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Abstract

Inoculating plants with entomopathogenic fungi may influence plant nutrient uptake and

growth, and herbivore performance. Knowledge is limited concerning the effects of this sym-

biosis on higher trophic levels. We examined how fungal treatment of faba bean seeds with

the entomopathogenic fungus Beauveria bassiana influenced the choice-behavior and

development of the aphid parasitoid Aphidius colemani. We also sampled plant material for

analysis of changes in expression of genes related to plant defense pathways. While para-

sitoids were compatible with plants inoculated with B. bassiana initially (66 vs. 65% parasiti-

zation on inoculated and control plants, respectively; similar development times of

parasitoids: 9.2 days), the emergence of adult parasitoids originating from aphids on fungus

treated plants was significantly lower (67 vs. 76%, respectively). We also found that the

defense response changed, similar to induced systemic resistance, when plants were

treated with B. bassiana, similarly to what has been found for other plant symbiotic microor-

ganisms. These novel findings show that although the application of entomopathogenic

fungi to plants can alter the plants’ defense against herbivores, it may also have an impact

on beneficial insects, so their function and use should be evaluated on a case-by-case

basis.

Introduction

Terrestrial plants shelter fungi that live as endophytes inside plant tissue. Endophytism has

become synonymous with mutualism; however, the ecological role of endophytes can be com-

plex and imbalanced [1, 2]. Endophytic fungi can improve growth and plant resistance to her-

bivores, pathogens, and various abiotic stresses and therefore may have extensive effects on

populations of herbivores and their natural enemies [2–5]. While most endophyte research has

focused on the obligate ascomycete grass endophytes producing toxic alkaloids, species of

entomopathogenic fungi (EF), another group of hypocrealan ascomycetes, have more recently

been identified as plant colonizers [6, 7]. When entomopathogenic fungi infect their arthropod
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host, infective spores attach to and penetrate the cuticle via chemical and mechanical force

where after the fungus proliferates within its host [8]. The spores from entomopathogenic

fungi are used in biocontrol of several arthropod pests as an alternative to chemical pesticides,

and the fundamental aspects of the endophytic lifestyle of these fungi are of great interest to

researchers and may also prove to have substantial potential for biocontrol [9–11].

The entomopathogenic fungus Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Ascomy-

cota: Hypocreales) has been found as a colonizing endophyte in plants of nine different fami-

lies including many important crop species (e.g., maize (Zea mays L. (Cyperales: Poaceae)),

potato (Solanum tuberosum L. (Solanales: Solanaceae)), soybean (Glycine max L. (Fabales:

Fabaceae)), faba bean (Vicia faba L. (Fabales: Fabaceae)), and tomato (Solanum lycopersicum
L. (Solanales: Solanaceae))) [10]. The majority of studies report positive or neutral effects on

plant growth [10]. Also, most studies report a negative or neutral effect on how endophytic B.

bassiana affects herbivores [12, 13], but there are reports that endophytic entomopathogenic

fungi can stimulate arthropod herbivores (e.g. increased fecundity and biomass) [14–17].

Generally speaking, the consequences of microbe-plant-insect interactions are complicated

and rely on many factors [18], especially when considering higher trophic levels (i.e., parasit-

oids and predators), and potential adverse effects between EF and natural enemies are impor-

tant to consider [19, 20]. Previous studies have shown compatibility between EF and beneficial

arthropods [21–23], but there are also reports of EF causing higher mortality, lower fecundity

and reduced longevity in predators and parasitoids, and other studies have shown competition

for resources between the two groups of natural enemies [24–26]. We know that EF may influ-

ence the performance (e.g. growth parameters and nutrient acquisition) [10, 12] and nutri-

tional status [27, 28] of its host plant, and that choice behavior and fitness of natural enemies is

influenced by their host plant and its metabolites, as well as its nutritional status [27–32]. Fur-

thermore, several studies have reported an acquired enhanced defensive capacity in plants,

which is induced by their fungal and bacterial endophytes [33, 34]. However, very few studies

have explored how the treatment of plants with EF influence natural enemies and how plant

responses affect these interactions. Of these, two studies found that neither endophytic Metar-
hizium brunneum Petch (Ascomycota: Hypocreales), another entomopathogenic hypocrealan

ascomycete, nor B. bassiana had a negative impact on the aphid parasitoid Aphidius colemani
Viereck (Hymenoptera: Braconidae) or the predator Chrysoperla carnea Stephens (Neurop-

tera: Chrysopidae) [35, 36]. Another study mostly found a compatible relationship between

endophytic B. bassiana and two leafminer parasitoids, although some level of negative effect

on the survival of the parasitoids was reported [37]. This information and the fact that previous

studies on parasitoids and predators and other groups of endophytes have reported an antago-

nistic relationship [4, 5], makes it imperative to gain further knowledge on how the treatment

of plants with EF influence natural enemies.

Plants deploy a combination of constitutive and inducible defense when facing threats [38,

39]. These defense responses have been classified as either pattern-triggered immunity (PTI)

or effector-triggered immunity (ETI) [39]. PTI consists of the sensing of pathogen-associated

molecular patterns (PAMPS) by the plant, triggering a myriad of defense responses, such as

callose deposition and induction of the salicylic acid (SA), jasmonic acid (JA) or ethylene (ET)

pathways [40], whereas ETI depends on the recognition of pathogen-effectors, deploying

highly race or strain-specific responses, culminating in the hypersensitive response [41]. The

deployment and magnitude of these defense responses are highly energetically dependent,

shifting energy (ATP and NADH) from general metabolism towards defense responses, which

might cause an unbalance in plant growth and development [42]. Plant responses to herbivory,

including that of phloem-feeding insects, are complex and rely on heavy cross-talk among

defense pathways [43]. In general, wound responses, caused by chewing, induce JA-dependent
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genes, whereas phloem-feeding induces SA-dependent gene cascades [44]. The induction of

the SA-dependent pathway by phloem-feeders overlaps that of pathogenic signatures, mainly

due to the bacterial community present in these insects’ stylets, which is secreted into the plant

[45]. Conversely, the JA and ET pathways overlap during plant defense responses, where the

ET pathway is involved in volatile production and release to attract natural enemies, such as

parasitoids [46]. The JA/ET pathways are also negatively correlated with the induction of the

SA pathway, meaning that induction of one will repress the other [39]. The influence of both

beneficial organisms, as well as of pests and pathogens on plant defense can, therefore, be

determined by measuring changes in the expression of specific defense marker genes.

When colonized with endophytes, plants have been reported to acquire an enhanced defen-

sive capacity in several cases [33, 34]. This has been shown for plants colonized by arbuscular

mycorrhizal fungi (AMF) [47], as well as plants colonized by Trichoderma harzianum Rifai

(Ascomycota: Hypocreales) [48]. This induced systemic resistance (ISR) consists of a state of

systemic protection, closely associated with induction and priming of defense pathways, allow-

ing endophytic plants to perform better under stress conditions [33, 49]. Beauveria bassiana
has been shown to induce plant defense responses in date palm (Phoenix dactylifera L. (Are-

cales: Arecaceae)) and grapevine (Vitis vinifera L. (Vitales Vitaceae)) [50], but little is known

of this enhanced defensive capacity by EF. Some level of plant defense pathway reprogram-

ming in thale cress (Arabidopsis thaliana (L.) Heynh. (Capprales: Brassicaceae)) and maize (Z.

mays) by B. bassiana has been reported [51, 52], but the potential influence of these plants’

defense responses on natural enemies have not yet been elucidated. Furthermore, the possible

mechanisms behind the changes in plant defense responses when treated with B. bassiana and

further challenged by pests have yet to be determined.

This study aimed to investigate how the inoculation of Vicia faba seeds with the EF B. bassi-
ana influences the host-choice of the aphid parasitoid A. colemani in a two-choice arena set-

up. Furthermore, we observed the development time and emergence of adult parasitoids as

well as differences in the plant defense responses to aphid infestation. Given our previous posi-

tive results on aphid fecundity in a similar model system [15], we hypothesized that aphid

nymphs exposed to EF-treated plants would influence parasitoid development and oviposi-

tioning preference. As mentioned, few have reported on plant defense reprogramming by B.

bassiana. We hypothesized that there might be changes in the plants’ initial defense response

to the aphids in the EF-treated plants compared to non-fungus treated control plants similar

to other symbiotic microorganisms. We have evaluated this by measuring changes in the

expression of the specific marker genes PR1 and PR2, involved in the SA pathway, as well as

ERF-1, involved in the ET pathway.

Confirmation of endophytic colonization is time-consuming and not always successful [53,

54, 69]. As has been the case in other studies [55, 56], endophytic colonization was therefore

not confirmed in this study but assumed based on the observed significant interactions

between fungus, plant and insects.

Materials and methods

Preparation of fungal spore suspension

To initiate the fungus culture, B. bassiana strain GHA (BotaniGard) was spread on potato dex-

trose agar (PDA). After 2–3 weeks (20˚C, darkness) the fungus was harvested in a 0.2%

Tween20 solution using an inoculation spreader (Sarstedt A/S) to scrape the surface of the fun-

gus culture as described in [15]. The spore suspension was prepared by centrifuging the col-

lected fungal material two times at 4,000 rpm (3076 x g) for 4 minutes, thereafter adjusting the

concentration to 107 spores/ml by spore counting in a Fuchs-Rosenthal counting chamber.
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The percentage of germinating spores was checked the following day by observing more than

200 spores to ensure it was satisfactory (above 90%).

Preparation of V. faba plants

Vicia faba seeds (cv. ‘Vertigo’) were surface disinfected before sowing by being soaked in 70%

ethanol for two minutes, rinsed in sterile water, submerged for two minutes in 1% sodium

hypochlorite and finally rinsed three times in sterile water as described in [15]. To assess the

surface sterilization efficacy, 1 mL of the final rinse water was plated on PDA medium. Excess

amounts of seeds (ca. 400 total) were prepared. Following surface disinfection, half of the seeds

(ca. 200 seeds) were soaked in 250 ml spore suspension (107 spores/ml) of B. bassiana for two

hours, while the other half (control seeds) were soaked in 0.2% tween20. Then, three to four

seeds were sown in 0.5l pots in autoclaved (25 minutes at 121˚C) soil (1:1:1 peat:soil:sand). Fol-

lowing the emergence of seedlings, plants were thinned to one plant per pot. The plants were

kept in a greenhouse at 20±3˚C in net covered cages (h85cm x w65cm x d75cm). An automatic

irrigation system provided water and nutrient for the plants twice daily. After three weeks of

growth (five sets of leaflets–growth stage 38 [57]), plants were set to be used in the choice-para-

sitism experiment and for gene-expression sampling.

The aphids

A rearing colony of Aphis fabae Scopoli (Hemiptera: Aphididae) was kept in a separate net

covered cage (h85cm x w65cm x d75cm) in a greenhouse at 20±3˚C. To obtain a uniform

aphid cohort, similar-sized (second and third stage) aphids were taken from the rearing colony

and used in the parasitism experiment following commonly used procedures [58–61].

The parasitoids

Upon receiving mummies of Aphidius colemani from Borregaard BioPlant ApS, they were

placed in a plastic container with access to sugar water (70% sucrose). From the onset of adult

emergence, mummies were allowed to hatch and the adults to mate for 48 hours with access to

sugar water. The newly emerged mated females (48 hours old) were subsequently used in the

choice-parasitism experiment.

Choice-parasitism experiment

The experiment was set up as a choice experiment in ‘choice arenas’ in a greenhouse at 23

±3˚C and a 16:8 LD period, supplemented with artificial light in dark periods. Each arena con-

sisted of an insect mesh cage (Golden.Y at Amazon.co.uk, Inc.) with dimensions 60x60x90 cm.

Twenty-four cages (replicates) were set up simultaneously. Each arena had two V. faba plants

spaced circa 60 cm apart, a seed-inoculated plant in one end and a control plant in the other.

The positioning of the plants and the arenas in the greenhouse is shown in Fig 1. Cages were

arranged in a block structure designed to avoid light and temperature gradients, and to limit

interference between plants of different treatments. Twenty similar-sized mixed second and

third stage aphid nymphs were placed on each plant with a fine painters brush and allowed to

settle for 48 h before introducing the parasitoids. The aphids were distributed onto the first

and second parts of leaflets of each plant. Three newly emerged and mated female A. colemani
were then introduced in the center of each cage and allowed to parasitize for 24 h, after which

the aphid carrying leaves were cut off and placed in designated Petri dishes (100 mm diameter)

(one for each plant). To maintain leaf vigor, leaf bases were placed in fitted wet OASIS foam,

which was rewetted every 1–2 days. Petri dishes with aphids were kept in a climate chamber at
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23±1˚C, 70% RH and 16:8 LD and inspected every 1–3 days for the formation of mummies

and the subsequent emergence of adult parasitoids. On each inspection day, adults were

counted and removed. Dry or otherwise damaged leaves were replaced with fresh leaves of the

same treatment, and aphids transferred with a painter’s brush following common procedures

[21, 62, 63]. Nymphs (unquantified) produced by observed aphids were removed during

inspections. Inspections were continued until it was certain that the emergence of parasitoid

adults had ceased (>25 days).

Gene-expression evaluation in EF-treated and control plants

Leaf samples were taken 9 am at 0, 24, 48 and 72 hours post aphid infestation (single plants

only sampled once), shock-frozen in liquid N, lyophilized, ground and stored at minus 80˚C

in plastic vials, following the protocol described in [64]. Plants used in the sampling were

grown simultaneously and under similar conditions as those in the choice experiment, each

plant being exposed to twenty similar sized second and third stage nymphs and presented to

parasitoids at the same time points. Three first true leaves (six leaflets) were harvested from

Fig 1. Illustrations of the set-up used for the choice-parasitism experiment. Top: Illustration of a choice-arena

showing the spacing of plants and dimensions of the cages. Bottom: Schematic illustration of the greenhouse where

“+B” denotes B. bassiana inoculated plants and “C” the control plants. Numbers refer to individual cage numbers.

Cage 25 and 26 contained all plants for RNA extractions (twelve per treatment).

https://doi.org/10.1371/journal.pone.0238943.g001
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plants (biological replicate). The material was harvested in 120 mL screw cap containers.

Three biological replicates (from different plants) were independently carried out for each

treatment and time-point, and two technical replicates (two reactions with a template from the

same plant) of each were considered for measurements of relative gene expression.

Changes in the relative expression of the genes: PATHOGENESIS-RELATED PROTEIN 1

(PR1), PATHOGENESIS-RELATED PROTEIN 2 (PR2), and ETHYLENE-RESPONSIVE

FACTOR 1 (ERF-1) were evaluated by two-step RT-qPCR. The changes in expression were

normalized against changes in expression of the housekeeping gene ELONGATION FAC-

TOR-α (ELF- α), using the 2ΔCT method [65]. Total RNA was extracted from faba bean leaf

samples, using an RNA NucleoMag Kit (744350.1 Macherey-Nagel GmbH & Co. KG) accord-

ing to the manufacturer’s instructions. First-strand cDNA was synthesized from 1 mg of total

RNA using a High activity cDNA Reverse Transcription Kit (4368814 Applied Biosystems)

according to manufacturer’s instructions. RT-controls were added to account for gDNA con-

tamination. Primers for the abovementioned target genes were selected from the literature

[66–68] (additional information on primer sequences and PCR efficiencies in S1 Table). The

qPCR reactions were performed on an Applied BiosystemsR ViiA 7 Real-Time PCR System.

These were carried out using 1 μL (10 mM) primer pair, 2 μl cDNA template, 6 μl SYBR green

master mix (Quanti Tech SYBR Green kit, Qiagen, GmbH Hilden, Germany) and diluted to a

final volume of 12 μl with RNase-free water, following the protocol described in detail in [64].

In the negative controls, RNase free water was used to replace the cDNA template as no-ampli-

fication controls (NAC). The qPCR program was as described in detail in [64], following the

steps: heating step of 2 min at 50˚C, 10 min initial denaturation at 95˚C, 40 cycles of denatur-

ation for 15 s at 95˚C, annealing for 1 min at 60˚C. The fluorescence signal was measured

immediately after incubation for 1 min at 60˚C following the annealing step, and at the end of

the cycles, melting temperatures of the PCR products were determined between 60˚C and

95˚C.

Statistical analysis

Choice parasitism experiment. Data from the choice-parasitism experiment was ana-

lyzed using R [69] with generalized linear mixed models (GLMM) using the package lme4

[70]. The proportion of recovered aphids, mummies and emerged adults were analyzed in

three independent GLMMs. The three GLMMs all used a binomial distribution and shared

treatment as a fixed effect and cage number (1 to 24) (replicates) as a random factor (logit link

function). To analyse the average juvenile development time of the parasitoids, we fitted a lin-

ear mixed effect model (normal distribution–identity link function). We used treatment as a

fixed effect and cages as a random factor. Models were validated using R package DHARMa

[71] via QQ-plots of residuals and using KS-, dispersion- and outlier tests. To test if the posi-

tioning of cages had an effect, we tested the models using ‘block’ (each table of four cages) as

the explanatory variable. Block was not significantly associated with our responses and was

removed from final analyses. Comparisons of means were done using simultaneous tests for

general linear hypotheses using the package multcomp [72]. Calculations of means and stan-

dard errors for plotting purposes were done using the delta method in the package car [73].

Unadjusted p values for reporting significant differences (p value < 0.05) are used throughout

the data presentation. SigmaPlot Version 11.0 (Systat Software, San Jose, CA, United States)

was used for making plots.

Gene expression evaluation. Using R [69] gene-expression data were analyzed using lin-

ear models (Expression ~ B.bassiana) to assess differences in gene expression between B. bassi-
ana treated and untreated plants within each sampling time-point followed by a type I analysis
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of variance (ANOVA). SigmaPlot Version 11.0 (Systat Software, San Jose, CA, United States)

was used for making plots.

Results

Choice parasitism observations

The proportion of aphids recovered from the arenas for subsequent observation did not differ

between treatments (0.81 for the control and 0.80 for B. bassiana seed treatment, z-value =

0.33, residual df = 45, p value = 0.74). The percentage of mummified aphids on inoculated

plants and control plants did not differ significantly (66% and 65% respectively, z-value = 0.29,

residual df = 45, p value = 0.77) (Fig 2). However, the percentage of emerging adult parasitoids

on B. bassiana inoculated plants was significantly lower than the emergence in the correspond-

ing control treatment (67% vs. 76%, z-value = 2.6, residual df = 45, p value = 0.0096) (Fig 2).

We found no significant difference in the mean juvenile development time of the parasitoids

between the treatments (z-value = 0.16, residual df = 45, p value = 0.88), the mean development

time being 9.1 days for both treatments.

Gene-expression evaluations in faba bean leaves

Relative expression of PR1 was significantly higher in B. bassiana treated plants at 72 h post

aphid infestation when compared with control plants (Fig 3A, ANOVA, p value = 0.002,

F = 43.13, residual df = 4). Relative expression of PR2 was consistently lower in B. bassiana
treated plants when compared to control in all time points (Fig 3B, ANOVA, p values:

24h = 0.007, 48h = 0.012, 72h = 0.03, F: 24h = 25.8, 48h = 18.66, 72h = 10.5, residual df = 4).

Fig 2. Mean percentage of mummified aphids and emerged adult parasitoids from aphids collected from choice-

experiment arenas. The data presented are mean percentages from twenty-four replicates (arenas). Error bars represent

standard errors. Statistically significant differences indicated by � (p value< 0.05).

https://doi.org/10.1371/journal.pone.0238943.g002
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Fig 3. (a) Relative expression of PR1 in Vicia faba plants at 24, 48 and 72 hours after Aphis fabae infestation. (b)

Relative expression of PR2 in Vicia faba plants at 24, 48 and 72 hours after Aphis fabae infestation. (c) Relative

expression of ERF-1 in Vicia faba plants at 24, 48 and 72 hours after Aphis fabae infestation. Plants were either seed-

inoculated with B. bassiana or not. Statistical significance between treated and untreated plants at each time point

indicated by � (ANOVA, p value< 0.05, n = 3). Error bars represent ± SE of the mean.

https://doi.org/10.1371/journal.pone.0238943.g003
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Relative expression of ERF-1 was significantly higher in B. bassiana treated plants at 24 and 48

hours post infestation, whereas at 72 h post infestation, expression in control plants was signif-

icantly higher than in B. bassiana treated plants (Fig 3C, ANOVA: p values: 24h = 0.03,

48h = 0.03, 72h = 0.01, F: 24h = 9.54, 48h = 10.4,72h = 17.47, residual df = 4).

Discussion

We have shown the effects of a plant-fungal interaction obtained via seed treatment without

focusing on the location of the fungus inside the plant. Very little is known of how EF colonize

plants [13], and our results emphasize that interactions manifest themselves after simply treat-

ing the seed with a spore solution. There are multiple reports of effects on insects where

retrieving of the fungus from the host plant failed, maybe due to the limited growth of the fun-

gus within the host plant [13]. Also, methods for screening and quantifying endophytic coloni-

zation vary greatly and come with several caveats such as contamination problems [12] and

underestimation of colonization [74]. Endophytic colonization has in previous studies been

assumed without testing for colonization [55, 56].

In this study, we found a negative relationship between seed-inoculated B. bassiana and the

aphid parasitoid A. colemani, as the emergence of parasitoids was significantly lower for proge-

nies matured on fungus-inoculated plants. This confirms our initial hypothesis that the devel-

opment of parasitoids would be influenced by EF-treatment. There are many reports of fungal

endophytes generally influencing the development of parasitoids and other natural enemies

adversely [4, 5, 59, 75–81]. In most cases, the production of fungal secondary metabolites

(alkaloids in general) and subsequent changes to plant chemistry is presumed to be the cause

of the observed negative effects. However, symbiotic fungi in plants influence plant metabo-

lism via multiple routes. For instance, mycorrhizal fungi can stimulate plant defense by induc-

ing a cascade of changes in plant metabolism [82, 83].

This is to our knowledge the first report of an antagonistic interaction between a parasitoid

and a plant inoculated with EF, as the few studies conducted on interactions between EF-

treated plants and parasitoids so far have shown a mostly neutral relationship [35–37, 84]. The

one study we found directly comparable to ours (a choice-set-up with A. colemani), found no

significant differences in the preference (expressed as percentage mummification and adult

emergence) of A. colemani for cotton aphids, Aphis gossypii Glover, feeding on B. bassiana-col-

onized plants compared to non-colonized control plants [36]. However, the large ratio of para-

sitoids to aphids (100: 20) used in the 24 h parasitization experiment, combined with the

unusually low parasitization percentage (approx. 50%) [36], suggests significant interference

between the parasitoids, thereby perhaps masking a possible preference and thus making a

comparison to our results difficult [36]. We have previously observed a positive effect of endo-

phytic EF on aphids [15], but the majority of research done on endophytic EF and herbivores,

including sap-sucking insects, report a negative effect on the insects (i.e. an enhanced plant

defensive capability) [10, 12, 13]. Since the success of the intricately associated parasitoids

relies on the quality of their host [85], it makes sense to assume some kind of negative conse-

quence on the higher trophic level. A stronger negative effect on parasitoids than their herbi-

vore hosts have previously been demonstrated in studying Epichloë spp. endophytes [80].

Furthermore, B. bassiana applied directly for pest control has previously been reported to have

a negative relationship with parasitoids acting indirectly through lowering the quality of the

aphids/diminishing the propensity to oviposit in the hosts and lowering parasitoid emergence

[26]. We did not observe a difference in the development time of the parasitoids between treat-

ments and our reported development times fit well with previous results at similar tempera-

tures [86]. Our hypothesis that parasitoid development would be influenced by EF treatment
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was not confirmed in this case. The parasitoid exposed aphids in our study were kept on

detached leaves rather than on whole plants, and we expect that using whole plants could have

increased the effect on parasitoid larval development had it been possible to do so [13]. We did

not test for other parasitoid parameters such as sex ratio and weight of newly hatched adults.

Further experimentation in this regard will allow us a better understanding of the influence of

EF-treated plants on parasitoids.

We found that newly hatched female A. colemani did not discriminate between aphids on

plants inoculated with B. bassiana and on control plants, as the percentage of mummified

nymphs did not differ between treatments. This does not confirm our hypothesis that EF-

treatment would influence parasitoid ovipositioning preference. The small instar nymphs used

were allowed to settle on experimental plants for 48 hours before the introduction of parasit-

oids. By increasing the initial exposure time, the influence on nymphs could become greater,

but it would also allow nymphs to reach a suboptimal stage for parasitoid performance. The

percentage of parasitized aphid nymphs fits well with a previous report for the parasitization of

A. fabae by A. colemani [87], confirming that our set-up functioned well, allowing parasitoids

to parasitize, but not increasing the incidences of interference, including superparasitism.

As mentioned above, many endophytes, in general, are known to affect parasitoids nega-

tively. It has been found that older female parasitoids can distinguish between endophytic and

non-endophytic plants thus enhancing the success of their progenies, whereas younger females

cannot do this [79]. We used young females with no prior experience with EF-treated plants,

which perhaps explains why they did not make a choice regarding a host plant. However, it

should be considered that the example given involved Epichloë endophytes, which have a dif-

ferent mode of action than our system (fungal alkaloids). Even so, these results confirm the

notion, especially on higher trophic levels, that each scenario must be evaluated on a case-by-

case basis, and effects on higher trophic levels are very hard, if not impossible, to predict.

We found differences in defense gene marker expression, and thus, in the plant response to

aphid infestation when comparing B. bassiana treated and control plants, and this is consistent

with a previous study using endophytic B. bassiana [50]. Gene-expression results revealed a

delayed induction of PR1 at 72 h post infestation in B. bassiana treated plants, contrasting with

results of previous studies using other endophytic fungi, where induction of PR1 occurred

faster than in control plants [43, 64]. Furthermore, PR2 expression was consistently lower in B.

bassiana treated plants in all time-points. Interestingly, as PR1 is a known SA-dependent

marker, and PR2 a partly-dependent SA gene [38], these results suggest that there was a repres-

sion of the SA-response to aphid infestation in B. bassiana treated plants. This repression

might be related to the changes in the expression of the ET-pathway gene evaluated in the cur-

rent study. ERF-1 expression was higher in B. bassiana treated plants at 24 and 48 h post infes-

tation, becoming higher in control plants at 72 h post infestation. As this gene is an ET

receptor, these results might indicate that B. bassiana treated plants had a stronger induction

of the ET pathway at an earlier time-point than control plants, which would, in turn, lead to

the SA-pathway repression as discussed above [46]. Previous studies have shown that ISR by

endophytic fungi, namely AMF, is related to the JA/ET pathways [49]. Thus, the combined

changes in the SA- and ET-pathway markers shown here suggest that there might be a

response similar to ISR conferred by the EF, which has not previously been shown to occur in

response to EF treatment. Even though only a limited set of genetic markers were analyzed in

the current study, these results confirm our hypothesis that the changes in the plants’ initial

defense response are similar to that seen for other symbiotic microorganisms. Moreover, it

indicates that further detailed evaluations of the defense pathways in B. bassiana inoculated

plants after pest challenges are of interest for future studies. This is especially relevant, as a pre-

vious report of the defense reprogramming in thale cress (A. thaliana) showed that, resistance
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establishment was correlated with fungal pathogen infections but not with pest challenges

[51]. Additionally, whether the higher ET induction in B. bassiana inoculated plants evidenced

in this study would lead to differential ET or volatile production remains to be addressed in

future studies. This is especially relevant, as changes in production would change how natural

enemies perceive signaling by the plant. As we did not observe a difference in the choice-

behavior of the parasitoids, this aspect needs further investigation on a chemical level, by eval-

uating volatile production after aphid infestation. Furthermore, instances of ISR by AMF have

been shown to be related to changes in metabolism, as well as differential production of antiox-

idants by the plant [88, 89]. Due to the similarities in the changes to the plants’ defense

responses evidenced in the current study, research on changes of antioxidant production

induced by EF treatment might also be of interest in future studies.

In conclusion, these results showed initial compatibility between the two higher trophic

organisms, B. bassiana and A. colemani (no avoidance), although the lower emergence of para-

sitoid progenies lead to a diminished second generation. From an ecological viewpoint, this

could cause a negative outcome for the parasitoid and would be a disadvantage in inoculative

biocontrol strategies where the control relies on the progeny of released individuals. However,

in an inundative biocontrol strategy, the rate of parasitism for the first generation might lead

to sufficient control of an aphid infestation. This is one of the very few reports on changes in

plant defense responses following inoculation of plants with an entomopathogenic fungus.

The plant defense responses documented here showed similar patterns to those shown after

colonization by other symbiotic microorganisms. This indicates a response similar to induced

systemic resistance, which has not previously been shown for an interaction between an ento-

mopathogenic fungus and a plant.
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