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Abstract

Inference concerning the impact of habitat fragmentation on dispersal and gene flow is a key theme in landscape genetics.
Recently, the ability of established approaches to identify reliably the differential effects of landscape structure (e.g. land-
cover composition, remnant vegetation configuration and extent) on the mobility of organisms has been questioned. More
explicit methods of predicting and testing for such effects must move beyond post hoc explanations for single landscapes
and species. Here, we document a process for making a priori predictions, using existing spatial and ecological data and
expert opinion, of the effects of landscape structure on genetic structure of multiple species across replicated landscape
blocks. We compare the results of two common methods for estimating the influence of landscape structure on effective
distance: least-cost path analysis and isolation-by-resistance. We present a series of alternative models of genetic
connectivity in the study area, represented by different landscape resistance surfaces for calculating effective distance, and
identify appropriate null models. The process is applied to ten species of sympatric woodland-dependant birds. For each
species, we rank a priori the expectation of fit of genetic response to the models according to the expected response of
birds to loss of structural connectivity and landscape-scale tree-cover. These rankings (our hypotheses) are presented for
testing with empirical genetic data in a subsequent contribution. We propose that this replicated landscape, multi-species
approach offers a robust method for identifying the likely effects of landscape fragmentation on dispersal.
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Introduction

Habitat loss and fragmentation lead to small and increasingly

isolated populations of wildlife in habitat remnants, decreasing

metapopulation viability [1–3]. Small, isolated populations lose fitness

through inbreeding depression of individuals and loss of genetic

diversity from populations, decreasing adaptability to environmental

change; these processes elevate extinction risk [4–6]. If the mean

probability of extirpation in remnants exceeds the mean probability

of recolonisation, then metapopulation extinction will eventuate. The

time lag over which this occurs depends on many factors and may be

many generations [7]. This ‘extinction debt’ is the number of taxa

that, following habitat loss, no longer satisfy a threshold criterion for

their survival [8]. Thus many authorities [9,10] have identified the

critical role of connectivity (the inverse of fragmentation) at landscape,

regional and continental scales in effective conservation management.

An ongoing challenge is to tease apart the often interrelated

ecological and genetic processes that result in biodiversity loss

following habitat loss and alteration [11,12]. Such knowledge is

essential in order to design and implement management

interventions to ‘repay’ extinction debt before species are lost [13].

Landscape-genetic approaches to assessing effects of
habitat alteration

Landscape genetics [14] when combined with spatial modelling

[15] provides techniques for linking observed patterns of species’

occurrence to processes, particularly the relationships among

structural and functional connectivity [16,17], genetically effective

dispersal [18] and the maintenance of populations in fragments.

Typically, landscape-genetic studies have involved post hoc fitting of

models to explain the relationship between genetic patterns and

landscape structure. But this approach is limited in the robustness

of its predictions, because alternative connectivity models are

frequently correlated [19]. Further, such models have usually been

limited to inferences about a single species [20].
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A priori statements of explanatory models offer a more rigorous

approach to linking observed pattern with process [19,21,22].

Replicate testing of predictions across multiple landscapes and

species greatly strengthens inferences about population processes

by testing generality [23]. The need for replication in landscape-

genetic studies has been emphasised in recent reviews [19,24,25].

Inferences can be reinforced by concurrent examination of

sympatric species predicted to have different responses to

fragmentation on the basis of their known ecology and behaviour

[26]. This approach is valid even where relatively little is known

about species’ attributes [27,28].

Modelling ‘Effective Distance’ for comparison with
genetic data

Structural connectivity is an attribute of the physical configu-

ration of suitable habitat patches within a landscape. Functional

connectivity is an emergent property of individual species-

landscape interactions [17]. It has been defined as ‘the degree to

which the landscape facilitates or impedes movement among

resource patches’ [16], and thus reflects the effect that landscape

structure and different landscape elements have on the dispersal

ability and gene flow of an organism [29–31].

The most widely adopted approach to estimating the relation-

ship between structural and functional connectivity is to model

‘effective distance’, the ‘‘Euclidean distance modified for the effect

of landscape and behaviour’’ [32] on the dispersal of an organism

between locations in the landscape. Effective distance can then be

compared with dissimilarity or distance measures, such as genetic

distances between populations or individuals, or estimates of

numbers of dispersers between habitat patches in a landscape.

Effective distance may be modelled by using least-cost path

algorithms [32,33]. These account for differing costs (resistance

per unit distance) of passing through different landscape elements.

The algorithms identify the path through a landscape that

minimizes the resistance to an organism moving between two

points, and thus calculate the least-cost distance. Such information

on potential paths through the landscape, correlated with

estimates of functional distances or dispersal (e.g. genetic distances

or observed dispersal events from mark-release-recapture or

radiotelemetry), is often used to estimate the role of landscape

structure as a constraint to dispersal [34–37].

Least-cost path modelling has been criticized for its biologically

unrealistic assumptions, such as that the disperser has complete

prior knowledge of its surroundings and on this basis chooses the

least costly path [29,38]. Another perceived drawback is that

simple least-cost path analysis identifies only a single optimal

route, rather than the contribution of multiple possible routes to

effective distance [38], and so may not represent gene flow which

accumulates across multiple dispersal events over time. Despite its

limitations, least-cost path modelling has consistently shown

predictive value when tested with molecular-genetic data

[30,37,39,40] and compared with dispersal paths derived from

radiotelemetry [41].

Extensions of least-cost path methods may partially overcome

some of these limitations by allowing the mapping of near-optimal

or multiple pathways [38,42,43]. The isolation-by-resistance

model of McRae [44], also based on calculations of movement

costs across a resistance surface, is becoming more widely adopted

[45]. Isolation-by-resistance offers a conceptual model in which

landscape resistance is the analogue of electrical resistance, and the

movements of individuals and flow of genes are analogues of

electrical current. It greatly extends the ability to model multiple

complementary paths of connectivity, while being sufficiently

computationally efficient to allow its use over large landscapes at

relatively fine resolution (e.g. grids of 108 cells) [46]. The

associated software, Circuitscape [47], generates maps of current

(an analogue of gene flow or dispersal density) that indicate

potentially important areas for maintenance of, or constraints to,

functional connectivity.

Isolation-by-resistance was found to explain a greater propor-

tion of variance in genetic population structure than isolation-by-

distance or least-cost distance in simple model networks and when

dealing with species’ ranges at (sub)continental scales [40,44]. At

least one other study found that least-cost distance explained a

greater proportion of genetic variation than circuitscape distance;

however, the resolution of the grids used in the two calculations

were different [48]. The present study builds on this single

comparison of the two approaches by examining their perfor-

mance across multiple species in the same landscapes.

Here, we construct a set of landscape resistance surfaces for use

in modelling effective distance, to represent a number of

alternative hypotheses about gene-flow. This work forms part of

a related large-scale empirical study in which we collected genetic

data from 10 species of woodland bird, sampled at 65 sites across

12 landscapes (each 100 km2) that differ in their extent and

configuration of wooded native vegetation. In a subsequent

contribution, we test these predictions generated from these gene

flow hypotheses using empirical genetic data at two spatial scales:

(1) relatively short distances within replicated landscapes; and (2)

greater distances across the whole study area.

We take the approach advocated by Cushman and Landguth

[49] of incorporating multiple alternative hypotheses of genetic

differentiation, ranging from no spatial structuring, through

isolation-by-distance [50], to a number of alternatives representing

heterogeneous landscape resistance. Based on these alternative

hypotheses (represented by different resistance surfaces) we

calculated effective distances between all sample collection sites,

using two of the main methods for estimating effective distance:

least-cost path analysis, and isolation-by-resistance using Circuits-

cape [46]. We also identify the appropriate null model

representing isolation-by-distance in a uniform landscape for each

[51]. Correlations between each effective distance model and the

relevant null model are reported to emphasize potential challenges

in distinguishing these effective distance models from pure

isolation-by-distance [51]. For each target species, we rank a priori

the expectation of fit of genetic response to the effective distance

models according to the expected response of birds to loss of

structural connectivity and landscape-scale tree-cover. These

expectations will later be tested using partial Mantel tests and

‘causal modelling’ [52,53]. Causal modelling is a technique to

alternately condition each of two dissimilarity matrices using the

other to examine the residual effect of each matrix on a third

matrix in a series of Mantel and partial Mantel tests [53].

Very different inferences about landscape resistance may result

from resistance model tests in fragmented and unfragmented

landscapes [54]. Our study design contains landscapes at three

levels of fragmentation and varying levels of cover in fragmented

landscapes for further exploration of this problem.

Several studies of landscape connectivity with both genetic data

and individual tracking have used model selection between

multiple landscape resistance hypotheses [28,53–56]. Some have

strengthened their inferences by replication of landscapes, and one

considered two species with contrasting habitat and a priori

expectations of response to fragmentation [28]. The multiple

model selection approach reduces the probability of affirming the

consequent [49] where the range of plausible resistance hypotheses

are incorporated in the models chosen. Landscape replication

further reduces the chances of misleading correlations resulting
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from configuration of samples and landscape elements in a single

landscape [25].

Woodland birds of the Box-Ironbark forests of central
Victoria, Australia

The avifauna of dry woodland systems of southern Australia is

experiencing continuing decline, due primarily to habitat loss

compounded by a range of other contributory factors [57–59].

Radford et al. [60] examined the incidence of 58 species of

woodland-dependent bird in remnant tree-cover in 24 landscapes,

each 10610 km2 in central Victoria. Below a threshold of c. 10%

of native tree-cover, there were steep declines in landscape-level

species richness. Radford et al. [60] interpreted this threshold in

species richness as the terminal point of a series of species-level

declines that commenced at much higher levels, c. 30–50%, of

vegetation cover, indicating evidence of local payment of the

extinction debt. There was much variation in the landscape

attributes identified as most influential in predicting the incidence

of individual species at the landscape scale and in the shape of

individual species’ responses to landscape level tree-cover. About

one-third of species showed no significant relationship between

incidence in the landscape and level of tree-cover, while other

species showed a curvilinear response, indicating that these

species’ occurrences were declining more rapidly than expected

given relative tree-cover [61,62].

We examined current understanding of the mobility of 10 bird

species to construct predictions of the effects of habitat loss and

fragmentation. We constructed hypotheses about the extent to

which the level of structural connectivity is reflected in changes in

functional connectivity that might be signalled by changed gene

flow. In a subsequent paper we will test the predictions generated

from these gene flow hypotheses using empirical genetic data, and

examine some of the possible causes that may explain the pre-

identified patterns of decline.

In summary, our intentions in this paper are to:

1. Assemble and apply biological data and expert opinion to

characterize the expected mobility of a suite of birds through

different land-cover classes in our study system.

2. Formulate species-specific and spatially-explicit prior models of

gene flow (represented by pairwise effective distances), and rank

them for each species, to yield explicit prior hypotheses of gene

flow for subsequent testing with genetic data.

3. Use and compare two predominant approaches to modelling

effective distance (and hence connectivity), least-cost path

analysis and isolation-by-resistance, including validation of the

most appropriate null models for each.

Materials and Methods

Ethics statement
Observation of birds was carried out under DSE/DNRE permit

numbers 10004294 and 10002099 under the Wildlife Act 1975

and the National Parks Act 1975, DSE permit number

NWF10455 under section 52 of the Forests Act 1958 with

approval and monitoring of Monash University ethics processes

(BSCI/2007/07).

Study area
The study area is c. 10,000 km2 of central Victoria in south-

eastern Australia (Figure 1). The remnant native vegetation of the

area is principally Box-Ironbark forest dominated by Grey Box

(Eucalyptus microcarpa), Red Ironbark (E. tricarpa) and Yellow Gum

(E. leucoxylon) on relatively infertile soils. Grassy forest and

woodland containing E. microcarpa, E. leucoxylon and Yellow Box

(E. melliodora ) remnants occur on more fertile valley floors, with

River Red Gum (E. camaldulensis) dominant along watercourses.

These latter vegetation types were selected for pastoralism in the

1840s, and much of the landscape has been cleared of native

woody vegetation for .100 years. During the gold rushes of the

1850s–1860s, considerable logging and clearing of the native

forests occurred and ,2% of remaining forests are old growth

[63]. Land-clearing for agriculture followed, alongside timber-

cutting and firewood harvesting from 1870 to the Second World

War and beyond [63]. Consequently, remnant forests and

woodlands of the region are heavily fragmented, degraded and

of low productivity. Only 19.2% tree-cover remains in the study

area [64]. The intervening land is heavily cleared, though

scattered trees remain in parts of the farmland [63].

Landscape and site selection
Twelve 10610 km landscapes were selected, nine among those

used by Radford and Bennett [60,61]. The present study aimed to

identify processes leading to species declines. Therefore, all

selected landscapes had tree-cover above the 10% threshold

proposed by Radford et al. [60]. The landscapes represented two

tree-cover configuration classes, ‘dispersed’ or ‘aggregated’ [60].

Three other ‘reference’ landscapes were selected with the highest

available extant tree-cover (72–78%) to approximate continuous

tree-cover (Figure 1). Reference landscapes necessarily contain a

high proportion of Red Ironbark forest, because of the selective

clearance of vegetation types across the region [63]. Sample sites

within these landscapes were chosen to be as similar as possible in

local vegetation type to the fragmented landscapes.

All landscapes were composed of six land-cover classes in

varying proportions. The classes were: native tree-cover, planta-

tion and horticulture, urban, unimproved pasture and native

grassland, improved pasture and arable land. The last three land-

cover classes further subdivided according to presence or absences

of scattered trees.

Within each landscape, 3–6 sites were selected for genetic

sampling. Initial sites were chosen at the locations of transects used

by Radford et al. [60] in which there had been multiple incidences

of the majority of the 10 target species (see below). The remaining

sites were chosen to make possible the capture of a reasonable

sample of the target species, and to provide a range of between-site

distances.

Study species
Our study design compared ‘decliner’ species (i.e., ones in which

landscape-level incidence decreased disproportionately relative to

landscape-level tree-cover) with ‘tolerant’ species (i.e., landscape-

level incidence was proportionate to landscape-level tree cover).

We analysed responses of 58 woodland-dependant species to

landscape tree-cover from data in Radford [61] to classify them as

decliner or tolerant to decreasing area of treecover (Material S1,

Table S1).

We then applied two filters to select a subset of these 58 species

as study species. First, species had to be common enough in the

study landscapes that there was a high likelihood of obtaining

sufficient samples for genetic analysis from multiple sites. Second,

we stratified species by assumed mobility from highly mobile to

sedentary. Data to classify relative mobility were collated from the

standard reference work on the avifauna of Australia [65,66].

These data collectively were used to categorize mobility subjec-

tively for each species as sedentary, intermediate or mobile.

Predicting Fragmentation in Woodland Birds
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Ten study species were chosen (Table 1): two ‘tolerant’ species;

White-plumed Honeyeater (Lichenostomus penicillatus), Striated

Pardalote (Pardalotus punctatus), and eight ‘decliners’ – Brown

Treecreeper (Climacteris picumnus), Eastern Yellow Robin (Eopsaltria

australis), Fuscous Honeyeater (L. fuscus), Grey Shrike-thrush

(Colluricincla harmonica), Spotted Pardalote (Pardalotus punctatus),

Superb Fairy-wren (Malurus cyaeneus), Weebill (Smicronis brevirostris),

and Yellow-tufted Honeyeater (L. melanops).

Construction of landscape resistance models
The geographic area used for spatial modelling was the minimum

convex polygon enclosing all of the sample points, with a 25 km

buffer surrounding this polygon added to minimize the increase of

resistance values due to the grid boundary [67]. We assigned a ‘no

data’ value to cells outside of this area and excluded them from all

calculations. All raster processing was carried out in ARCGIS

version 9.3 [68] and the results output to ASCII grid format using

the Export to Circuitscape Tool [69]. The scale of these raster data

was chosen as the best compromise between the functional grain [29]

considered most relevant to the birds (detectability of large individual

trees and linear strips of tree-cover requiring 10 m resolution), data

availability and the size of the grid (hence computational load).

Landscape resistance surfaces were created as follows
(1) Null model surface. Two null models were applied. One

assumed that there is no spatial structure to genetic differentiation

due to unrestricted gene flow at the scale of the study area. There is

no resistance surface for this model, as spatially random genetic

variability is expected. A second null model assumed homogeneous

resistance, i.e. the analogue of isolation-by-distance [50], for this

model a raster with all cells having a resistance value of 1 was used.

This surface allowed calculation of appropriate values that could

then be used in partial Mantel tests to condition for the effect of

geographic distance.

Figure 1. The study area in central Victoria, Australia, showing landscapes, sampling sites and remnant tree cover (shaded). Values
for landscape treecover (%) are: 1. Landscapes with aggregated tree cover; Shelbourne 12%, Glenalbyn 17%,Tunstalls 20%, Crosbie 26% Havelock
45%. 2. Landscapes with dispersed tree cover; Welha 11%, Stuart Mill 19%, Murchison 27%, Axe Creek 35%, 3. Landscapes with continuous tree cover;
Redcastle 75%, Dunolly 79%, Rushworth 79%.
doi:10.1371/journal.pone.0030888.g001

Table 1. Classification of species according to their modelled response to tree-cover and their expected mobility.

Mobility Response to landscape tree-cover

Decliner Tolerant

Mobile Fuscous Honeyeater (Lichenostomus fuscus; FH) White-plumed Honeyeater (Lichenostomus penicillatus;
WPH)

Moderate inconclusive1 Yellow-tufted Honeyeater (Lichenostomus melanops; YTH) Striated Pardalote (Pardalotus striatus; STP)

Spotted Pardalote (Pardalotus punctatus; SPP)

Grey Shrike-thrush (Colluricincla harmonica: GST)

Weebill (Smicornis brevirostris; WB)

Sedentary inconclusive1 Eastern Yellow Robin (Eopsaltria australis; EYR)

Superb Fairy-wren (Malurus cyaneus; SFW)

Sedentary Brown Treecreeper(Climacteris picumnus; BT)

1For mobility, ‘inconclusive’ is used where there is uncertainty about mobility levels from the literature.
doi:10.1371/journal.pone.0030888.t001
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(2) Surfaces based on tree-cover. A 10 m resolution raster

of vegetation cover .2 m height [64], essentially tree-cover for the

study area, is of sufficient resolution to allow identification of large,

isolated trees and contiguous tree-cover. The 10 m raster was

generalized to 25 m (the finest scale at which all relevant datasets

were available), such that any cell containing a 10 m tree pixel was

identified as tree-cover. All cells of tree-cover were allocated a

value of 1 and cells with no tree-cover were assigned a higher

resistance value (2, 5, 10 or 100) to create four models of

alternative resistance (Table 2). Models based on these surfaces

were denoted TREE with a suffix for the resistance of the treed

and non-treed area (e.g. TREE_1_5).

(3) Surfaces based on habitat suitability derived from

species distribution models (SDM). The base data were

represented by a 25 m raster of the predicted probability of

occurrence of a species based on modelling presence records in

relation to a range of spatially explicit environmental variables from

satellite chrono-sequences, digital elevation models (for terrain and

climate), and radiometric data [70]. The continuous SDM outputs

were transformed to produce a binary result (i.e. part of or not part

of the distribution of the species) employing a default threshold that

maximises the diagnosticity measure [71]. Two models for each

species with either high (10) or low (2) resistance for areas not

classified as part of the species’distribution, were constructed and

are referred to by the species abbreviation with a suffix of ‘HAB’.

(4) Surfaces based on bird species mobility in land cover

classes, predicted by expert opinion. The dispersal

behaviour of nearly all of the study species is poorly known,

apart from the Brown Treecreeper [72] and Superb Fairy-wren

[73]. We therefore sought expert opinion on it. Five ornithologists

with expert field knowledge of the birds of the study area were

asked to estimate, for each of the study species, the probability that

an individual bird, during its lifetime, would traverse distances of

100 m, 200 m, 500 m, 1 km, 5 km or 10 km of a given land-cover

class. The maximum value was 1 and the minimum permissible

value was set at 0.0001. This was repeated for each of nine land-

cover classes identified in a modelled GIS land-cover classification

for the area (Sinclair SJ, White MD, Medley J, Smith E, Newell

GR, Unpublished Manuscript). Two species, Spotted Pardalote

and Striated Pardalote, were not included in the expert opinion

elicitation because the decision to include them in the study post-

dated the opinion survey.

In order to establish the among-expert variation in opinion,

variance of estimates among experts and species as random effects

were analysed. We used a linear mixed effects model and

correlation of variance in the R package lmer4 [74], following

[75]. Mean estimates of all experts for each combination of

distance, land-cover class and species were calculated and used as

a mean probability of dispersal (i.e., landscape conductivity). The

reciprocal of this conductivity value, the land-cover class

resistance, was to develop resistance surfaces and calculate

effective distance for each species.

A 25 m raster of land-cover classes was derived from satellite

imagery (Sinclair SJ, White MD, Medley J, Smith E, Newell GR,

Unpublished Manuscript), with further categorization of cleared

agricultural land with or without scattered trees. The final land

cover classes were: (i) native tree-cover, (ii) plantation and

horticulture, (iii) urban, (iv) unimproved pasture and native

grassland, (v) improved pasture and (vi) arable crop. For the last

three classes, all cells within 50 m radius of a tree pixel and not in

contiguous tree-cover were denoted as scattered trees. These

classes were assigned resistances according to the mean opinion of

experts. Models based on these surfaces were denoted by the

species abbreviation followed by EO (for Expert Opinion) and the

distance for which conductivity was being estimated. For example,

the model for Brown Treecreeper (BT) movement over 5000 m

was denoted BT_EO_5000.

For all resistance surfaces, measures of effective distance

between all 65 sampling points (Figure 1) were calculated with a)

the least-cost path approach, using UNICOR Version 1.0 [76];

and b) isolation-by-resistance using Circuitscape version 3.5.1

employing the pairwise resistance and connection between eight

cells options [44,46,47].

The existence of artificial boundaries in raster surfaces used for

calculating isolation-by-resistance leads to inflation of resistance

estimates [67]. Given that cells outside the model grid area were

assigned an infinite resistance [47], there will be an increase in

pairwise resistance between points close to the edge of the grid. We

also considered the shape of the relationship between resistance,

least-cost and linear distance on a bounded grid in comparison to

the expectations of isolation by distance of either a linear or log-

linear relationship with distance [77] again to inform null model

choice.

Correlations among models
Landscape models of effective distance resulted in pairwise

matrices for the 65 sample sites. These data (2080 pairwise

comparisons) were non-independent: each 65665 matrix con-

tained only 32 independent pairwise comparisons, the maximum

possible without using a point twice. In order to compare

alternative models while maintaining independence, correlation

coefficients between landscape models were estimated by repeat-

edly sampling 32 randomly selected pairs for 1000 iterations of

each of the pairwise distance matrices for each species and the

tree-cover model. Mean estimated R2 and the 95% intervals for

each model in comparison with the null models (isolation-by-

distance) were calculated. We used this approach rather than

Mantel correlations because it provides an appropriate estimate of

the true correlation among models conditional on the number of

distinct data points (i.e. N = 32), rather than the much-inflated

number associated with all pairwise correlations. Moreover, this

bootstrapping technique provides an indication of potential

variability in model correlations, which cannot be derived from

the Mantel correlation. On the basis of this assessment, a subset of

models including the appropriate null were chosen for ranking on

prior expectation of their ability to predict genetic-distances

between sample sites (to be tested in a later paper explicitly linked

to this one).

Forming the hypothesis: within-species ranking of the
likelihood that landscape models will predict genetic
data

Our models incorporate a range of heterogeneous landscape

models implemented as isolation-by-resistance, and two null

models: isolation-by-distance, where individuals’ mobility and gene

flow are restricted by geographic distance alone; and complete lack

of significant spatial pattern at the scale of our study as individuals’

mobility is unrestricted at the scale of the study area (i.e.

panmixia).This last hypothesis is characterised by no significant

effect of both isolation-by-resistance and isolation-by-distance.

Based on existing knowledge for each species derived from the

major reference work on the avifauna of the region [65,66] (Table

S2), species’ response to tree-cover change (tolerant or decliner)

and expert opinion on species’ mobility, we ranked the models on

their ability to predict genetic structure. These rankings of models

for each species represent our hypotheses. We based our ranking

on the following.
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(1) The mobility of some species is sufficiently restricted to result

in evidence of isolation-by-distance at the scale of the study,

whereas more mobile species are not expected to show this

effect (i.e. sufficient individuals move throughout the study

area and cause gene flow to result in drift connectivity [18]

and there will be no spatial pattern in their genetic variability).

(2) We assume that habitat loss and fragmentation will reduce

genetically effective dispersal between remnant tree-cover,

especially for low-mobility ‘decliners’. If this proposition is

correct, our model rankings are more likely to reflect the

genetic data.

Results

Development of landscape resistance models
Null models and Circuitscape edge effect. Values for

pairwise least-cost distance and isolation-by-resistance

(Circuitscape) across the study area when all grid cells had

resistance equal to one (UNIFORM) were correlated with the

geographic distance (GEOG) and with the log-transformed

geographic distance (logGEOG). For least-cost distance on a

uniform surface, the relationship with GEOG was strongest

(R2 = 0.998). For Circuitscape on a uniform surface (UNIFORM),

over all pairs, correlation was also strongest with GEOG, but for

pairs separated by less than 50 km it was more highly correlated

with logGEOG (all pairs: R2 = 0.97 and 0.89; pairs ,50 km: 0.90

and 0.99 respectively). The cause of this complex curve is an ‘edge

effect’ in Circuitscape, where pairwise resistances increase toward

the edge of the grid. We demonstrated this ‘edge effect’ for a

simplified simulated dataset (Figure 2) and for the more complex

pattern of our study area (not shown). This effect is

disproportionately larger for greater pairwise distances at the

same geographic distance from the grid-edge (Figure 2).

Consequently, for models based on least-cost distance, a suitable

null model for comparison is simple geographic isolation (GEOG).

For models developed using isolation-by-resistance (Circuitscape),

the most appropriate null model is CS_UNIFORM i.e. the model

developed using Circuitscape with a uniform surface that also

incorporates the edge effect.

Expert opinion models. Over all distances combined, the

variation in mobility estimates (i.e probabilities of traversing a

given distance) among species was small (5% of variance in

estimates) compared with variation among distances (28%), and

was similar to variation among land use (9%) and experts (7%).

When within-distance variation was considered, among-expert

variance was the largest component of variance for distances

#2 km (18–28%). At distances .2 km, land-use and species were

attributed the greatest proportion of variance.

There was a bimodal distribution of mean estimates of resistance.

Mean estimates were either #23 (low resistance), or .2000 (high

resistance) in each species. Mean resistance estimated for the three

agricultural land-covers without trees (i.e. unimproved pasture,

improved pasture and arable land) were equal, as were crop and

Figure 2. Pairwise resistance as a function of distance from the point nearest to the edge of the grid. Circuitscape isolation by resistance
calculated over a linear distance in a circular grid of uniform resistance, 1 unit per cell, cell size 1 unit, and grid radius 500 cells. Each curve represents
a different pairwise geographic distance. As a pairwise distance increases, so does the distance from the edge of the grid at which an edge effect of
increased resistance distance is apparent. Where the edge of the grid represents an artificial barrier the resistance distance will be overestimated.
doi:10.1371/journal.pone.0030888.g002
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improved pasture with scattered trees. Therefore, the initial nine

land-cover classes were reduced to six resistance classes (Table 2).

The ‘tolerant’ White-plumed Honeyeater differed from all other

species. The estimate of land-cover resistance was low (,10) for up

to 1 km for all land-covers, and for all distances for all land-covers

except agricultural land without scattered trees. All other species

submitted for expert opinion (all ‘decliners’) were estimated to

have high resistance to movement (.2000) through land-cover

classes other than tree-cover at distances $200 m.

The ranking of mean estimates by experts of movement ability

through continuous tree-cover was similar to the classification of

dispersal abilities based on the literature (Table S2). White-plumed

Honeyeater, Yellow-tufted Honeyeater and Fuscous Honeyeater

were estimated to have low resistance to movement up to 10 km,

the maximum distance for which expert opinion was sought. For

the other species, which we identified on the basis of the literature

as poorer dispersers than the honeyeaters (Table S2), much higher

resistance to movement through tree-cover over 2 km or greater

distances was estimated by the experts. However, within these

poorer dispersers there was disagreement on ranking. Literature

suggests that Brown Treecreeper was the least mobile, followed by

Eastern Yellow Robin Superb Fairy-wren and Grey Shrike-thrush.

Expert opinion estimated Superb Fairy-wren and Eastern Yellow

Robin as the least mobile (high resistance at $2 km in tree-cover),

Brown Treecreeper, Grey Shrike-thrush, Weebill and were

estimated to have high resistance only at $5 km in tree-cover.

We grouped the species according to information on their

mobility summarised from the literature (Table S2) and expert

opinion. For some species, the available information was

inconclusive; for example, the species may be described as

generally sedentary but with anecdotal evidence of longer distance

movements or vice versa. We classified all species into four groups

(Table 1): Sedentary/poor dispersers (Brown Treecreeper); species

with inconclusive information that we considered were probably

sedentary (Eastern Yellow Robin and Superb Fairy-wren); species

with inconclusive information that we considered were probably of

moderate or higher mobility (Spotted Pardalote, Grey Shrike-

thrush, Striated Pardalote, Yellow-tufted Honeyeater and Wee-

bill); and mobile species/better dispersers (Fuscous Honeyeater

and White-plumed Honeyeater).

Correlations among models
All but three models with heterogeneous landscape resistances

were correlated with GEOG, logGEOG, and CS_UNIFORM

(estimated R2.0.5, Table S3). These three models (EYR_-

HAB_10, EYR_EO5000 and SFW_EO5000) had the highest

mean resistances (i.e. lowest predicted gene flows). Least-cost

distance models had a higher estimated mean correlation with

GEOG (mean R2 = 0.95) than did isolation-by-resistance models

with any of GEOG, logGEOG or CS_UNIFORM (mean

R2 = 0.73, 0.74 and 0.67 respectively, Table S3).

For the White-plumed Honeyeater, Yellow-tufted Honeyeater

and Fuscous Honeyeater, the low resistance (EO_100 and

EO_200) expert opinion models were indistinguishable from

isolation-by-distance models (R2,1, Table S3). Therefore,

EO_100 and EO_200 were not used for predictions. For the

high resistance model set, we chose EO_5000, as resistances for

this distance showed the most discrimination among species and

the highest proportion of variance in estimates (41% Table 3) due

to the biologically pertinent factors of species and land-cover.

Within-species ranking of models
Models were ranked, in the order of their predicted correlation

with genetic distances, based on knowledge and expert opinion of

the mobility and response to changed landcover for each species

(Table 4, Table S2). Highest correlation was ranked first and

lowest correlation seventh. The ranking resulted in six hypotheses

for the 10 species. The most sedentary decliners (Brown

Treecreeper, Eastern Yellow Robin, and Superb Fairy-wren) were

ranked similarly with high resistance models expected to provide

best fit. Two moderately mobile decliners (Spotted Pardalote and

Grey Shrike-thrush) were also ranked similarly. Weebill and

Yellow-tufted Honeyeater were ranked similarly. Fuscous Honey-

eater, the most mobile species, but a decliner, had an idiosyncratic

response to landscape configuration: no isolation-by-distance was

predicted, but it may still show weak structure due to loss of

connectivity in spite of its apparent mobility. The two tolerant

species (Striated Pardalote and White-plumed Honeyeater) were

not expected to have responses correlated with landscape

heterogeneity. On balance, the information for White-plumed

Honeyeater suggested that it may not be as highly mobile as the

other honeyeaters and thus may show weak isolation-by-distance.

The information on mobility levels for Striated Pardalote was

inconclusive, and therefore we ranked isolation-by-distance and

panmixia equally.

Discussion

We made predictions about the likely genetic response of 10

bird species to the landscapes used in the study based on available

data and on expert opinion. We grouped the ten species into seven

groups for expected response. Hypotheses were framed as the

ranking of a series of landscape distance matrices (uniform

resistance (isolation-by-distance), and heterogeneous isolation-by-

resistance/least-cost distance) plus no spatial structure for

panmixia, for testing against genetic distances.

We contend that the a priori ranking of a set of alternative

landscape distance models based on available ecological informa-

tion is a robust approach to testing landscape genetic hypotheses.

This may be even more important in the light of problematically

correlated landscape models and the risk of spurious correlations

[49,51]. Ranking of multiple species adds generality. Prior

predictions explicitly link characteristics of the organisms to their

response to landscape structure [23] and are considered to offer a

more rigorous test of inferences about ecological processes [22,78].

Application of expert opinion and descriptive literature
The low variance in expert opinion among species suggests that

experts believed that the loss of structural connectivity has a

similar effect on the mobility of nearly all species. However, the

White-plumed Honeyeater stood out as the exception as might be

expected for the one tolerant species for which we had expert

Table 3. Variance in expert opinion of land-cover resistance
to the movement of bird species.

Variance
component

All
distances Distance (m)

100 200 500 1000 2000 5000 10000

Distance 28

Expert 7 18 18 22 28 19 8 14

Land-cover 9 4 4 5 9 18 21 25

Species 5 3 3 1 1 6 20 14

Residual 51 75 75 72 62 57 50 47

doi:10.1371/journal.pone.0030888.t003
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opinion. Some experimental evidence exists for the Brown

Treecreeper and to a lesser extent for Eastern Yellow Robin,

White-plumed Honeyeater, Fuscous Honeyeater and Grey Shrike-

thrush, that movement is constrained by cleared gaps of 100–

200 m in tree-cover, but may be facilitated by scattered trees in the

intervening space [72,79]. This pattern was reflected in the expert

opinion of relative mobility through land-covers with and without

scattered trees over a distance of 100 m for all species except the

three honeyeaters.

Our assessments of the mobility of the different species were

based on sparse datasets, mostly inferred from descriptive material

and expert opinion. This enabled us to develop simple hypotheses

that distinguish the expected landscape responses of a group of

passerines found in the same general vegetation type but showing

markedly different response to habitat loss.

Expert opinion was consistent with descriptive information from

standard reference sources [65,66] in the grouping of birds’

mobility. However, it did not provide strong discrimination among

most of the species in terms of response to structural connectivity.

Gap-crossing behaviour may be similar for species that we have

identified as having widely varying mobility [72]. If so, then our

predictions of responses to heterogeneous tree-cover would not be

supported, and response to tree-cover gaps should be similar in all

woodland-dependent species. Our predictions of isolation-by-

distance, which are determined by general mobility rather than

gap-crossing behaviour, would be unaffected.

Garrard et al. [80] developed a model of natal dispersal based

on feeding guild, wing length, mass and existing natal dispersal

data reviewed from five studies of 84 (mainly northern

hemisphere) species in 12 avian orders. The model was then used

to predict median natal dispersal distance for the species studied by

Radford et al. [60]. A negative relationship was found between

natal dispersal distance and the effects of habitat fragmentation on

prevalence of a species in the landscape. This agreed with our

predictions - that the effects of habitat fragmentation will be

greater for poorer dispersers. However, the individual species

identified as having the shortest natal dispersal distances by

Garrard et al. [80] are those identified here as the most mobile (the

honeyeaters Lichenostomus spp.). We believe this disagreement arises

from the feeding guild classification of ‘omnivore’ being inappro-

priate for nectarivorous/insectivorous honeyeaters that are more

prominent in the south-eastern Australia avifauna [81] than in the

Garrard et al. [80] dataset.

Comparison among species and choice of null models
The consideration of multiple species allowed the ranked

expectations per species to be contrasted. This offers additional

inferences to the absolute fit of predictions to the sampling design,

and has been highlighted as a way to enhance the usefulness of

landscape-genetic studies [23].

The extent and scale of the grid for Circuitscape calculations is

limited practically by computational capacity (memory and time)

and data availability for land-cover [67], and leads to grid ‘edge

effect’ (Figure 2). The edge effect in Circuitscape computation

enables isolation-by-resistance to account for complex range or

habitat shapes in modelling of genetic differentiation [44].

However, where the Circuitscape grid has artificial boundaries

that are imposed due to data or computational limits, this edge

effect must be accounted for, and minimized through buffering

[67]. Therefore, we recommend the CS_UNIFORM distance as

the null model (effect of isolation-by-distance) for comparisons

with other Circuitscape resistances when considering heteroge-

neous landscape connectivity, and particularly for use in partial
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Mantel tests. CS_UNIFORM distance most closely follows the

predictions of isolation-by-distance at multiple distances and in

different habitat configurations [44,82], and alleviates the inflation

of resistances caused by artificial boundaries [67].

The shared basis of all the models of land-cover classes, and

principally tree-cover, along with the relatively low resistance

differentials, means that nearly all the models are correlated (Table

S3), making them difficult to distinguish among. The high level of

correlations between plausible resistance models is near universal.

Causal modelling provides a robust methodology for comparison

of, and selection among correlated distance hypotheses [49],

particularly when coupled with cross-conditioning of competing

models [56]. McRae [44] argued that the value of the isolation-by-

resistance model lies in its ability to examine the more subtle

effects of dissimilar gene flow through different landscape

components. Lower mean correlations between isolation-by-

resistance compared to least-cost distance for the same resistance

surfaces provides a greater level of discrimination in pairwise

comparisons across complex landscapes than do least-cost

distances. Therefore, for a given set of resistance estimates, an

isolation-by-resistance model may be more readily distinguished

from other models, and from isolation-by-distance models.

Resistance values in this system compared with others
The resistance values identified here, with the exception of some

of the expert opinion models (Table 2), are at the lower end of

those published employing least-cost path [30,36,37,39,41] or

isolation-by-resistance [55]. Some of these authors used values as

low as 1:2 for their habitat: matrix ratio; 1:10 to 1:1000 were more

usual, while 1:10,000 to 1:100,000 were used as barriers. The

studies cited above all involved fragmentation impacts on

mammals and amphibians. Birds may be expected to experience

lower levels of landscape resistance because flight allows them to

cross gaps more rapidly and to cover larger distances more

efficiently than non-volant terrestrial vertebrates. The one recent

study that used cost distance to examine landscape effects on

passerine genetic structure used resistance ratios similarly low to

ours [27]. The extremes in those models varied from 1:2 to 1:4 in a

least-path distance model.

Other multi-model selection studies have sought to maximise the

explanatory power of the best model through a multi-step approach,

first optimising the contribution of individual landscape elements,

and then combining them [55], or have combined inferences from

extensive tracking data and to determine the most plausible

landscape surfaces, that were then combined to produce a large

number of combination models for a single species [54,56,83]. By

making prior predictions between species comparisons using the

qualitative data available on each, we have taken a different

approach compared to previous studies to maximise the strength of

our inferences. This approach is most useful where multiple species

are sampled concurrently (e.g such as mist-netting of passerines),

and where there are not extensive data on individual movements,

though basic descriptive natural history is available. The study

system did not have the mountainous terrain, extreme climate and

differentiation of forest types present in the previous studies of

mammals in the mountains of the north –western USA [53–56,83].

The most similar approach to date [28] was also on forest birds,

although that study was comparing the expected response of a

habitat generalist with a specialist in largely continuous forest.

Maximising the ability to discriminate between
correlated models

It might be expected that isolation-by-resistance will accumulate

over distance, resulting in stronger signals over greater distances.

However, in a fragmented landscape these greater distances also

increase the number and importance of alternative routes and the

number of and complexity of configuration landscape elements that

individuals (or gene flow) encounter. One recent set of simulations

has suggested that this additional complexity with distance may

obscure effects, and, perhaps counter-intuitively, landscape resis-

tance signals may be more prominent at short distances [84].

However other recent simulations across landscapes of equal size,

but varying in complexity and cover, found that the best fit of

genetic data and landscape resistance was in landscapes with low

but aggregated cover and intermediate connectivity (Graves et. al,

Unpublished Manuscript). The comparison of, and discrimination

among, correlated models may result in increased Type-1 error

rates [51]. Use of ‘two stage causal modelling’ [49,56], along with

separate testing between landscapes of differing cover and

aggregation levels at short distance (within landscapes) and longer

distance (across study area), in our subsequent testing of predictions

with genetic data may help clarify some of these issues. Ultimately,

to distinguish unequivocally among correlated landscape models

may require extensive, spatially-explicit population-genetic and

demographic simulations across a range of landscape arrangements

and relative resistance values, and the development of more

powerful statistical techniques to deal with the necessarily pairwise

data of landscape genetics [19,45,85].

We have documented a process for making explicit predictions of

expected genetic outcomes for a range of species in a system of

conservation concern within and among landscapes based on

available data. The process maximises the inferences that can be

made about landscape connectivity effects for the system. Our model

study system, widespread and relatively abundant birds, means that

we have been able to gather good sample sizes for genetic analyses

across multiple species. However, this is countered by their high

mobility compared with many other organisms, and the small

proportion of the populations that we have been able to sample – a

result of sampling of many landscape units. Use of prior prediction

ensures that the study tests, and if possible extends, our knowledge of

the biological reality of connectivity in the system. If we can detect

effects in this system, then the presented approach is very likely to be

more effective for less-mobile species with smaller population sizes.

Ideally we would be able to identify a best model for each species.

However if we are able to identify a group of related models, this is

likely to determine the importance of connectivity effects for the less

well-connected species. This may be sufficient to develop manage-

ment recommendations for the system as a whole.
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