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Abstract: Technical advances have led to an explosion in the amount of biological data
available in recent years, especially in the field of RNA sequencing. Specifically, spatial
transcriptomics (ST) datasets, which allow each RNA molecule to be mapped to the 2D location
it originated from within a tissue, have become readily available. Due to computational
challenges, ST data has rarely been used to study RNA processing such as splicing or
differential UTR usage. We apply the ReadZS and the SpliZ, methods developed to analyze
RNA process in scRNA-seq data, to analyze spatial localization of RNA processing directly from
ST data for the first time. Using Moran’s I metric for spatial autocorrelation, we identify genes
with spatially regulated RNA processing in the mouse brain and kidney, re-discovering known
spatial regulation in Myl6 and identifying previously-unknown spatial regulation in genes such as
Rps24, Gng13, Slc8a1, Gpm6a, Gpx3, ActB, Rps8, and S100A9. The rich set of discoveries
made here from commonly used reference datasets provides a small taste of what can be
learned by applying this technique more broadly to the large quantity of Visium data currently
being created.

Introduction
One of the most fundamental questions of RNA biology is “where can I find this RNA in an
organism?” On a large scale, this question can be answered by sequencing different tissues of
an organism and characterizing their RNA compositions. However, a more fine-grained answer
was out of reach until the introduction of single-cell RNA sequencing (scRNA-seq) (Tang et al.,
2009) and spatial transcriptomics (ST) (Ståhl et al., 2016), each of which provide
complementary but distinct answers. In scRNA-seq, individual RNAs are labeled with their cell
of origin, but the relative spatial locations of these cells are unknown. In ST, RNAs are labeled
with cartesian coordinates describing their spatial locations, but the resolution is not yet able to
distinguish individual cells. While scRNA-seq requires time-intensive cell type annotation before
most analysis, ST data allows annotation-free analysis immediately. The promise of ST methods
led to spatially resolved transcriptomics being named the “Method of the Year” by Nature in
2020 (Marx, 2021).

Differential RNA processing, including alternative splicing and differential UTR usage, is
ubiquitous (Wang et al., 2008), highly regulated (Olivieri et al., 2021), and implicated in human
disease (Anczuków & Krainer, 2016) and treatment (Mendell et al., 2017).  Understanding the
spatial localization of RNA isoforms would help disentangle effects resulting from RNA
processing from those resulting in gene expression difference (Figure 1A). Despite its
importance, the function of the vast majority of alternative RNA processing is not understood
(Wan & Larson, 2018). Despite rising interest in ST, analysis of RNA processing in ST data is
almost completely unexplored. ST data suffers from challenges related to sparsity and the 3’
bias of the reads that impeded RNA processing analysis in droplet-based scRNA-seq data
(Arzalluz-Luque & Conesa, 2018). When RNA splicing has been studied in ST data, results
have relied on integration with separate long-read or full-length-coverage data that is then
mapped to spatial locations algorithmically (Booeshaghi et al., 2021; Joglekar et al., 2021;
Lebrigand et al., 2020). These methods each require a matched dataset for RNA processing
analysis in ST data, which makes them inapplicable to most of the ST datasets publicly
available. There has been some analysis of 3’ UTR localization in subcellular spatial data
(Bierman & Salzman, 2022), but most relies on seqFISH experiments rather than ST data
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(Cassella & Ephrussi, 2022). Up to this point, analysis of RNA processing directly from ST data
has been out of reach.

In this work we apply the SpliZ (Olivieri et al., 2022) and ReadZS (Meyer et al., 2022)
methods, developed to analyze alternative splicing and 3’ UTR usage, in scRNA-seq data, to
study spatial regulation of RNA processing directly from ST data for the first time. Because both
droplet-based scRNA-seq and ST technologies suffer from similar challenges due to sparsity
and 3’ bias, these methods are directly applicable to ST data. We use Moran’s I measure of
spatial autocorrelation with a carefully constructed null to identify genes with spatially regulated
RNA processing in the mouse brain and kidney.

Results
We applied the SpliZ and ReadZS, recently-developed methods to identify splicing differences
and UTR length differences in single-cell data respectively (Meyer et al., 2022; Olivieri et al.,
2022), to identify spatially-regulated RNA processing changes in the mouse brain and kidney.
Intuitively, the ReadZS quantifies the average location of read build-up in discrete genomic
windows (5000 bp-length continuous regions of the genome) in each spatial cell, while the SpliZ
quantifies the deviation of the ranked length of introns in a given cell from the population
average for that gene (lower values indicate shorter introns, higher values indicate longer
introns). ST data has similar formatting and biases compared to droplet-based scRNA-seq data,
meaning that we can apply the ReadZS and SpliZ to ST data without modification, though
neither has been applied to spatial data to this point.

We applied the SpliZ and ReadZS to Visium data from the sagittal-posterior mouse brain
(2 biological replicates), the sagittal-anterior mouse brain (2 biological replicates), and the
mouse kidney (1 biological replicate) (Methods). The number of spots covered by the tissue in
these datasets ranges from 1,436 to 3,355, and sequencing depth is generally lower than for
10x data, leading to fewer genes and genomic windows with ReadZS and SpliZ scores per spot
(Table 1) (Olivieri et al., 2021).

Significantly spatially regulated RNA processing can be quantified using Moran’s I
measure of spatial autocorrelation (Getis, 2007) on SpliZ and ReadZS scores. Applying the
SpliZ and ReadZS to ST data results in a single ReadZS score per genomic window per spot,
and a single SpliZ score per gene per spot (Methods). For each gene, Moran’s I quantifies the
average similarity between the value of each neighboring pair of spots (Methods). A negative
value implies neighboring pairs are more likely to have different scores and a positive value
implies neighboring pairs are more likely to have similar scores. This paper focuses on genes
with high Moran’s I values (Figure 1B). Significance values were calculated through permutation
testing, with modifications to avoid high type I error rates (Figure 1C, Methods, Chung &
Romano, 2013). Genes with significant Moran’s I scores (p value < 0.05 by permutation testing,
Methods) in both biological replicates have highly correlated Moran’s I scores for the SpliZ
(Spearman correlation 0.936-0.943) and the ReadZS (Spearman correlation 0.765-0.885),
indicating that this metric is robust and replicable (Supp. Figure 1, Methods).

Despite the 3’ bias and sparsity of ST data, applying Moran’s I to sections of the mouse
brain revealed that splicing in 0.8-2.2% of detected genes (8-17 genes) and RNA processing in
1.1-5.5% of detected genomic windows (57-161 windows) are significantly spatially regulated
(Table 2). Although this is lower than the 13-22% of detected genes for which the gene
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expression was spatially regulated, it still shows that spatial regulation of RNA processing can
be analyzed in ST data. In each tissue section the SpliZ and ReadZS identified genes for which
RNA processing was significantly spatially regulated, but gene expression was not (Figure 2).
Note that fewer reads are used to compute the SpliZ and ReadZS compared to gene
expression, which could account for some of this difference.

The genes Myl6, Rps24, and Gng13 consistently had the highest Moran’s I scores for
the SpliZ in both the sagittal-anterior and sagittal-posterior mouse brain (Figure 2A, Table 3).
Myl6 was the only gene that consistently had a higher splicing Moran’s I than gene expression
Moran’s I. Myl6 is a myosin light chain gene that has a known exon skipping event which is
cell-type-specifically regulated in human, mouse, and mouse lemur (Olivieri et al., 2021), and
was previously reported to be spatially localized in the mouse brain (Lebrigand et al., 2020). The
exon-included isoform is most highly expressed in the brainstem and cerebellum, while the
exon-excluded isoform is most highly expressed in the cerebrum. Gene expression is more
uniform across the brain (Figure 3A).

The ribosomal protein gene Rps24 was in the top three genes most significantly spatially
regulated by Moran’s I for the SpliZ in all tissue sections (Figure 2A). Cell-type-specific splicing
of Rps24 is known to be ubiquitous in human, mouse and mouse lemur, including in the brain
(Olivieri et al., 2021; Song et al., 2017). However, the spatial localization of Rps24 splicing has
not yet been shown. We observe higher levels of exon inclusion in the cerebrum of the mouse
brain and the cortex of the kidney, compared to the rest of the tissues (Figure 3B).

The olfactory gene Gng13 had one of the top-three highest Moran’s I for the SpliZ in
both the sagittal-anterior and sagittal-posterior mouse brain (Figure 2A). Gng13 is known to be
highly expressed in the mouse cerebellum and outer layer of the olfactory bulb (Sanfilippo et al.,
2021), but differential isoform expression has not previously been reported. We find that two
different isoforms that differ by their 5’ end are expressed in the mouse brain, with the longer 5’
end mostly expressed in the tip of the cerebrum and the cerebellum, while the shorter 5’ end is
mostly expressed in the rest of the brain (Figure 3C). In this case, lower levels of Gng13
expression correlate with expression of the shorter isoform.

Two of the top three genomic windows with significant Moran’s I values for the ReadZS
in the mouse brain were calcium-related genes with unannotated 3’ UTRs (Tables 3-4). The
genomic window corresponding to the 3’ UTR of Slc8a1 was within the top 3 most significant in
the anterior brain, and had a larger Moran’s I value for ReadZS than gene expression in the
sagittal-posterior mouse brain (Figure 2B). Slc8a1 is a transmembrane protein that mediates the
exchange of calcium and sodium ions. The mouse cerebrum contains mostly transcripts with an
unannotated shorter 3’ UTR, while the cerebellum and brainstem mainly contain the annotated
UTR (Figure 4A). Of interest, in some of these areas we see a third unannotated UTR that
stretches beyond the annotated UTR (again spatially regulated, Figure 4A). Additionally, the
calcium-channel-enabling gene Gpm6a was one of the top-two highest Moran’s I for the
ReadZS in the mouse brain (Figure 2B). Gpm6a is a transmembrane protein present on
neurons. It has been observed that overexpression of Gpm6a results in a Ca2+ influx, while
Gpm6a inhibition leads to a suppression of Ca2+ influx and neuron differentiation (Michibata et
al., 2008). In human hepatocellular carcinoma GPM6A has been shown to be regulated through
binding of the miR-96-5p microRNA to the 3’ UTR of the gene, with production levels
significantly decreasing with binding (Li et al., 2022). This indicates that differential UTR
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expression could result in fewer binding sites and thus affect Gpm6a production levels. The
unannotated 3’ UTR is expressed more highly in the cerebrum of the mouse brain, while the
annotated 3’ UTR is prevalent in the cerebellum (Figure 4B). Notably, high expression levels of
Gpm6a are highly correlated with areas that include the shorter UTR, supporting the hypothesis
that the shorter UTR doesn’t include the miR-96-5p binding site.

Gpx3 has the second-highest Moran’s I value in the mouse kidney for ReadZS (Figure
2B). Gpx3 is a selenoprotein secreted primarily by kidney proximal convoluted tubule cells.
Transcripts at the interface of the cortex and the medulla have shorter UTRs compared to those
in the cortex or the medulla. Only one 3’ UTR is annotated for Gpx3, but the 3’ UTR has been
implicated in the rate of translation of Gpx3 when selenium levels are low (BERMANO et al.,
1996), and its 3’ UTR has been shown to confer stability (Wingler et al., 2001).

The RNA processing of housekeeping genes Rps8 and Actb is also spatially regulated in
the mouse brain. The ribosomal protein Rps8 had the 6th-most-significant ReadZS spatial score
in the sagittal posterior mouse brain. Although Rps8 is not known to be differentially spliced, it
has been shown that a diversity of ribosomal proteins helps create heterogenous selectivity of
ribosomes (Shi et al., 2017). The distribution of reads among the exons of Rps8 varies with
spatial location (Supp. Figure 3) , which could indicate different Rps8 isoforms present. The
actin gene Actb had the 8th-most-significant ReadZS Moran’s I score for the sagittal posterior
mouse brain. Although Actin is considered a housekeeping gene, it is known to have an isoform
with a longer UTR that confers higher translational efficiency of the transcript (Andreassi &
Riccio, 2009; Ghosh et al., 2008). Our spatial analysis specifies the regions of the mouse brain
and kidney that preferentially express the longer 3’ UTR, allowing functional understanding of
which subtissues prioritize this transcript variant of Actb (Supp. Figure 4).

To show that we could identify spatial patterns in tissues without a priori anatomy
annotations, we used this same methodology to identify spatial patterns in human tumor data
(Sudmeier et al., 2021). We identified the calcium-binding protein S100A9 as the
14th-most-significant ReadZS spatial pattern by Moran’s I in a brain metastasis from breast
cancer carcinoma. The relative abundance of transcripts with a retained intron in S100A9 varies
spatially in both human lung adenocarcinoma and human breast carcinoma metastases (Figure
4D). S100A9 is another calcium binding protein that is involved in the development of metastatic
disease, though intron retention in this gene has not been previously described (Markowitz &
Carson III, 2013). In this case the ReadZS identified an increase in intronic expression in some
sections of the tumor sample. This serves as a taste of the rich discoveries that could be made
by applying this methodology to unannotated tissue samples.

Discussion
In addition to revealing previously unknown biology, this work serves as a proof-of-concept for
analysis beyond differential gene expression localization from ST data. Future work exploring
alternative methods of identifying spatially significant RNA processing patterns could likely
identify more intricate spatial organization (for example, a method that would give a higher score
to the SpliZ vs gene expression for Gpx3). Spatial analysis may be particularly revealing for the
study of alternative splicing and alternate 3’ UTR usage due to the incomplete characterization
of RNA isoforms: understanding where an isoform is expressed could inform hypotheses of
isoform function. Because the 3’ UTR is known to contain motifs used to localize transcripts
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intracellularly, these methods will become all the more impactful when subcellular spatial
sequencing data is available. Spatial analysis may be particularly fruitful when applied to tissue
slices such as those from understudied organisms or cancerous tumors, because these
datasets do not have previously-known anatomy. Models incorporating gene expression,
splicing, and RNA processing information from multiple genes could help characterize these
tissues in an annotation-free manner. Overall, this work represents a first step into the field of
RNA processing analysis directly from ST data.

Figure captions
Figure 1. A) Analysis of ST data has almost exclusively focused on finding spatial regulation of
gene expression, missing potential spatial regulation of RNA processing and splicing. B) An
example calculation using Moran’s i for all neighbors (outlined in blue) of the spot outlined in
red. The red spot’s score is multiplied with each blue spot’s score individually, and the results
are summed and normalized by the number of pairs. The pattern on the left results in a score
close to zero, while the pattern on the right results in a score close to one. This indicates that
the pattern on the right is more likely to have spots with similar scores grouped together. For the
full metric, this calculation is performed over all neighboring pairs (rather than only for the
neighbors of one spot). C) To calculate p values, permutations are performed by sampling the
scores of each neighboring pair from the scores of that pair in a random gene.

Figure 2. A) For each mouse dataset, Moran’s I for the SpliZ is included on the x axis and
Moran’s I for gene expression is included on the y axis. Points with Moran’s I for the SpliZ > 0.2
are labeled. In several genes (marked in blue), Moran’s I for the SpliZ is larger than for gene
expression, indicating that the spatial regulation of splicing is more pronounced than the spatial
regulation of gene expression. B) Same as A, except Moran’s I for the ReadZS is included on
the x axis. C) These plots show only the points from B) corresponding to genomic windows that
are significant by the ReadZS but not gene expression. Points for which Moran’s I for ReadZS >
0.15 are labeled.

Figure 3. Splicing spatial regulation plots. The “histology” column contains histology images
of the mouse sections, with anatomy annotated. In the “gene expression” column, each spot is
colored according to its quartiled gene expression value. Dark blue corresponds to low gene
expression, and yellow corresponds to high gene expression. In the “SpliZ” column each spot is
colored by its quartiled SpliZ value. Box plots showing the splicing across each quartile are in
the right-most column. For a single splice site (marked with a blue vertical line in the gene
annotation), each Visium spot has some fractional usage of the corresponding splice sites
(marked by red vertical lines in the gene annotation). Each box plot is created based on these
fractions for the Visium spots in the given quartile. The whiskers on the box plots extend to the
furthest point 1.5 times the interquartile range in either direction. All other points are marked as
outliers. A) Splicing of Myl6 is spatially regulated in the sagittal-posterior mouse brain and the
mouse kidney. B) Splicing of Rps24 is spatially regulated in the sagittal-posterior mouse brain
and the mouse kidney. C) Splicing of Gng13 is spatially regulated in the sagittal-anterior and
sagittal-posterior mouse brain.
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Figure 4. 3’ UTR usage spatial regulation plots. The “histology” column contains histology
images of the tissue sections, with anatomy annotated where possible. In the “gene expression”
column, each spot is colored according to its quartiled gene expression value. Dark blue
corresponds to low gene expression, and yellow corresponds to high gene expression. In the
“ReadZS” column each spot is colored by its quartiled ReadZS value. Density plots to the right
show the read density for the given genomic range, separated by ReadZS quantile. Color bars
next to each peak plot indicate which quartile the distribution corresponds to. A) Unannotated 3’
UTRs of Slc8a1 are spatially regulated in the sagittal-anterior and sagittal-posterior mouse
brain. Several reads extend past the annotated 3’ end of the transcript. B) Unannotated 3’ UTRs
of Gpm61 are spatially regulated in the sagittal-anterior and sagittal-posterior mouse brain. C)
Subtle differentiations in the 3’ UTR location of Gpx3 are spatially regulated in the mouse
kidney. D) Intron retention of S100A9 is spatially regulated in human tumor brain metastases.

Supplemental Figure 1. Moran’s I of biological replicates are highly correlated for gene
expression, SpliZ, and ReadZS for those genes/genomic windows for which Moran’s I is
significant in both replicates.

Supplemental Figure 2. Biological replicates of Figure 2. A) Plots of SpliZ vs gene
expression for sagittal-anterior mouse brain section 2 and sagittal-posterior mouse brain section
2. B) Plots of ReadZS vs gene expression for sagittal-anterior mouse brain section 2 and
sagittal-posterior mouse brain section 2. See Figure 2 for a full description.

Supplemental Figure 3. Exon expression of Rps8 is spatially regulated in all four mouse brain
sections and the mouse kidney. See Figure 4 for a full description.

Supplemental Figure 4. The 3’ UTR expression of Actb is spatially regulated in all four mouse
brain sections and the mouse kidney. See Figure 4 for a full description.

Table captions
All tables available here: https://doi.org/10.6084/m9.figshare.22144055.v1.

Table 1: Dataset summary. Columns are: dataname (name of dataset), num_spots (the
number of Visium spots with tissue information), med_reads_per_spot (median number of
reads per spot), SpliZ_med_per_spot (median number of genes with SpliZ values per spot),
ReadZS_med_per_spot (median number of 5000-bp windows with ReadZS values per spot),
ge_med_per_spot (median number of genes with nonnegative gene expression per spot),
and ReadZS_ge_med_per_spot (median number of 5000-bp windows with nonnegative gene
expression per spot)

Table 2: Summary of discoveries. Columns are: dataname (name of dataset), score (either
ReadZS_norm, SpliZ_norm, ge_norm, which is gene expression, or ReadZS_ge_norm,
which is 5000-bp-window expression), num_genes (the number of genes tested, or windows in
the case of ReadZS_norm or ReadZS_ge_norm), num_sig (the number with significant spatial
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patterns by Moran’s I), top (the top 10 genes/windows found to be significant in the dataset for
the given score), and frac_sig (the fraction of significant genes or windows).

Table 3: Spatial score (Moran’s I) for each gene/window in each dataset. A) Scores for the
SpliZ. B) Scores for the ReadZS. C) Scores for gene expression. D) Scores for gene expression
by genomic window. Columns are: gene (gene name), window (genomic window identifier; use
Table 4 to decode), score_cont (Moran’s I score), num_pairs (number of neighboring pairs
with non-NA values for this gene/window in this dataset), perm_pvals_emp_adj (empirical
permutation p value, adjusted by Benjamini Hochberg correction), dataname (name of the
dataset).

Table 4: Mapping of genomic windows to gene names. A) Mapping for mouse data. B) Mapping
for human data. Columns are: chr (chromosome), start (beginning coordinate of the
window), end (ending coordinate of the window), window (the name assigned to the genomic
window), strand (the genomic strand), gene (the gene name(s) assigned to this window and
strand).

Methods
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Data availability
BAM, gene expression, and spatial data was downloaded from the 10x genomics website for
each dataset. This includes two sections of the sagittal anterior mouse brain
(V1_Mouse_Brain_Sagittal_Anterior (sagittal-anterior mouse brain) and
V1_Mouse_Brain_Sagittal_Anterior_Section_2 (sagittal-anterior mouse brain (Section 2))), two
sections of the sagittal posterior mouse brain (V1_Mouse_Brain_Sagittal_Posterior
(sagittal-posterior mouse brain) and V1_Mouse_Brain_Sagittal_Posterior_Section_2
(sagittal-posterior mouse brain (Section 2))), and one section of the mouse kidney
(V1_Mouse_Kidney (mouse kidney)). A bash script to download all of the mouse data is
available here:
https://github.com/juliaolivieri/visium_analysis/blob/main/bash_scripts/download_mouse_data.sh
.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2023. ; https://doi.org/10.1101/2023.03.13.532412doi: bioRxiv preprint 

https://github.com/juliaolivieri/visium_analysis/blob/main/bash_scripts/download_mouse_data.sh
https://doi.org/10.1101/2023.03.13.532412
http://creativecommons.org/licenses/by-nc/4.0/


Human tumor data was downloaded from (Sudmeier et al., 2021) from GEO accession
GSE179373. Data from p20218-s002_L2 (patient 27, lung adenocarcinoma) and
p20218-s001_L1 (patient 26, breast carcinoma) was used in this study.

Code availability
All custom code written for this paper is available here:
https://github.com/juliaolivieri/visium_analysis.

Running Spaceranger
BAMs were not included for the human tumor data, so Space Ranger v. 1.3.1 was used to
create the BAMs. The human reference was downloaded using this command curl -O
https://cf.10xgenomics.com/supp/spatial-exp/refdata-gex-GRCh38-2020-A
.tar.gz. Space Ranger was run with default parameters. An example command is available
here:
https://github.com/juliaolivieri/visium_analysis/blob/main/scripts/submission_scripts/run_spacera
nger.sh.

Running the SpliZ
The SpliZ pipeline (https://github.com/salzman-lab/SpliZ) was run separately on each Visium
slide with bounds = 0 (requiring at least one read per gene per spot for the SpliZ score to be
calculated), grouping_level_1 = “dummy”, and grouping_level_2 = “pixquant”
(so differential splicing is determined based on quantiled pixel value of the image, though these
differential splicing calls are not used), and otherwise default arguments (Olivieri et al., 2022).
This treats each Visium spot as a “separate cell” and otherwise follows the logic of the original
SpliZ paper (Olivieri et al., 2022). An example config file is available here:
https://github.com/juliaolivieri/visium_analysis/blob/main/nextflow_inputs/visium_spliz.config, an
example sample sheet is available here:
https://github.com/juliaolivieri/visium_analysis/blob/main/nextflow_inputs/samplesheet_spliz.csv,
and an example bash script is available here:
https://github.com/juliaolivieri/visium_analysis/blob/main/nextflow_inputs/run_spliz.sh.

Running the ReadZS
The ReadZS pipeline (https://github.com/salzman-lab/ReadZS) was run separately on each
dataset with ontologyCols = “pixquant” (so differential RNA processing is determined
based on quantiled pixel value of the image, though these differential RNA processing calls are
not used), and otherwise default arguments (Meyer et al., 2022). This treats each Visium spot
as a “separate cell” and otherwise follows the logic of the original ReadZS paper (Meyer et al.,
2022). An example config file is available here:
https://github.com/juliaolivieri/visium_analysis/blob/main/nextflow_inputs/visium_readzs.config,
an example sample sheet is available here:
https://github.com/juliaolivieri/visium_analysis/blob/main/nextflow_inputs/samplesheet_readzs.c
sv, and an example bash script is available here:
https://github.com/juliaolivieri/visium_analysis/blob/main/nextflow_inputs/run_readzs.sh.
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Normalization of scores
We can create this "normalized" version of the SpliZ, ReadZS, or gene expression scores by
doing the following for each gene/window:

1. Rank all values from smallest to largest (ties are broken randomly, so the same value
can get multiple ranks)

2. Assign each rank to a uniform value between 0 and 1 (the value will be  r/(R + 1) where r
is the rank in question and R is the max rank of the dataset)

3. Use the reverse normal cdf to map each of these values to values from the normal
distribution.

These “normalized” scores are used for analysis throughout the paper.

Moran’s I value implementation
Moran’s I was calculated independently for each gene and each score as follows. Define a
graph G for a given gene and score as follows: the vertices are spots with non-NA values for
this gene/genomic window and score. There is an edge between two vertices if the
corresponding pair of spots are next to each other (each internal spot is surrounded by six other
spots). Let si be the score (either SpliZ or ReadZS) of spot i. Then Moran’s I is defined by:

Because the SpliZ and ReadZS are zero-centered, under the null hypothesis that the score is
not influenced by spatial location, the expected value of Moran’s I is 0. This value can also be
calculated for gene expression values by performing the normalization procedure on the values
first. The larger M is, the more spatial auto-correlation. Note that in this version we are not
including influences of non-neighboring spots in the calculation.

Permutations for Moran’s I
Permutation testing was used to assign p values to individual genes and scores. Note that
“naive” permutation testing (permuting a single gene’s values and calculating M separately each
time) is inappropriate, and causes the identification of many false positives. This is because we
expect there to be some similarity between neighboring spots based on the experimental
design, even under the null hypothesis: transcripts from the same cell can potentially be
sequenced from two neighboring spots. We were instead interested in situations when this
correlation between neighbors was unusually large.

We instead used the null where, for one permutation for a given gene, for each neighboring pair
of spots with non-NA values for that gene, we randomly chose a gene for which both of those
spots were non-null, and multiplied their scores.

We performed 1000 permutations with Benjamini Hochberg correction for each experiment. For
analysis of the SpliZ, only genes with at least 100 non-NA values were used. For analysis of the
ReadZS, only genomic windows with at least 1000 non-NA values were used. We used a
threshold of 0.05 on the corrected p values to determine significance.
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Correlation between biological replicates
Correlation between biological replicates was assessed by comparing MBA1 to MBA2, and
MBP1 to PMB2. For each pair, both discoveries were subset to those with adjusted p values
less than 0.05. A spearman correlation was performed between the Moran’s I scores of the
resulting genes/genomic windows.

Analyzing gene expression to compare to the SpliZ
Gene expression values to compare with the SpliZ were extracted from the filtered gene
expression matrices provided by Space Ranger. Gene expression scores were normalized in
the same way as SpliZ and ReadZS scores, and spatial regulation was determined using the
same method as well.

Analyzing gene expression to compare to the ReadZS
Gene expression of genomic windows for comparison with the ReadZS was analyzed from the
“counts” output of the ReadZS pipeline. Gene expression scores were normalized in the same
way as SpliZ and ReadZS scores, and spatial regulation was determined using the same
method as well.

Correlation between gene expression and SpliZ/ReadZS on an individual gene/window
level
For each given gene/window, a Spearman correlation was performed on the normalized
SpliZ/ReadZS scores and the normalized gene expression scores for each spot.

Annotation of mouse brain sections
Mouse brain sections were annotated through reference to the Allen Mouse Brain reference
atlas (Sunkin et al., 2012,
http://atlas.brain-map.org/atlas?atlas=2&plate=100883867#atlas=2&plate=100884125&resolutio
n=14.44&x=7768.016736260776&y=4023.9998653017246&zoom=-3&structure=688&z=6). The
mouse kidney was annotated with reference to the 3D virtual histology of murine kidneys
(Missbach-Guentner et al., 2018).
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