped on
Illumina HumanOmniExpress-12v1 or HumanOmniExpressExome-
8v1 arrays, and have been described elsewhere15 (Supplementary
Material). The controls were obtained from four non-psychiatric
data sets available through repositories, also genotyped on
Illumina arrays (Supplementary Material). CNVs were detected
using PennCNV.16 The probe set used for CNV calling was

1MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK; 2Department of
Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, IL, USA; 3Department of Psychiatry and Behavioral Sciences, University of Chicago, Chicago, IL,
USA; 4Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, USA; 5Biostatistics Branch, Division of Cancer
Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA; 6Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; 7School of Biomedical and
Biological Sciences, Plymouth University, Plymouth, UK; 8Department of Psychiatry and Behavioral Science, Zilkha Neurogenetic Institute, University of Southern California, Los
Angeles, CA, USA; 9Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; 10Department of Genetics, Texas Biomedical Research Institute, San
Antonio, TX, USA; 11Department of Psychiatry and Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland;
12Department of Psychiatry and Human Genetics, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA; 13Department
of Psychiatry, Queen’s University, Belfast, Northern Ireland; 14Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY,
USA; 15Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Karolinska, Sweden; 16Department of Genetics, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA; 17Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden and 18Department of Psychiatry, University of North
Carolina at Chapel Hill, Chapel Hill, NC, USA. Correspondence: Professor MJ Owen or Professor MC O’Donovan, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute
of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building Maindy Road, Cardiff CF24 4HQ, UK.
E-mail: OwenMJ@cf.ac.uk or ODonovanMC@cf.ac.uk
19Wellcome Trust Case Control Consortium 2 Affiliations are provided in the Supplementary Material.
Received 3 May 2013; revised 3 September 2013; accepted 25 September 2013; published online 12 November 2013

Molecular Psychiatry (2014) 19, 37–40
& 2014 Macmillan Publishers Limited All rights reserved 1359-4184/14

www.nature.com/mp

http://dx.doi.org/10.1038/mp.2013.156
mailto:OwenMJ@cf.ac.uk
mailto:ODonovanMC@cf.ac.uk
http://www.nature.com/mp


restricted to those common to all arrays used (520 766 probes).
Full details of CNV calling and quality control are provided in the
Supplementary Material. It should be noted that CNVs larger than
1 Mb are readily called with essentially perfect sensitivity by
PennCNV on almost any SNP genotyping array. Significance of
association was evaluated using a Fisher’s exact test or a Cochran–
Mantel–Haenszel test stratified by ethnicity and study. We also
used RNAseq to determine the mRNA abundance in lymphoblas-
toid cell lines for 31 genes across the 22q11.2 CNV region
(chr22:18 893 541–21 901 736, hg19) and genes 3 Mb either side,
in 16 carriers of 22q11.21del, 6 carriers of 22q11.2dup and 821
individuals without a CNV at this locus.

In our discovery sample, we found no 22q11.2 duplications in
schizophrenia cases (0%) but 10 (0.089%) in controls (Figure 1a,
Table 1, Fisher’s exact P¼ 0.017). By way of contrast, we found
reciprocal 22q11.2 deletions (a known strong risk factor) in 20
schizophrenia cases (0.29%) but in zero controls. No other CNV at
any locus in the genome was found to be a putative protective
factor at a nominal level of significance in this sample (data not
shown).

Expression analysis of 22q11.2 deletion and duplication carriers
indicated that the great majority of genes within the CNV region
showed the expected increase or decrease in gene dosage, and
that expression of genes flanking the CNV were not significantly
affected by copy number change (Figure 1b). There have been
relatively few systematic studies of gene expression in human
22q11.2 deletions and none of duplication carriers. Our data are
highly congruent with a transcriptome-wide microarray study of
RNA from untransformed peripheral blood mononuclear cells in
showing significantly reduced expression of genes in the deleted
region17 (further details in Supplementary Material).

In order to critically evaluate the reduced frequency of
22q11.2dup in cases in additional cohorts, we obtained data from
the largest available CNV data sets known to us, in total
comprising 14 256 additional cases and 14 612 additional controls.
In this independent cohort, 22q11.2dups were also significantly
rarer in cases than controls (0.021% vs 0.082%, Fisher’s exact test
P¼ 0.020 and Table 1). A combined analysis of discovery and
replication data found 22q11.2dup in 0.014% of cases and 0.085%
of controls (Fisher’s exact: P¼ 0.00086, Cochran–Mantel–Haenszel:

Figure 1. (a) Location of 22q11.2 duplications in discovery cases and replication cases and controls that cover the 1.5Mb nested region.
(b) Log2 RPKM mRNA abundance for genes in the 22q11 deletion and duplication carriers normalized to diploid subjects. Each gene (their
positions depicted in alternating white or gray bars) has three measurements: deletion carriers, diploid subjects and duplication carriers.
Genes are shown in map order, though their relative position is not drawn to scale. CNV, copy number variant.
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P¼ 0.0019, OR¼ 0.17, 95% confidence interval¼ 0.05–0.56). The
age of onset for the schizophrenia cases carrying the 22q11.2dup
was 34, 28 and 43 years. Two of these cases have a history
of seizures and none of them had any additional known
pathogenic CNVs. Of the controls with a 22q11.2dup for which
we have psychiatric data (n¼ 6 from MGS sample), none had
histories compatible with schizophrenia, schizoaffective disorder
or major affective disorder. All graduated from high school and
several had higher education degrees (confirming the notion that
the duplication has incomplete penetrance for developmental
delay).

Our study therefore identifies as the first putative protective
mutation for schizophrenia duplications of the genomic segment
that, when deleted, is the most potent genetic risk factor for the
disorder. We can discount on several grounds the alternative
explanation that those with 22q11.2dup have such a severe
neurodevelopmental phenotype as to preclude a diagnosis of
schizophrenia. First, as noted above, unaffected carriers are
observed frequently (0.1% of controls across a large number of
studies of psychiatric and non-psychiatric phenotypes). Second,
the highly variable phenotype observed in 22q11.2dup carriers is
often milder than that seen with many other schizophrenia-
associated CNVs, as evidenced by its inheritance from an
apparently unaffected parent in 69–74% of cases.11,12,18,19

Most relevant to the present study, 22q11.2 deletions have
consistently been reported to be associated with severe cognitive
phenotypes such as autism and ID,20 but are seen at an
appreciable rate in schizophrenia cohorts, including in the
current samples (see above). If the duplication resulted in
phenotypes inconsistent with inclusion in studies, we would
expect greater depletion in controls, which are typically screened
for health more intensively than cases, consistent with the finding
of no 22q11 deletions among our controls. Finally, in the genome-
wide analysis of our discovery sample, we also obtained evidence
to support the association of deletions at 1q21.1, NRXN1, 3q29,
15q11.2, 15q13.3, 17q12 and 22q11.2 and duplications at 1q21.1,
Williams–Beuren syndrome region, Prader–Willi/Angleman syn-
drome region, 16p13.11 and 16p11.2.21 These CNVs have all
been associated with a similar range of neurodevelopmental
phenotypes and our findings therefore argue strongly against the
conclusion that our methods of ascertainment precluded the
inclusion of cases carrying 22q11.2dup.

In all, 3 out of the 21 138 cases tested carried the 3 Mb 22q11.2
duplication, indicating that its putative protective effect is
incomplete. However, our data suggest that its strength of effect
may be strong, with an odds ratio less than 0.20 and an upper
confidence limit of 0.56. The three case carriers had no additional
pathogenic CNVs and we must assume that the development of
schizophrenia resulted from other genetic or environmental
factors. It was not possible to identify any particular characteristics
of the cases carrying duplications but given their rarity power to
do so was extremely limited.

To our knowledge, 22q11.2dup is the first putative protective
mutation for schizophrenia that has been described in the
literature. Our study suggests the existence of one or more
dosage-sensitive gene in the duplication with the capacity to
reduce risk of schizophrenia with implications here for further
studies aimed at identifying targets for treating the disorder. This
finding is of additional interest as this mutation does not appear
to be similarly protective against the other neurodevelopmental
phenotypes with which schizophrenia-associated CNVs are
frequently associated.1 The present study in contrast provides a
clear, opposite-direction dissociation between schizophrenia risk
and both ID and autism spectrum disorder, both of which are
more common in 22q11.2dup than in controls (Table 1). Neither
the gene(s) nor the brain mechanisms by which 22q11.2del
confers increased risk of neuropsychiatric and neurodevelopmen-
tal outcomes are known.22 However, that deletions are congruent
in increasing risk of the disorders, whereas duplications
act incongruently, simultaneously protecting against schizo-
phrenia but predisposing to other neurodevelopmental dis-
orders, suggests that at least some of the brain mechanisms are
selective for schizophrenia. Moreover, that schizophrenia risk can
potentially be reduced by a lesion that increases neurodevelop-
mental adversity (indexed by autism spectrum disorder and
ID risk), suggests that the dosage-sensitive gene or genes might
not just point the way to treatment, it may also hold clues to
enhancing resilience among those who would generally be
thought to be of elevated risk of the disorder.

Although large CNVs associate to risk of many disorders, it is
generally unknown whether such effects arise from alterations of
gene dosage or from other mechanisms. The lack (to date) of
point mutations that phenocopy the neurodevelopmental and
psychiatric effects of large deletions has invited alternative

Table 1. Frequencies of 22q11.2 duplications in cases and controls

Study Case 22q11.2dup frequency
(N CNVs/N samples)

Control 22q11.2dup frequency
(N CNVs/N samples)

P value
(Fisher’s exact test)

OR (95% CI)

Discovery 0% (0/6 882) 0.089% (10/11 255) 0.017 (2-Tail)

Replication
MGS EA 0.090% (2/2 215) 0.16% (4/2 556)
MGS AA 0% (0/977) 0.23% (2/881)
ISC 0% (0/3 395) 0.031% (1/3 185)
Irish/WTCCC2 0% (0/1 377) 0.10% (1/992)
African American 0.061% (1/1 637) 0% (0/960)
Swedish 0% (0/4 655) 0.066% (4/6 038)

Total replication 0.021% (3/14 256) 0.082% (12/14 612) 0.020 (1-Tail)
Total discoveryþ replication 0.014% (3/21 138) 0.085% (22/25 867) 0.00086 (2-Tail) 0.17 (0.050–0.56)

Other disorders
ID/DD/CM 0.32% (50/15 767) 0.085% (23/27 133) 5.9� 10–8 (2-Tail) 3.75 (2.29–6.15)
ASD 0.28% (12/4 315) 0.085% (23/27 133) 0.002 (2-Tail) 3.29 (1.63–6.61)

Abbreviations: AA, African American; ASD, autism spectrum disorder; CI, confidence interval; CM, congenital malformations; CNV, copy number variant;
DD, developmental delay; EA, European American; ID, intellectual disability; ISC, International Schizophrenia Consortium; MGS, molecular genetics of
schizophrenia; OR, odds ratio; WTCCC2, Wellcome Trust Case Control Consortium 2. The frequencies found in ID, DD, CM, ASD and their respective controls
were taken from a recent review by Malhotra et al.1
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hypotheses, such as large-scale disruptions of chromatin or
chromosomal pairing. Our finding that the reciprocal deletion
and duplication of the same locus have potent risk and potential
protective effects, respectively, for schizophrenia supports the
hypothesis that one or more genes at 22q11.2 are dosage
sensitive.22 The identification of the dosage-sensitive gene(s) at
22q11.2 and the implication of risk and protective mechanisms is
therefore an important direction for research—particularly as
pharmacological intervention might offer protection from schizo-
phrenia. Our study was limited in its scope to implicate specific
genes and possible mechanisms because CNVs at this locus affect
multiple genes and the three duplications observed in cases of
schizophrenia all involved the whole 3 Mb region. Further genetic
studies on larger samples might inform this issue but it seems
likely that a detailed understanding will only be provided by
mechanistic studies in deletion and duplication carriers and in
animal and cellular models.
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