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Abstract. Epidermal growth factor receptor pathway substrate 8 
(Eps8) was initially identified as the substrate for the kinase 
activity of EGFR, improving the responsiveness of EGF, which 
is involved in cell mitosis, differentiation and other physiological 
functions. Numerous studies over the last decade have demon-
strated that Eps8 is overexpressed in most ubiquitous malignant 
tumours and subsequently binds with its receptor to activate 
multiple signalling pathways. Eps8 not only participates in the 
regulation of malignant phenotypes, such as tumour proliferation, 
invasion, metastasis and drug resistance, but is also related to 
the clinicopathological characteristics and prognosis of patients. 
Therefore, Eps8 is a potential tumour diagnosis and prognostic 
biomarker and even a therapeutic target. This review aimed to 
describe the structural characteristics, role and related molecular 
mechanism of Eps8 in malignant tumours. In addition, the pros-
pect of Eps8 as a target for cancer therapy is examined.
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1. Introduction

Malignant tumours are uncontrolled cell proliferation diseases 
caused by oncogenes and ultimately lead to organ and body 
dysfunction (1). In recent decades, great progress has been 
made in the study of genes and signalling pathways in 
tumorigenesis. Eps8 was identified by Fazioli et al in NIH-3T3 
murine fibroblasts via an approach that allows direct cloning 
of intracellular substrates for receptor tyrosine kinases (RTKs) 
that was designed to study the EGFR signalling pathway. Eps8 
is mainly distributed in epithelial cells and fibroblasts as well 
as in some, but not all, haematopoietic cells located in the cyto-
plasm, nuclear membrane and around the cell membrane (2). As 
a tyrosine kinase receptor, Eps8 maps to human chromosome 
12p12.3 and consists of 821 amino acids (3). In mammals, there 
are at least three genes highly homologous to Eps8, namely 
Eps8L1, Eps8L2, and Eps8L3, and they preserve the main 
structure of Eps8, thus defining a new gene family (4,5). Eps8s 
are expressed differently during development but are typically 
co-expressed in adults (4). Studies have indicated that, at the 
mRNA level, the expression pattern of Eps8 overlaps with 
that of Eps8L2, and their expression is relatively extensive; in 
contrast, Eps8L1 and Eps8L3 displays restricted expression in 
adult tissues (4). Notably, Eps8L1 and Eps8L2, which have the 
highest homology with the C-terminal effect region of Eps8, 
may compensate for Eps8 function in the whole organism (4,5), 
and among them, Eps8 is the only selectively upregulated 
subtype in the brain (6). There are two subtypes of proteins 
recognized by Eps8 antibodies: p97Eps8 and p68Eps8 (2). 
Both of these subtypes are certified as substrates for several 
RTKs (7). The gene encoding p97Eps8 is an oncogene whose 
PH domain is critical for ERK activation, cell localization, 
and cell transformation (7). Furthermore, Eps8 binds to actin 
in vivo and accumulates in PDGF‑induced ruffles (6). In brief, 
Eps8 is an essential protein encoding the Ras and Rac signal-
ling pathways and is effectively phosphorylated by a variety of 
tyrosine kinases (receptor and non-receptor types), resulting in 
actin remodelling (2).

Eps8 is highly conserved and is widely expressed during 
mouse development (8,9). Studies mainly focused on humans 
have confirmed that Eps8 is markedly expressed in diverse 
types of solid tumours (10-23) and even haematological 
malignancies (24‑27) but minimally expressed in normal 
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tissues (Table I). The aberrant expression of Eps8 is related 
to numerous signalling pathways, which affect a series of 
biological processes by regulating various downstream 
cascades, such as EGFR transduction, actin dynamics, cell 
cycle regulation and cell proliferation, and eventually tumours 
tend to undergo malignant transformation (10‑27). In addition, 
Eps8 is also a new pathogenic gene for autosomal recessive 
profound deafness that encodes the actin of cochlear hair cell 
stereocilia (28). In summary, Eps8 potentially represents a 
novel biomarker for cancer diagnosis and a promising candi-
date for cancer therapy.

2. Structure and function of Eps8

Structure of EPS8. The Eps8 amino acid sequence predicted 
by computer-aided analysis reveals a typical signal molecular 
structure. From the N-terminus to the C-terminus, there 
is a phosphate binding protein (PTB) region, proline-rich 
sequences and SH3 region, stereo alpha-pointed (SAM-PNT) 
domain (5) (Fig. 1). It should be noted that the research on 
the SH3 domain is relatively extensive, and we have a greater 
understanding of this domain.

The SH3 domain is a protein component identified in the 
study of Src. Proteins with this domain recognize peptides 
containing XPXXP via sequence similarity and bind these 
peptides (29). In particular, the SH3 domain of Eps8 exhibits 
a novel and unique binding preference, mainly binding to 
peptides containing PXXDY rather than canonical XPXXP, 
establishing specific interactions in the signal network. 
Notably, the SH3 domain of Eps8 can interact with a 
number of binding partners. When combined with shc (30), 
shb (31), RN-tre (32,33), E3B1 (Abi-1) (32,34), Dvl-1 (35) and 
IRSp53 (36), Rac-mediated actin remodelling is activated; 
however, when combined with RN-tre, Rab5-mediated EGFR 
internalization is inhibited (33).

Proline-rich sequences are well characterised for the 
adaptor protein IRSp53, which is linked to Rho family small 
GTPases and exists in fibroblasts and various cancer cell lines. 
The proline-rich sequence in the N-terminal region directly 
binds to IRSp53 to form a complex. This binding subsequently 
mediates the positive regulation of Rac activity by enhancing 
the formation of the Eps8/Abi‑1/Sos‑1 complex and coacti-
vating Rac. Furthermore, the formation of the IRSp53/Eps8 
complex at the leading edge of motor cells is closely related to 
cell movement and invasiveness (36,37).

The N-terminus contains a functional PTB domain (4), 
which acts as a module for protein-protein interactions, 
connecting the catalytic domain of tyrosine kinase (38), and 
combining different peptides in a phosphorylation-dependent 
or phosphorylation-independent manner. The interaction 
involves different biological processes ranging from types of 
receptor signals to protein localization (39). Nevertheless, no 
binding partner for the PTB domain of Eps8 is yet known.

The SAM-PNT domain belongs to the subfamily of SAM 
domains and mediates the homo‑ and hetero‑oligomerization 
of proteins and the interaction of specific proteins (40). Others 
aspects have not been discovered.

Physiological function of EPS8. A structure-function study 
concluded that Eps8 contains two functional regions. The first 

region discussed is the EGFR binding region, which is rarely 
studied. This region acts as a binding surface for the juxta-
membrane region of EGFR and is connected with mitosis, but 
its mechanism remains unclear (41). It is hypothesized that 
this region may help the recruitment of Eps8 and Eps8-based 
complexes to EGFR, facilitating downstream signal propaga-
tion and mitotic stimulation (42).

The other region is defined as the C‑terminus ‘effector 
region’. First, it regulates Rac‑specific catalytic GEF activity 
by binding SOS‑1, which directly affects filamentous actin 
remodelling (32). Moreover, the localization of Eps8 cells 
is implied by mediating the interaction between Eps8 and 
F-actin in vivo. Consequently, phosphorylation may not only 
participate in the catalytic activation of the Eps8-Abi1-Sos1 
signalling complex but also indicate Eps8 and Eps8-based 
complex localization, thereby mediating the actin‑based move-
ment process in the cells (42,43). Additionally, Eps8 plays a 
pivotal role in membrane flow, the formation of pseudopods, 
the morphogenesis of microvilli, the function and length of 
static cilia, cell adhesion and motility (15).

3. Abnormal expression of Eps8 in malignant tumours 
and tumorigenesis

Eps8 is universally expressed in human tissues, especially in 
the gall bladder, fat, colon, small intestine, kidney, endome-
trium, placenta, ovary and bladder (4,6). Numerous studies 
have demonstrated that Eps8 is unconventionally expressed 
in various tumour types, and high levels of Eps8 promote 
tumour proliferation in breast cancer (11,20), pancreatic 
cancer (13), colon cancer (14), pituitary tumour (16), oesopha-
geal cancer (17), non‑small cell lung cancer (NSCLC) (21), 
and glioblastoma (22). In addition, Eps8 can also improve 
the migration ability of cancer cells, including oral squamous 
cell carcinoma (OSCC) (15) and colon, breast and ovarian 
cancer (12,18,20). Moreover, the aberrant expression of Eps8 
alters the sensitivity of cervical cancer cells to anticancer 
drugs (14) and is closely related to the prognosis of OSCC and 
pancreatic adenocarcinoma (PDAC) (19,23), thus affecting 
the quality of life of patients. Aside from common malignant 
solid tumours, recent research has revealed that Eps8 is also 
aberrantly expressed in malignant haematological tumours; 
similarly, it regulates the development of a series of tumours, 
including acute lymphoblastic leukaemia (ALL) (24), chronic 
myeloid leukaemia (CML) (25), acute myeloid leukaemia 
(AML) (26) and multiple myeloma (MM) (27). Overall, Eps8 
can predict tumorigenesis and even tumour progression. 
Blocking Eps8 can inhibit tumour proliferation, metastasis, 
and drug resistance and improve the overall survival rate of 
tumour patients. Therefore, Eps8 is anticipated to become a 
detection index and a new therapeutic target for malignant 
tumours.

Hyperactivation of intracellular signalling pathways is a 
key driver of numerous cancers. EGF, which is composed of 
a single peptide, is a mitogen of fibroblasts, epithelial cells 
and endothelial cells (44,45). EGF binds specific receptors on 
the cell surface, controls EGFR dimerization, and activates 
tyrosine kinase and receptor trans-autophosphorylation, 
triggering multiple downstream cascades that promote 
cell proliferation (46,47). Potentiation of the proliferative 
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effects of EGF as a result of receptor overexpression and/or 
activation of its tyrosine kinase has long been considered to 
drive carcinogenesis (48). In general, Eps8 overexpression 
confers EGF-dependent mitotic signals (2,30), which bind 
directly to the JXM region of EGFR and are phosphory-
lated. Several intracellular signalling pathways may become 
activated following EGFR stimulation, including inositol 
phosphoinositide 3-OH kinase (PI3K). Phospholipase 
C-γ (PLC γ), activators of transcription (STATS) (49‑51), 
ERK (52), JNK MAP kinases (53) and Src are also activated. 
In addition, the activation of c-jun N terminal kinase in a 
Rac-dependent manner is also mediated by EGFR (54). 

Given that Eps8 mediates important biological processes, 
it is not surprising that it serves as an attractive molecular 
therapeutic target and even a prognostic marker.

4. Role and molecular mechanism of Eps8 in solid tumours

The aberrant expression of Eps8 in most tumours is involved 
in tumour progression; notably, its expression level may 
contribute to tumour proliferation, invasion and metastasis, 
drug resistance and prognosis. Importantly, the mechanisms 
involved are intricate (Fig. 2). Therefore, studying the biolog-
ical significance of Eps8 in solid tumours and its molecular 

Table I. Summary of Eps8 overexpression in human malignant tumours.

  Relative overexpression 
Type of tumour Year value of Eps8 (total no. of cases) (Refs.)

PTC 2001 8 (8) (10) 
Breast cancer  2002  2.77‑fold  (11) 
Colon cancer 2007 47 (76) (12) 
PDAC  2007  4‑fold (13) 
Cervical cancer 2008 45 (75) (14) 
OSCC  2009 >5‑fold (15) 
Pituitary tumour 2009 5.9‑fold (16) 
ESCC 2010 35 (65) (17) 
Ovarian cancer 2010 63.50% (18) 
OSCC 2012 186 (205) (19) 
Breast cancer  2015 60% (20) 
ALL 2015 High risk (24)
CML 2018 50 (91) (25) 
AML  2018 High (26) 
MM 2019 High (27) 
NSCLC 2019 High (21) 
GBM 2019  Significantly higher  (22) 
PDAC 2019  31 (46)  (23) 

The third column of the table: n(total number of tumors investigated), ‘x‑fold’ or ‘high risk’ indicated that a specific value for the number of 
tumors with relative overexpression value of Eps8 was not provided. The binary risk classification of event prediction according to the threshold 
value was determined, and a value above this threshold indicated ‘high risk’ (24). Eps8, epidermal growth factor receptor pathway substrate 
8; PTC, papillary thyroid carcinoma; PDAC, pancreatic ductal adenocarcinoma; OSCC, oral squamous cell carcinoma; ESCC, esophageal 
squamous cell carcinoma; ALL, acute lymphocytic leukemia; CML, chronic myeloid leukemia; AML, acute myeloid leukemia; MM, multiple 
myeloma; NSCLC, non-small cell lung cancer.

Figure 1. Eps8 structure diagram. Computer analysis predicts that human Eps8 is 821 amino acids long, from N-terminal to C-terminal including: A PTB 
region (amino acids: 60‑197), an EGFR‑binding region (amino acids: 298‑362), two proline‑rich sequences (amino acids: 421‑440 and 615‑651), an SH3 
domain (amino acids: 535‑586), a SAM‑PNT domain (amino acids: 709‑783), and an ‘effector region’ (amino acids: 648‑821). The blue bar indicates the 
functional region of Eps8 (38). Eps8, epidermal growth factor receptor pathway substrate 8. 
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mechanisms will facilitate further exploration of cancer 
therapy strategies targeting Eps8.

Role and mechanisms of EPS8 in tumour proliferation
Eps8 regulates tumour proliferation. As early as the begin-
ning of the 21st century, studies emphasized that Eps8 is 
highly expressed in tumour cells (10-20) and can modulate 
proliferation (11,13,14,16,17,20), which ignited the enthusiasm 
of researchers for the ability of Eps8 to regulate the malignant 
phenotype of tumours. In general, the pathways involved in 
regulating proliferation include the mTOR/STAT3/FAK 
pathway and PI3K/AKT pathway.

mTOR/STAT3/FAK signalling pathway and tumour prolifera-
tion. Eps8 determines the expression of downstream factors 
required for cell proliferation, and the expression level of Eps8 
in colorectal cancer can reflect cell proliferation ability. The 
attenuation of Eps8 reduces FAK, an intracellular tyrosine 
kinase that exhibits prominent local adhesion (55,56), and is 
involved in a variety of integrin-induced biological activities, 
including cell migration, growth and survival (57,58). Further 
research revealed that this phenomenon is integrated through 
the mTOR/STAT3 pathway. Eps8 overexpression activates 
mTOR, a proprotein kinase that promotes protein synthesis, 
which subsequently triggers mTOR to induce FAK and 
cyclin D1 expression, leading to tumorigenesis and tumour 
proliferation (12). Similarly, Eps8 and FAK expression trends 
were detected in tumour specimens, especially in advanced 
patients (12). In addition, it has been reported that STAT3 is 
continuously activated in src‑transformed cells (59), and the 
expression of dominant-negative STAT3 markedly abrogates 
src-induced transformation (60,61). Eps8 overexpression 
markedly increases src activity (62,63), and src subsequently 
promotes tyrosine phosphorylation and Eps8 protein synthesis, 
stimulating FAK expression and activity (64). Collectively, 
Eps8 and FAK are important in the process of tumour 
proliferation.

Growth factor and cell proliferation. Continuous proliferation 
signals in cancer cells may be the constitutive activation of 
growth factor receptor mutations or overproduction of growth 
factor in an autocrine manner (65). Therefore, the other 
mechanism of Eps8 involvement in cell proliferation will be 
discussed from these two angles.

The most typical example of growth factor receptor 
activation is the increased expression or activity of various 
RTKs. Growth factors, such as EGF, bind to RTKs; stimulate 
intrinsic protein-tyrosine kinase activity in cells; and 
autophosphorylate several tyrosine residues in the cytoplasmic 
domain of RTKs. Multiple signal transduction cascades are 
initiated, particularly the RAS/MAPK pathway, which induces 
cell proliferation (66,67).

RAS/MAPK signalling affects gene transcription by 
regulating the activity of transcription factors encoded by 
direct early genes and FOXM1, a forkhead box transcription 
factor (68). FOXM1 is a key regulator of the cell cycle process 
factor (69) and plays a pivotal role in cell proliferation (70). 
Notably, FOXM1 and Eps8 are activated by mitosis signals 
and upregulated in cancer. Eps8 enhances the activity of 
the FOXM1 promoter. First, Eps8 is a protein associated 
with FOXM1 that stimulates FOXM1 to upregulate the 
expression of CXCL5, thereby increasing cell proliferation in 
a PI3K/AKT‑dependent manner (43,71). It is worth mentioning 
that Eps8 contains a hypothetical nuclear localization signal 
(NLS), which colocalizes with FOXM1 in the G2/M phase (2). 
The inhibition of CRM1/exportin1‑mediated nuclear output 
enhanced the nuclear translocation of Eps8. In addition, Eps8 
depletion inhibited the expression of FOXM1 and the FOXM1 
target CCNB1 and slowed the G2/M transition in cervical 
cancer cells (72). In conclusion, these findings support the novel 
nuclear partnering role of Eps8 with FOXM1 in regulating cell 
proliferation.

Eps8 is a downstream component of EGF and stimulates 
growth factors (2). Eps8 protein levels and downstream phos-
phorylated ERK are upregulated in human pituitary tumours, 

Figure 2. Role of Eps8 in the regulation of the malignant phenotype of a tumour. Eps8 enhances EGF-dependent mitotic signals with a complex mechanism. 
It binds to its receptor EGFR and activates multiple related signaling pathways, which are involved in the regulation of biological effects such as tumour 
proliferation, apoptosis, migration and metastasis. Eps8, epidermal growth factor receptor pathway substrate 8.
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and Eps8 cells proliferate more strongly under conditions 
full of growth factors and growth restriction (16). Further 
studies demonstrated that epidermal growth factor activated 
robust amplification of ERK and moderate upregulation of 
AKT in Eps8-overexpressing cells (16). Moreover, the inhibi-
tion or silencing of Eps8 by MAPK kinase could weaken the 
proliferation of cells stimulated by growth factor; in addition, 
blocking the PI3K pathway or silencing Eps8 could result in 
the loss of protection of Eps8 against apoptosis induced by 
growth factor depletion, subsequently decreasing cell apop-
tosis. Consequently, the increased expression of Eps8 results 
in an overreaction of the cells to the activation of local growth 
factors. Accordingly, the MAPK pathway is activated through 
ERK, and the PI3K pathway is activated through AKT, finally 
triggering cell proliferation and antiapoptotic responses (16).

FoxO3a/PI3K/AKT signalling pathway and tumour 
proliferation. It is generally considered that Eps8 facilitates 
the EGFR-induced PI3K/AKT pathway and achieves tumour 
growth at least in part by inhibiting FoxO3a (73,74). FoxO3a is a 
well-known downstream transcription factor of the PI3K/AKT 
pathway (74) and is essential for differentiation (75). Recent 
studies on NSCLC have revealed that the Eps8 expression 
level is greatly increased in both cells and tissues (21). The 
mechanism is that Eps8 expression is negatively correlated 
with FoxO3a. FoxO3a inhibits the level of Eps8 by directly 
binding to the Eps8 gene promoter and forms a negative 
cycle in the EGFR pathway (21). Apart from non-small 
cell lung cancer, glioblastoma and breast cancer have also 
been revealed to downregulate Eps8 to inhibit proliferation 
both in vivo and in vitro (20,22). Notably, the silencing of 
Eps8 in pancreatic ductal adenocarcinoma (PDAC) and oral 
squamous cells did not affect cell proliferation but inhibited 
other biological functions (15,19). Herein, we emphasize that 
the aberrant expression of genes in tumours may affect some 
or all biological functions.

Role and mechanisms of EPS8 in tumour invasion and 
metastasis
Eps8 regulates tumour cell invasion and metastasis. Cell 
migration is a complex process involving reorganization of the 
actin cytoskeleton (76‑78). Rho GTPase along with other cell 
processes regulates the organization of the actin cytoskeleton 
to promote coordinated changes in cell behaviour, in which 
members of Rho GTPases, including Rac, Cdc42 and Rho, 
affect different aspects of tumour cell motility (76‑78). Rac 
promotes the formation of actin‑rich membrane ruffle at the 
leading edge of migrating cells, called Lamellipodia (77). 
Cdc42 modulates cell polarity and the formation of filopodia, 
thus controlling the direction of cell movement, and Rho 
facilitates stress fibre formation and maintains focal adhesion at 
the rear of the cells (78). In addition, Ras has also been revealed 
to participate in cell motility and function downstream of Gi 
to mediate ovarian cancer cell migration (79). Ras can activate 
Rac through Tiam1 (80), b-PIX (81), or the SOS1/Eps8/Abi1 
tricomplex (32,82). Notably, avβ6 and a5b1 integrin-dependent 
activation of Rac1 is mediated by Eps8. The downregulation 
of Eps8 or Rac1 inhibits integrin-dependent cell migration, 
whereas the transient expression of active Rac1 restores 
migration in cells with suppressed Eps8 expression (83).

Coactivation of Eps8 with F-actin has been revealed to 
occur primarily in pancreatic cancer cells. Eps8 is involved in 
cell morphology and protein skeleton, which determines cell 
migration. Moreover, Eps8 was located at the tips of F-actin 
filaments, filopodia, and the leading edge of cells. Eps8 knock-
down altered cell shape and actinomycin-based cytoskeletal 
structures and impaired the formation of protuberance and 
intercellular connections (13).

The earliest studies reported that Eps8 overexpression 
encodes cell growth in fibroblasts (7), and its potential role in the 
development of human cancer has gradually been confirmed. 
Eps8 mRNA expression levels are sequentially increased in 
primary tumours, metastases, and malignant ascites, and Eps8 
mRNA is predominantly expressed in advanced colorectal 
cancer (84). Similarly, Eps8 overexpression is highly associ-
ated with lymph node metastasis and parametrium invasion 
of cervical cancer (14). Conversely, silencing Eps8 expression 
blocks migration and invasion of human glioblastoma cell 
lines (85). In conclusion, Eps8 serves as a signalling interme-
diate for tumour invasion and metastasis.

SOS1/EPS8/Abi1 tricomplex signalling pathway and tumour 
invasion and metastasis. Lysophosphatidic acid (LPA), 
a growth factor-like phospholipid produced by ovarian 
cancer cells and secreted into the abdominal cavity, is 
uniquely associated with ovarian malignancies (86‑89). 
High levels of LPA have been revealed in the ascites of 
ovarian cancer patients (87), which can effectively drive cell 
migration (90,91). The process is accomplished through a 
signalling pathway consisting of the Ras-SOS1/Eps8/Abi1 
tricomplex that stimulates Rac activation and cytoskeletal 
recombination, and LPA-induced Rac activation is a 
prerequisite for ovarian cancer metastasis. The integrity of 
SOS1/Eps8/Abi1 tricomplex may determine the possibility 
of ovarian cancer metastasis because silencing any member 
of the SOS1/Eps8/Abi1 tricomplex is not sufficient to reduce 
ovarian cancer cell migration and metastatic colonization. 
The three members of the complex play their roles and are 
interrelated. SOS1 serves as a Rac‑specific guanine nucleotide 
exchange factor (GEF) and ultimately induces Rac-regulated 
cytoskeletal recombination and cell migration (92‑94). 
Eps8 acts as a substrate for tyrosine kinase receptors. Abi1 
is a scaffold protein that connects SOS1 and Eps8 (73,95). 
Abi1 binds with SOS1 through its SH3 domain (96) and 
subsequently binds to the SH3 domain of Eps8.

Currently, studies have confirmed that the use of inhibi-
tory peptides can disrupt specific protein‑protein interactions 
and related biological behaviour (97‑99). As small molecules, 
inhibitory peptides exhibit significant potential for clinical 
application (100). Moreover, short peptides have been success-
fully used to interfere with signalling pathways as a new 
cancer treatment (101,102). Based on this activity, researchers 
selected Abi1 as the target for the design of short inhibitory 
peptides and successfully developed peptides capable of 
inhibiting the interaction between Eps8-Abi1 and ABI1-SOS1 
to prevent the formation of the SOS1/Eps8/Abi1 tricomplex, 
thereby suppressing the invasion and metastasis of ovarian 
cancer (103). Biomedicine has made notable progress in 
tumour treatment, offering more opportunities to identify 
disease treatment targets (102,103).
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EPS8/IRSp53 complexes and tumour invasion and metastasis. 
IRSp53, a protein crucial in cell mobilization, not only acts as a 
physical link between Rho GTPases and actin dynamics (104) 
but also serves as one of the Eps8 adapters from the human 
brain cDNA library. First, the interplay between Eps8 and 
IRSp53 increases Rac activation and cell migration in 
human fibrosarcoma cells (105). Additionally, this interac-
tion contributes to Src-mediated transformation. Through Src 
activation, EGF increases the formation of the Eps8/IRSp53 
complex in HeLa cells; the activation of AKT, ERK and 
Stat3; and the enhancement of cyclin D1 (106). Furthermore, 
the Eps8-IRSp53 complex collaboratively activates Rac by 
enhancing the formation of the Eps8-Abi-1-SOS-1 complex in 
fibroblasts and various cancer cell lines (36).

ERK/MMP9/P53 signalling pathway and tumour invasion 
and metastasis. In addition to affecting cell proliferation, 
Eps8 modulates the ERK signalling cascade and upregulates 
MMPs (such as MMP‑9) and other matrix metalloproteinases 
to promote tumour cell invasion, leading to extracellular 
matrix remodelling (20,107). MMP‑9 principally functions 
in EGF- and SF/HGF-induced migration, and attenuation of 
MMP‑9 activity impairs receptor tyrosine kinase‑dependent 
SCC mobility (108). Research has revealed that Eps8 over-
expression induces cell migration and invasion in vitro and 
tumorigenicity in vivo, which depends on the activity of 
MMP‑9 (107). Notably, Eps8 knockdown had no effect on ERK 
but reduced the levels of phosphorylated ERK and MMP9 
while enhancing p53. Subsequently, the expression levels of 
the mitotic target genes c-Myc and cyclin D1, which are down-
stream of ERK signalling, were downregulated and finally 
inhibited the migration of breast cancer cells. Furthermore, 
attenuation of Eps8 suppressed part of the EMT-like transfor-
mation, significantly increased E‑cadherin, and diminished 
N‑cadherin and vimentin. Notably, the number and size of 
EGF‑induced Eps8‑provoked filamentous pseudopods were 
also decreased (20). In short, Eps8 has been revealed to regu-
late breast cancer cell migration and invasion at least in part 
by affecting ERK signalling, MMP9, p53 and EMT markers.

Other factors target EPS8 to regulate tumour invasion and 
metastasis. MicroRNAs (miRNAs) are a group of 14-25 bp 
noncoding RNA (ncRNA) molecules (109) that regulate 
gene expression by inhibiting translation or cutting mRNA 
in a sequence-dependent manner (110) and are important 
regulators in the process of tumour metastasis (111). Studies 
have provided evidence for their roles in numerous types of 
tumours (112,113). Initially, miR-345 was revealed to prevent 
GC cell metastasis by inhibiting the epithelial-mesenchymal 
transition (EMT) (114). Subsequently, Zhang et al revealed that 
Eps8 was a downstream target of miR-345 and that miR-345 
inhibited GC cell migration, EMT and the CSC phenotype by 
inactivating the Rac1 signalling pathway (115). In addition, 
antitumour miR-130b-5p and numerous downstream genes 
mediated by Eps8 were closely involved in the aggressiveness 
of PDAC (23).

In addition to the pathways aforementioned, Eps8 also 
mediates tumour cell metastasis through other approaches. 
FOXM1 overexpression not only promotes cell prolif-
eration but also increases cell migration (71,116), and targeted 

inhibition of CXCL5 or AKT reduces Eps8-expressing cell 
migration (71). Therefore, Eps8 and FOXM1 may mediate 
cell migration through a series of common downstream 
components. In addition, the well‑known PI3K/AKT cascade 
is activated by the binding of EGF to its receptor to increase 
migration and invasion in cancers (117). In particular, FoxO3a 
is also an important downstream target of the PI3K/AKT 
pathway (118) that inhibits the expression of Eps8 to prevent 
the migration and invasion of non-small cell lung cancer. The 
phosphorylation and translocation of FoxO3a are caused by 
EGF (118). Additionally, Eps8-induced FAK is overexpressed 
in numerous tumours and is strongly correlated with tumour 
aggressiveness (57,58). Maa et al demonstrated that Eps8 and 
FAK form a complex in regulating cell migration; however, the 
underlying mechanism remains unknown (12).

EPS8 regulates tumour resistance, prognosis and angiogenesis. 
Eps8 is clearly associated with cellular responses to cisplatin, 
paclitaxel and imatinib. and cancer cells were more sensitive 
to drug therapy after Eps8 knockout (14,25,119). Notably, 
Gorsic et al developed the Eps8 inhibitor miramycin A as a 
potential drug to improve the treatment index of cisplatin, which 
decreased the expression of Eps8, resulting in an augmentation 
in cell sensitivity to cisplatin that was significantly more 
pronounced in tumour cell lines than in lymphoblastoid 
cell lines (LCLs) (119). Mechanistically, on one hand, Eps8 
increases p53 and decreases Src and AKT in such a way 
that HeLa and SiHa cells are sensitive to chemotherapeutic 
drugs (14). On the other hand, PI3K/AKT is an important 
cascade reaction of tumour chemotherapy resistance (120), 
and EGFR is the key to activating the PI3K/AKT signalling 
pathway (121). In general, EGFR TKI resistance is divided 
into ‘on target’ and ‘off‑target’. ‘On‑target’ signifies that drug 
resistance is mainly caused by the variation of original drug 
targets, and ‘off‑target’ refers to the activation of parallel 
signalling pathways (122). PI3K/AKT plays a regulatory 
role in both on-target and off-target resistance. PI3K/AKT is 
highly activated in human cancer and is used as a therapeutic 
target (123-126). As a downstream molecule of PI3K/AKT, 
FoxO3a (75) inhibits the expression of the Eps8 signalling 
protein by directly binding to the promoter of the Eps8 gene. 
The signalling pathways inhibited and promoted by Eps8 are 
connected together to form a negative regulatory loop, which 
bypasses EGFR and reduces the activity of the PI3K/AKT 
pathway. Thus, it may affect the EGFR-TKI resistance in both 
‘on target’ and ‘off‑target’. Therefore, FoxO3a may represent 
a core of the EGFR TKI resistance signalling network. EGFR 
and FoxO3a negatively regulate each other in the growth 
factor signalling network to maintain the physiological and 
biochemical functions of cells (21).

Eps8 expression in cancer cells may be a crucial biomarker 
of the prognosis of patients, which is closely concerned with the 
survival of patients and has clinical significance. Generally, 
the higher the expression of Eps8 in the early stage, the lower 
the survival rate. The overall survival (OS) of patients with 
expression of Eps8 was significantly lower than that of patients 
not expressing Eps8. Thus, Eps8 is considered an independent 
predictor of poor OS (19).

Tumours need to absorb nutrients from blood vessels to 
grow (127), therefore, controlling tumour‑related angiogenesis 
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is an attractive strategy to limit tumour progression. Li et al 
confirmed that FOXM1b has a direct and significant relation-
ship with the transactivation of vascular endothelial growth 
factor expression and increased angiogenesis (116). In view 
of the fact that Eps8, as an adapter protein of FOXM1, medi-
ates tumorigenesis and development, we hypothesise that 
Eps8 may also mediate tumour angiogenesis. Regrettably, the 
relationship between Eps8 and tumour angiogenesis remains 
unknown but is worthy of further exploration.

EPS8 regulates tumour immunotherapy. Immunotherapy 
is a popular method for cancer therapy and has achieved 
outstanding clinical effects. There is evidence that the host 
immune response can affect the survival of patients (128). 
Tumour-associated antigen (TAA) can produce specific 
cytotoxic T lymphocytes (CTLs). The recognition and identi-
fication of TAAs are important for the development of cancer 
immunotherapy (129). Eps8 is involved in the regulation of 
tumour progression and may be an ideal antigen because the 
new HLA-A*242-restricted epitope from Eps8 can be used 
as a new peptide inhibitor to inhibit the Eps8/EGFR interac-
tion (130). In addition, studies have revealed that Eps8 protein 
increases the secretion of interleukin (IL)-12 into the culture 
supernatant of dendritic cells (DCs) and induces a significant 
CTL response, T-cell proliferation and high levels of inter-
feron (IFN)-γ (131). Given the relationship between Eps8 and 
tumour immunity, it may provide potential immunosuppres-
sants for tumour treatment and create new diagnostic and 
treatment methods for clinicians, thus benefiting an increasing 
number of tumour patients.

5. Role and molecular mechanism of Eps8 in haematological 
tumours

Eps8 extensively functions as an oncogene in a wide range of 
solid tumours (10-23). In recent years, growing evidence has 
indicated that Eps8 is important for the proliferation, apoptosis 
and prognosis of haematological tumours, demonstrating the 
potential of Eps8‑targeted therapy for leukaemia (24‑27). 
Wang et al detected the expression of Eps8 mRNA and protein 
in 6 types of malignant haematological tumour cells (132). The 
results indicated that Eps8 mRNA and protein levels are not 
completely consistent. This study demonstrated the aberrant 
expression of Eps8 in malignant haematological tumours for 
the first time, providing a preliminary theoretical basis for 
the screening of new targets for the treatment of malignant 
haematological tumours.

Huang et al knocked out Eps8 in CML and MM cells, 
resulting in decreased proliferation and increased apoptosis. 
In addition, the absence of Eps8 inhibited cell survival, 
migration and invasion, and induced drug sensitivity (25,27). 
Eps8 was revealed to regulate the proliferation, apoptosis and 
chemosensitivity of BCR-ABL-positive cells by mediating 
the BCR‑ABL/PI3K/AKT/mTOR pathway (25). Therefore, 
Eps8-targeted inhibitors alone or in combination with tyrosine 
kinase inhibitors may represent an exclusive strategy for refrac-
tory and drug-resistant CML patients. Notably, mithramycin 
(MTM), a specific Eps8 inhibitor, exhibited anti‑MM activity 
in xenograft tumour models and suppressed the expression 
of Eps8 and related pathways (27). Sun et al hypothesized 

that trichostatin A (TSA), a panhistone deacetylase inhibitor 
(HDACi), could attenuate Eps8 and its downstream phosphor-
ylated ERK1/2 pathway, thereby reducing the survival rate of 
Burkitt's lymphoma (BL) cells and inducing apoptosis and cell 
arrest at G0/G1 (133).

To further improve the prognosis of cancer patients, 
researchers analysed ALL and AML and revealed that 
high expression of the Eps8 gene predicted poor prognosis 
(132). As aforementioned Eps8 contains nuclear localization 
signals, and the release of Eps8 via tyrosine kinases creates 
a nuclear targeting signal responsible for the intracel-
lular molecular mechanism of nuclear translocation (26). 
Castagnino et al observed that part of Eps8 was indeed 
translocated to the nucleus, upregulating the expression of 
Eps8 (41). Notably, the synthetic cell-penetrating peptide 
(CP‑Eps8‑NLS) derived from the nuclear localization signal 
of Eps8 could pass through the cell membrane and specifically 
interfere with the nuclear transport of Eps8. CP-Eps8-NLS 
exhibited anti-AML activity in various AML cell types and 
a synergistic effect with chemotherapeutic drugs in vivo and 
in vitro. CP-Eps8-NLS has been revealed to downregulate 
the expression of Eps8, PI3K/AKT and MAPK/ERK‑related 
pathway targets; promote apoptosis and cell cycle arrest; and 
inhibit proliferation and cell viability (26). In particular, the 
NLS of Eps8 may represent a new target for further inhibitor 
design to interfere with Eps8-dependent AML progression.

In summary, Eps8 is likely to become a target for moni-
toring and treating haematological malignant tumours and 
exhibits markedly broad research and application prospects. 
Research on Eps8 and malignant haematological tumours has 
just started, and related basic and clinical research is markedly 
limited. Thus, more knowledge is required.

6. Conclusion and future perspective

The oncogene Eps8 is unusually expressed in solid tumours 
and haematological malignant tumours and represents an 
intriguing tumour biomarker linked to cellular signalling path-
ways. Recent evidence has indicated the importance of Eps8 
in tumorigenesis, proliferation, migration, metastasis, drug 
resistance and poor prognosis in cancer patients. However, 
more tumour models and a large number of clinical trials 
are still required to verify its effect and clarify the broader 
mechanisms, and in the future, every effort will be made to 
find new directions for cancer treatment. Collectively, Eps8 is 
closely related to the occurrence and development of malignant 
tumours, and the potential of Eps8 in targeted applications 
and cancer drug development may be expanded with further 
research.
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