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Abstract

We performed benchmarks of phylogenetic grammar-based ncRNA gene prediction, experimenting with eight different
models of structural evolution and two different programs for genome alignment. We evaluated our models using
alignments of twelve Drosophila genomes. We find that ncRNA prediction performance can vary greatly between different
gene predictors and subfamilies of ncRNA gene. Our estimates for false positive rates are based on simulations which
preserve local islands of conservation; using these simulations, we predict a higher rate of false positives than previous
computational ncRNA screens have reported. Using one of the tested prediction grammars, we provide an updated set of
ncRNA predictions for D. melanogaster and compare them to previously-published predictions and experimental data. Many
of our predictions show correlations with protein-coding genes. We found significant depletion of intergenic predictions
near the 39 end of coding regions and furthermore depletion of predictions in the first intron of protein-coding genes. Some
of our predictions are colocated with larger putative unannotated genes: for example, 17 of our predictions showing
homology to the RFAM family snoR28 appear in a tandem array on the X chromosome; the 4.5 Kbp spanned by the
predicted tandem array is contained within a FlyBase-annotated cDNA.
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Introduction

The number of non-coding RNAs (ncRNAs) in eukaryotic

genomes is one of the pressing open questions of genomics. The

upper bound on this number is believed to be in the tens of

thousands [1]. The biological significance of ncRNA is supported

by several recently-discovered classes of RNA that have function at

the transcript (as opposed to protein) level. These include

independently-transcribed gene families such as microRNAs

(miRNAs) [2,3], small nucleolar RNAs (snoRNAs) [4], and

piwiRNAs [5], as well as functional RNA elements in protein-

coding genes such as riboswitches [6], zipcodes [7] and splicing

regulators [8]. Microarray transcriptome surveys [9], as well as

whole-genome bioinformatics screens, turn up thousands of

candidate ncRNAs [10–13].

One of the comparative-genomics approaches used to find non-

coding RNAs involves stochastic context-free grammars (SCFGs)

[14,15]. In particular, phylogenetic SCFGs or ‘‘phylo-grammars’’

have been used to scan multiple genome alignments for ncRNAs

[16]. Phylo-grammars are powerful, parameter-rich models of the

spatial and temporal structure of evolving genomic features. As

well as for de novo ncRNA annotation, they have been used to

detect protein-coding genes [17,18], conserved regions [19] and

fast-evolving ones [20]. They simultaneously model several aspects

of features under consideration, including the sequential organi-

zation (e.g. nesting of base-pairs and length distributions of stems

and loops) and base composition of genomic sequence, the rates of

point substitution at individual sites and covariant substitution at

functionally coherent groups of sites (such as base-pairs or codons),

and the underlying phylogeny, including both branch lengths and

tree topology. A particular strength of the phylo-grammar

framework is the ease with which it is (theoretically) possible to

refine the models, adding new components to better model target

features [21] or altering the parametric structure of the

substitution rate matrices, a common practice when training data

are sparse [22–24].

Although the framework is flexible, implementing a phylo-

grammar is difficult and effectively parameterizing one is even

harder. Consequently, while there have been recent comparative

studies of non-phylogenetic SCFGs for secondary structure

prediction [21], there have been no such comparative studies of

phylo-SCFGs for gene detection, despite two gene-predicting

phylo-SCFGs having been published [16,25].

We previously described a general-purpose software package for

prototyping, parameter-fitting and alignment annotation using

phylo-grammars [26]. This program, xrate, allows the grammar

structure to be specified in a configuration file; the parameters can

then be automatically estimated from training data and the

parameterized phylo-grammar used to annotate new alignments.

This program implements a wide variety of models and can be

used for measurement of evolutionary rates, or prediction of RNA

(or protein) secondary structure.
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In this paper, we report the first use of xrate for ncRNA gene

prediction. Estimating false-positive rates using simulated data, we

evaluated our methods on the twelve genome sequences in the

Drosophila species clade [27,28]. There are 942 annotated ncRNAs

(including both independent transcriptional units and regulatory

elements within genes) in D. melanogaster (FlyBase release 5.4) and

several whole-genome transcriptomics studies [9,29].

Our method involves breaking a multi-genome alignment into

300-nucleotide windows (with 100-nucleotides overlap between

adjacent windows), scanning each window with a phylo-grammar

to find the highest-scoring potential structured RNA within each

window and selecting predictions above a certain score cutoff.

Starting with the PFOLD phylo-grammar of [30], we test several

refinements to the method: new parameter-fitting algorithms,

more biophysically-realistic RNA structure models, better null

models for neutrally-evolving intergenic sequence, variations in

insertion and deletion rates and two different genome alignment

algorithms.

Using one of the grammars, we scan a multiple alignment of

twelve Drosophila genomes for novel ncRNAs. As well as

reproducing many of the predictions of earlier bioinformatics

screens in Drosophila [11,13,28], our screen predicts numerous

novel structured RNAs, lending support to the hypothesis that

eukaryotic genomes are dense with ncRNAs. However, the

simulation procedure that we use (which includes locally conserved

regions that are not ncRNAs) suggests that false positive rates for

ncRNA prediction are higher than previously reported. We find

many correlations between our predictions and coding regions in

D. melanogaster, including depleted numbers of predicted intergenic

ncRNAs near the 39 end of coding regions as well as fewer

predictions in the first intron of known protein-coding genes than

expected by chance. Our methods point the way to further

evidence-based evaluations of whole-genome bioinformatics

screens.

Results

All of our results may be accessed at the following URL: http://

biowiki.org/TwelveFlyScreenPredictions

Design of ncRNA gene model
We tested several models for prediction of structured ncRNAs.

Each model contained two ‘‘submodels’’: a ncRNA model to model

the structural evolution of the ncRNA, and a null model to model

the neutral evolution of the remaining sequence in the window.

We evaluated the performance of ncRNA gene models using test

datasets of true positives constructed by extracting sub-alignments of

annotated ncRNAs in FlyBase Release 5.4 of the D. melanogaster

genome from multiple alignments of twelve Drosophila genomes

(melanogaster, pseudoobscura, sechellia, simulans, yakuba, erecta, ananassae,

persimilis, willistoni, mojavensis, virilis and grimshawi; see Methods for

details) [27]. In contrast to thermodynamic methods, which

explicitly model RNA structures including loop length and base-

stacking effects, phylo-grammar-based gene models primarily score

candidate structured sequence based on the statistical evolutionary

signal that the structure leaves in the multiple alignment, rather than

the energetics of the structure itself. Our model evaluation

procedure is primarily a testbed for selecting an appropriate

substitution model for stems, loops and neutrally-evolving sequence

(see ‘‘Patterns of nucleotide substitution in non-coding RNA’’). To

help reduce bias, we created four different test sets, one of (highly-

conserved) tRNAs, one of miRNAs, one of snRNAs, snoRNAs and

other RNAs, and one of all non-ribosomal RNAs. We excluded

rRNAs from our analysis because they are unaligned.

In each case, the ncRNA model was derived from the PFOLD
model [30], a lightweight grammar known to perform well at

single-sequence structure prediction [21]. This grammar (and all

the derivatives that we tested) are capable of modeling the salient

features of ncRNA secondary structure (including hairpins, bulges,

interior loops, and multi-branch loops). The PFOLD rate

parameters were estimated approximately, by counting mutations

in the Bayreuth tRNA database [31] and the European large

subunit rRNA database [32]. The counting technique used by

Knudsen & Hein is likely to under-count certain mutations, and is

an approximation to a true Maximum Likelihood (ML) estimate.

Our first derivative model used the same grammar structure as

PFOLD, but with rate parameters independently re-estimated

from similar alignment data, using xrate’s EM algorithm, which

gives a closer approximation to ML.

Several of our derivative ncRNA models include more detailed

modeling of RNA structure. The ClosingBp grammar (which we

eventually chose for our whole-genome screen) takes account of

the substitution patterns of the loop-closing base-pair at the end of

a stem, which frequently differ from the patterns observed within

the stems [33]. The SymmetricStemGaps, NoStemGaps, Ga-

pLinks and GapSub grammars included various models for indel

events in stem and loop regions. These ranged from allowing

indels in base-paired regions only if both bases in a pair were

deleted (SymmetricStemGaps), to prohibiting indels entirely in

base-paired regions (NoStemGaps), to explicit probabilistic models

for gaps, either as a birth-death process (GapLinks) or a

substitution-based process (GapSub).

In all cases, the null model was trained on a random 1% of the

PECAN Drosophila alignments. In all but one case, the null model

was a single-nucleotide ‘‘point substitution’’ model that was

reversible and strand-symmetric (but otherwise fully general).

The exception was the Dinuc model, where we allowed the

substitution rates in the null model to be ‘‘context-dependent’’ (so

the substitution patterns at a given site depend on the neighboring

sequence). Previous studies of codon-emitting phylogenetic

Hidden Markov Models for protein-coding gene prediction have

shown that such phylo-HMMs tend to over-predict exons unless

context-dependent substitution effects are included in the null

model [18]. It is hypothesized that this is due to the implicit

inclusion of neighbor-dependent substitution effects in the codon

evolution model; unless those effects are included in the null model

too, the codon model has an ‘‘unfair’’ advantage.

Figure 1 shows ROC curves for the grammars we tested, using

various subsets of the annotated D. melanogaster ncRNAs. Detailed

specifications for the grammars are as follows:

1. Pfold: original PFOLD grammar, including the original rate

parameters; single-nucleotide null model of intergenic sequence

(context-independent).

2. Dinuc: original PFOLD grammar, including the original rate

parameters; dinucleotide null model (nearest-neighbor context

dependence).

3. PfoldRetrained: original PFOLD grammar, but with rates re-

estimated from the mix80 dataset using xrate’s EM

algorithm. Single-nucleotide null model.

4. ClosingBp: mix80-trained rates; closing base-pair of loops can

optionally use a separate substitution rate matrix. Single-

nucleotide null model.

5. SymmetricStemGaps: original PFOLD grammar, including

the original rate parameters; gaps in stems permitted only if

both sites of a base-pair are gapped. Single-nucleotide null

model.

Predicting Non-Coding RNAs
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6. NoStemGaps: original PFOLD grammar, including the

original rate parameters; no gaps allowed in stems. Single-

nucleotide null model.

7. GapLinks: mix80-trained rates; approximate birth-death or

‘‘links’’ model [34] for runs of gaps in stems, loops and

intergenic sequence. Single-nucleotide null model.

8. GapSub: mix80-trained rates; gaps are treated as a fifth

character in both ncRNA and intergenic sequence [35]. Single-

nucleotide null model.

9. EvoFold: the ncRNA grammar used by the program EvoFold
[10]; single-nucleotide null model of intergenic sequence

(context-independent).

Several of these grammars model features which, to our

knowledge, have not previously been used for de novo ncRNA

annotation, including closing-base-pair statistics, strict stem

conservation and explicit models of the insertion and deletion

process.

We used two different methods for generating simulated decoy

alignments in order to estimate the false positive rate. These

methods were gsimulator, which essentially generates intergenic

DNA, and simgenome, which generates signals like exons as well

as ‘‘neutral’’ intergenic sequence [36]. If we knew the correct

annotation of every protein-coding exon, and we were only

looking for ncRNAs in known intergenic regions, then gsimu-
lator would be the most appropriate tool; if, on the other hand,

we had zero information about protein-coding exons, and were

predicting genes blindly in an unannotated genome, then

simgenome would be more appropriate. The reality is

somewhere in between; for D. melanogaster, where most (but not

all) exons are now believed to be known with confidence, it is

probably closer to gsimulator.

Due to the large number of false positives in these screens, we

are interested primarily in the sensitivity of the grammars when

the false positive rate is lowest, i.e. the left-hand side of the plot.

The x-axis of the plots is shown logarithmically in order to better

highlight the performance in this regime.

In general, the relative performance of the different grammars

varied wildly across different ncRNA subfamilies and different

methods for generating null/decoy datasets. The PFOLD
grammar in particular performed relatively weakly when the null

dataset was generated by gsimulator (which has low GC content

and a low degree of conservation), but was the strongest when

using a simgenome-generated dataset (wherein the GC content

is closer to uniform and the substitution rate more heterogeneous,

thanks to conserved information-rich regions such as exons).

Conversely, the EvoFold and ClosingBp grammars performed well

on the gsimulator test, but poorly on the simgenome test.

The ClosingBp grammar, which was designed to model a

phenomenon specifically observed in rRNA [33], generally

performed better on the rRNA benchmark than on the others.

The Dinuc grammar, which differs from the PFOLD grammar

only in its null model, also performed better on rRNA.

Of the four gap models we tried, only the substitution-based

model (GapSub) seems to yield a significant improvement; this

may be because the birth-death model which we tried (GapLinks)

was actually a single-event approximation to a true birth-death

process, and so is under-normalized probabilistically. The shape of

the ROC curves for the gap models may suggest that the

performance could benefit from a null-model that explicitly

modeled regions with no or few gaps.

We found that the Dinuc grammar, with a strand-symmetric

dinucleotide model of intergenic sequence, underperformed on

our test datasets, with the exception of rRNA (Figure 1). A

dinucleotide model of sequence can capture local correlations,

whereas our ncRNA gene model captures only long-distance

correlations due to secondary structure. We hypothesize that a

dinucleotide model of intergenic is ‘‘too good’’ for our current

gene model: in situations where the structural-conservation signal

is weak, whether due to little base-pairing or poor alignments, local

correlations may contribute more to the sequence likelihood than

secondary structure. A dinucleotide model of intergenic sequence

may be well-suited to a more elaborate ncRNA model which

captures local correlations such as base-pair stacking effects. This

may be a general rule for detecting conserved elements: the

conserved-element model should be capable of modeling all

correlations, local or long-distance, represented in the null model.

We chose the ClosingBp grammar for our whole-genome

screen, it being a novel PFOLD derivative which appeared to give

good performance in the gsimulator test (i.e. on intergenic DNA).

The basic elements of this grammar are illustrated in Figure 2.

Patterns of nucleotide substitution in non-coding RNA
Compensatory substitutions in ncRNA stems, where paired

bases can be seen as evolving together as a coherent unit (just as

codons evolve as coherent units in protein-coding genes), are a

classic signal of structural conservation. For example, Figure 3

shows a tRNA exhibiting compensatory substitutions at 3 sites.

The substitution rates of these paired mutations describe the

constrained molecular evolution of structured RNAs and as such

must be chosen carefully to maximize the predictive power of our

model.

We used the EM algorithm to estimate ncRNA substitution

rates from two datasets: (1) a subset of multiple alignments from

release 7 of RFAM [37] whose annotated secondary structure was

derived from a published source; (2) a set of pairwise alignments

Figure 1. ROC curves comparing ncRNA gene prediction performance on various subsets of D. melanogaster ncRNAs. The ROC curves
on the left used simulated data generated by gsimulator, which models neutrally evolving DNA (i.e., loosely speaking, intergenic regions). The ROC
curves on the right used simulated data generated by simgenome, which additionally includes conserved signals such as protein-coding exons (i.e.
it models both intergenic and gene regions). Both simulated datasets were re-aligned with PECAN prior to gene-prediction. Each row represents a
different subset of true D. melanogaster ncRNAs: the top row includes all ncRNAs, the second row rRNA only, the third row miRNA only, and the
bottom row includes snRNAs, snoRNAs and other ‘‘small’’ families (excluding tRNA and rRNA). We tested several prediction grammars including
‘‘Pfold’’, based on the original PFOLD grammar [30]; ‘‘PfoldRetrained’’, a version of PFOLD reparameterized from the mix80 dataset [38]; ‘‘Dinuc’’, a
derivative of PFOLD with a dinucleotide null model; ‘‘ClosingBp’’, a derivative of PFOLD that explicitly models the closing basepair statistics of
loops; ‘‘SymmetricStemGaps’’, a derivative of PFOLD that excludes deletions of only one half of a basepair; ‘‘NoStemGaps’’, an even stricter derivative
of PFOLD that excludes gaps in stems altogether; ‘‘GapLinks’’, a PFOLD-derivative that approximately models gaps as a birth-death process;
‘‘GapSub’’, a PFOLD-derivative that approximately models gaps as a substitution process; and ‘‘EvoFold’’, the grammar used by the program
EvoFold [10]. The horizontal axis (false positive rate) is plotted logarithmically, so as to reveal the behavior in the low-false-positive regime, which is
primariy of interest (the left-hand side of the plots). Note that these screens were performed on aligned genome data, and in particular, note that not
all of the genome is contained within such alignments. Our procedure can only discover ncRNAs that are contained within one of the aligned regions.
Since some of the D. melanogaster ncRNAs are not contained within the PECAN alignments, these ncRNAs are never discovered; hence, the
sensitivity never reaches 1 in these curves (so they are non-standard ROC curves in that sense).
doi:10.1371/journal.pone.0006478.g001
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derived from the mix80 dataset used to parameterize the

CONSAN program [38], which in turn was derived from the

European Ribosomal RNA database. In each case, we estimated a

phylogenetic tree for the dataset using the Jukes-Cantor model,

then used this tree in estimating the rates. We did not enforce that

the substitution rate matrices be normalized to one expected

substitution per unit of time (as is common in some molecular

evolution analysis), since we wanted to account for the fact that

stem regions evolve more slowly than loop or intergenic regions.

Figure 4 compares these re-estimated base-pair substitution

rates to those of PFOLD, on which our grammar models were

originally based. The most notable difference is that both datasets

exhibit significantly slower rates than PFOLD’s. More subtly, the

RFAM-trained rate matrix (middle) has a noisier equilibrium

distribution, assigning greater weight to non-canonical base-pairs,

than the PFOLD matrix (left). This resulted in significantly

deteriorated performance at gene prediction relative to PFOLD
(results not shown). Speculating that this may have been due to

mis-annotated base-pairs in RFAM (which applies a consensus

secondary structure to every sequence in an alignment), we next

used the mix80 dataset, where each sequence is individually

annotated with its own structure. This dataset is also closer to the

dataset of rRNAs which was used to parameterize PFOLD
(B.Knudsen, personal communication). As can be seen from

Figure 2. Design of the ClosingBp grammar. The left figure gives an overview of our approach and the right figure a detailed picture of the
secondary structure submodel for structured RNA. The state labeled ‘‘ncRNA (+/2 strand)’’ chooses the strand of the structured element. Solid arrows
are transitions from a single state to another state and dotted arrows are multifurcations (transitions from one state to a set of states). In the right
panel, emit states have the symbol being emitted labeled in parentheses under the state.
doi:10.1371/journal.pone.0006478.g002

Figure 3. Recovery of a tRNA (FlyBase gene identifier FBgn:0050220) on chromosome 2R. We recover the four stems of the classic
cloverleaf structure, as well as a spurious single base-pair annotated as stem 1 (green). The 59 boundary is exactly recovered and the 39 boundary is 2
nt shorter than the FlyBase annotation. Note that stems 2 and 3 (yellow and blue) have, respectively, one and two compensatory mutations. If a base
pair exhibits compensatory mutations, the ‘‘CS’’ row shows the count of distinct canonical base-pairs in the columns. The ‘‘BP’’ column shows how
many sequences contain a canonical base pair in the consensus structure (‘‘a’’ = 10). The ‘‘SS_cons’’ row indicates the ML consensus secondary
structure predicted by our model; colors of nucleotides and numbers in the ‘‘SN’’ row indicate the stems of this predicted structure. Figure produced
with colorstock, described by [51]. The alignment is in the Stockholm file format used by RFAM [37].
doi:10.1371/journal.pone.0006478.g003
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Figure 4. Substitution rate matrices for co-evolving base-pairs. The area of each bubble is proportional to the corresponding rate (the gray
bubble in the upper-left of each plot shows the scale: its area corresponds to 0.5 substitutions per unit of time). The color of a bubble indicates whether
the source and destination base-pairs are canonically paired. (Red, Yellow) circles show substitutions from canonical to (canonical, non-canonical) base-
pairs; (Blue, Black) show substitutions from not paired to (canonical, non-canonical). The area of the bubbles in the row beneath each plot indicates the
equilibrium distribution of the mutation process (canonical base pairs are green, non-canonical are black). The RFAM-trained rates (upper right) show
higher rates of mutations away from canonical pairings than do the mix80-trained rates (lower left) or the original PFOLD rates (upper left). In the
closing base-pair of stems (lower right) one can observe a bias towards G-A base-pairs in the equilibrium distribution as well as high rates of mutations
away from canonical pairings (yellow bubbles). See ‘‘Patterns of nucleotide substitution in non-coding RNA’’ for further details.
doi:10.1371/journal.pone.0006478.g004

Predicting Non-Coding RNAs

PLoS ONE | www.plosone.org 6 August 2009 | Volume 4 | Issue 8 | e6478



Figure 4 (right), the mix80 dataset has a sharper split between

non-canonical and canonical base-pairs, more similar to PFOLD’s

(left).

One of our variations on the PFOLD model was to allow,

although not require, a separate substitution model for base-pairs

at the ends of stems (i.e. the closing base-pair of a loop), where a

bias towards G-A and A-A base-pairs has been observed in

ribosomal RNA [33]. This grammar is illustrated in Figure 2 (note

that only the Close and ClosingLoop states are new; the remainder

of the grammar is taken from PFOLD, so that PFOLD’s

mechanism for generating loop regions — via the transition FRB

— remains a viable alternative to the new states.) Figure 4

compares the matrix thus obtained (lower right) to the matrix for

regular base-pairs (lower left). We observe a bias to G-A base-pairs

(although no A-A bias), and furthermore see little evidence for

compensatory mutations in these positions.

Recovery of known ncRNAs
Table 1 shows our recovery rates, broken down by category, of

ncRNAs annotated in FlyBase release 5.4 [39]. The results in this

table are generated using our ClosingBp grammar, one of the

highest-performing according to our benchmarks (see ‘‘Design of

ncRNA gene model’’).

Our method largely scores conservation of RNA secondary

structure according to observed compensatory mutations within

stems, and as such is most effective at picking up well-conserved

ncRNAs with long hairpins or several stems. We successfully

recover the majority of annotated miRNAs and transfer RNAs

(tRNAs); the long hairpins of processed primary transcripts of

miRNA (pre-miRNA) and four stems of tRNAs make both

relatively easy for our method to detect. Many C/D box

snoRNAs, in contrast, have too few base-pairs to score well under

our method.

Statistics of predicted ncRNAs
Table 2 shows the chromosomal distribution of our predicted

ncRNAs and Figure 5 gives the length distributions of our

predictions in intergenic sequence which overlap embryonic

transcriptional data before and after filtering criteria are applied.

The filtered predictions are in general slightly longer than the

unfiltered predictions, and their length distribution is slightly

flatter.

Several other whole-genome screens for novel ncRNAs in

Drosophila have recently been conducted, including computational

screens for structured RNAs using the programs RNAz [11,40]

and EvoFold [10] as well as an experimental screen for miRNAs

by [13]. Table 3 shows the intersection of our predictions with

those reported from the RNAz screen. We found little overlap

between our prediction sets, despite both methods using the same

PECAN alignments as input. As reported in Table 4, we find

greater overlap with the prediction set produced with EvoFold
[28], which uses a phylo-grammar-based approach similar to ours.

This is encouraging, given that EvoFold was run on the

MULTIZ alignments, which use an entirely different synteny

map from the PECAN alignment. We recovered 65 (44%) of the

Table 1. Recovery of annotated ncRNAs in D. melanogaster,
where ncRNA annotations are taken from FlyBase Release 5.4.

miRNA tRNA snRNA snoRNA RNaseP other

Recovered 56 246 17 64 1 27

% of total 62% 84% 36% 26% 100% 31%

Results are not reported for the unaligned rRNAs.
doi:10.1371/journal.pone.0006478.t001

Figure 5. Length distribution of predictions in intergenic sequence which overlap embryonic transcriptional data. Grey denotes all
Intergenic+Transfrag predictions and blue denotes Intergenic+Transfrag predictions which pass our filtering criteria. Longer predictions, with their
generically longer stems, are more likely to exhibit the compensatory mutations required by our filtering criteria, thereby flattening the distribution.
doi:10.1371/journal.pone.0006478.g005

Table 2. Chromosomal distribution of our predicted ncRNAs
in D. melanogaster.

2L 2R 3L 3R 4 X

Predictions 9,644 9,787 11,534 13,341 225 11,557

Filtered Predictions 2,846 3,001 2,953 3,716 119 2,720

Our filtering procedure to obtain high-quality predictions for experimental
verification is described in detail in Methods.
doi:10.1371/journal.pone.0006478.t002
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miRNAs predicted by the recent experimental screen [13]. We

found no significant correlation between overlap with the results of

EvoFold, RNAz or other [13] screens and the phylogenetic

conservation (% identity) of the overlapping predictions.

Taken together, these comparisons with previous approaches

suggest that no single method assembles a complete catalog of

ncRNAs. It is best to regard the various prediction sets as

complementary. In particular, phylo-grammar-based genome

screens run on different whole-genome alignments can recover

distinctly different prediction sets corresponding to the different

phylogenetic signals present in the input alignments.

Finding homologues to characterized RNAs
We screened our unfiltered, non-overlapping intergenic predictions

in D. melanogaster against the RFAM database with the Infernal ncRNA

homology search tool [41]. 114 of these predictions showed significant

homology to a RFAM family, including 2 predictions scoring as

tRNAs, 22 as miRNAs, and 36 as snoRNAs. Relatively few of these

predicted tRNAs, miRNAs or snoRNAs were predicted by other

whole-genome screens; Table 5 gives a detailed breakdown.

As suggested earlier, our predictions may be associated with introns

of unannotated protein-coding genes. 19 of our predictions scoring as

snoRNAs correspond to the single RFAM family snoR28, and 17 of

these appear in a tandem array on the X chromosome. The 4.5 kbp

spanned by the predicted tandem array is contained within a cDNA

annotated in FlyBase, suggesting that our predictions lie within intronic

sequence of an unannotated protein-coding gene.

Associations with protein-coding genes
As reported in Figure 6, we found a small (but significant)

depletion of predictions near the 39 end of protein-coding genes as

well as depletion of predictions in the first intron. The depletion of

39 predictions might conceivably be due to unannotated exons.

Depletion of predictions in the first intron is harder to explain; it is

possible that other conserved signals in the intron either exclude

real ncRNAs from these locations, or result in fewer false positives

under our prediction screen.

As a first step towards functional characterization of protein-

coding genes with predicted structurally-conserved elements in

their 39 and 59 untranslated regions (UTRs) and introns, we

identified enriched Gene Ontology (GO) terms with GO::Term-

Finder [42]. Figure 7 indicates potential biological functions for

the structured elements we identify. Many of these terms suggest

functional roles in localization processes and transcriptional

regulation, including ‘‘pattern specification process,’’ ‘‘localiza-

tion,’’ ‘‘protein binding’’ and ‘‘transcription factor activity’’ for

UTRs and ‘‘localization,’’ ‘‘actin binding’’ and ‘‘transcription

regulator activity’’ for introns, suggesting that these predicted

structured elements may play regulatory roles. A recent survey of

3,370 genes in D. melanogaster found that 71% exhibited subcellular

localization of the corresponding mRNA in the first 4 hours (stages

1–9) of embryogenesis [29]. In the context of this result, our

predictions in 39 and 59 UTRs are of particular interest. The

localization signals for the vast majority of the mRNAs studied by

[29] are completely uncharacterized, and many of our predicted

structurally-conserved elements in 39 and 59 UTRs and introns

may represent novel signal elements for subcellular localization.

Methods

Sequence and alignment data
We used alignments of twelve Drosophila genomes (melanogaster,

pseudoobscura, sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni,

mojavensis, virilis and grimshawi) which were produced by the Drosophila

Twelve Genomes Consortium [27]. These alignments used the

Comparative Assembly Freeze 1 (CAF1) sequence data, which

includes Release 4 of the melanogaster genome and release 2 of the

pseudoobscura genome. The other ten genomes were newly-sequenced

[27]. Both the MAVID [43] and PECAN [44] alignments of the

CAF1 data used a homology map produced with the Mercator
program [45]. The PECAN and MAVID alignments used in our

analysis can be downloaded from our results page.

Unless noted otherwise, we used annotations from FlyBase

Release 5.4 of the D. melanogaster genome for our analysis,

including recovery of annotated ncRNAs (Table 1) and analysis

of predictions in UTRs of D. melanogaster. These annotations use

the same co-ordinate scheme with respect to D. melanogaster (i.e.

assembly) as the CAF1 alignments.

Simulations of neutral evolution
We used simulated alignment data to guide the design of our

ncRNA discovery pipeline and estimate the corresponding false-

positive rate. A good synthetic dataset should reproduce

empirically-observed features of actual alignments, including gap

Table 4. Comparison to EvoFold’s results.

Category Prediction overlap Total overlap

Short 1,855 (14%) 6,436 (50%)

Long 2,239 (22%) 6,225 (62%)

HighConf 96 (16%) 151 (25%)

The center column shows the recovery rate across our predictions and the right
column the recovery rate across all of our annotated structures, including those
which did not meet our discovery threshold (Methods). Our predictions in each
category (Short, Long and HighConf) were filtered per EvoFold’s analysis and
then compared with EvoFold’s predictions.
doi:10.1371/journal.pone.0006478.t004

Table 5. We used the cmsearch utility provided with
Infernal to search for homology to known ncRNA families in
our intergenic filtered prediction set.

Overlap with other ncRNA gene sets:

Predictions RNAz EvoFold [13]

tRNA 2 1

miRNA 22 2 1 2

snoRNA 36 8

other 54 13

Results reported here had a bit score.16.4 (see ‘‘Screening predictions against
RFAM’’ for details).
doi:10.1371/journal.pone.0006478.t005

Table 3. Comparison to RNAz’s results.

Category Prediction overlap

p.0.5 4,163 (10%)

p.0.9 1,658 (10%)

RNAz reports 42,482 predictions at a confidence level of p.0.5, so we
compared those predictions with our best-scoring 42,482 predictions.
doi:10.1371/journal.pone.0006478.t003
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(indel) structures and local correlations between nucleotides, both

of which locally deplete the information content of an alignment

and can elevate false-positive rates.

We generated synthetic alignments by forward simulation of the

evolutionary process with the simgenome program [36] followed by

re-alignment with PECAN [44]. simgenome models the evolution of

syntenic blocks of the genome. Genomic features, including coding and

intronic sequence, locally-conserved regions, pseudogenes, and DNA

transposons, are modeled with a phylo-grammar; neutrally-evolving

intergenic sequence is modeled with a ‘‘transducer,’’ a probabilistic

model which explicitly incorporates indel length distributions and the

effect of local sequence context on substitution and indel rates [46].

Table 6 compares genome-wide statistics of our simulated data with

those of the PECAN alignments of twelve Drosophila genomes and

Table 7 the single and di-nucleotide frequencies.

Previous ncRNA annotation efforts have generated datasets of

negatives by shuffling actual genome alignments [40] rather than

simulating the evolutionary process. Figure 8 shows a comparison

of false-positive estimates generated by our simulation method

with those estimated with a shuffling-based approach. We found

that our false-positive estimates depended strongly on the amount

of shuffling used. There is no obviously correct number of shuffles:

excessive shuffling can destroy local correlations, but insufficient

shuffling may leave signals of real ncRNA genes. Further

complications arise from the need to preserve alignment gap

statistics. Gaps and local sequence complexity are often correlated;

for example, microsatellite regions are indel-prone.

simgenome implements both measurement and forward-

simulation algorithms. That is, one can measure parameters from

data, or use the measured parameters to simulate new data. Given

multiple alignments as input, the program estimates evolutionary

parameters directly from these training data. If a phylogenetic tree

is supplied, then the program will generate a synthetic multiple

alignment. This yields a dataset of negatives, or alignments with

statistical properties similar to those of the original training

alignments but with no true ncRNAs present.

Annotation pipeline design
Several principles inform the design of our ncRNA annotation

pipeline, illustrated in Figure 9. Assuming that we will re-run

everything multiple times using different models or alignments on

distinct species clades, we automate as much as possible using make
and relational databases. For extensive discussion of the advantages of

make for workflow automation, see [47]. We break the analysis into

a series of discrete steps, explicitly identifying dependencies using

Makefile rules, in order to easily run on new data such as different

alignments or genomes from other clades. We use the xrate phylo-

grammar engine wherever possible (for example, resolution of

overlapping gene predictions on opposite strands follows automati-

cally if a strand-symmetric grammar is used). Results and post-

prediction analyses are stored in a relational database.

We divided the input multiple alignments into overlapping

windows of 300 nt with a step size of 100 nt. For each overlapping

window, we used xrate to re-estimate the branch lengths of a

phylogenetic tree with the EM algorithm, and then scanned the

window for conserved RNA secondary structure.

Detailed instructions for running the annotation pipeline can be

found at http://biowiki.org/TwelveFlyRocCurveEstimation

Phylo-grammar design
We chose a general-purpose approach to designing phylo-

grammars in order to conduct a broad screen for signs of structural

conservation without reference to particular sequence or structural

motifs. While both sensitivity and specificity can be increased with

methods designed to annotate only particular well-characterized

families of ncRNAs, such as Snoscan for snoRNA detection [48],

incorporating family-specific motifs (such as the conserved C

(UGAUGA) and D (CUGA) boxes in C/D box snoRNAs) is

incompatible with our goal of finding all structurally-conserved

elements. We seek to survey the genome for novel elements

showing structural, and hence potentially functional, conservation

rather than catalog members of well-characterized families.

We searched each 300 nt window for the highest-scoring

secondary structure element of length#130 nt, where the score is

the log-odds ratio,

score~log
P data ncRNAjð Þ

P data intergenicjð Þ ,

which compares the likelihood that the alignment data represents

Figure 6. Association of the top-scoring 5% of predictions with protein-coding genes. Left: distance from intergenic predictions to the
nearest protein-coding gene. ‘‘Upstream’’ means the prediction is upstream of the gene. The red bars show the empirically observed distribution; the
grey bars show the distribution that would be expected if hits were uniformly distributed across the genome. We observe a clear depletion of
intergenic predictions near the 39 end of protein-coding genes. Right: frequencies of predictions enclosed completely by introns, separated by intron
number (i.e. the position of the intron in the ordered list of introns associated with the parent gene). The blue bars show the empirically observed
counts; the error bars show 99% bounds for a uniform random distribution of bases across all chromosomes (excluding bases outside introns). Introns
shared by multiple transcripts were counted multiple times. There is a depletion of predictions in the first intron.
doi:10.1371/journal.pone.0006478.g006
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Table 6. Genome-wide statistics of our simulated alignments
of twelve Drosophila genomes closely match those of the true
data.

Dataset % ID % gap % coding % intronic

PECAN 83% 89% 33% 18%

simgenome (realigned) 85% 83% 33% 18%

simgenome (original) 69% 41% 33% 18%

The average length of simulated alignments was 240K columns, in contrast to
the 142K for the PECAN alignments; however, our windowing approach makes
our method insensitive to the sizes of syntenic regions. We generated a total of
3.6M columns of alignment data. ‘‘simgenome (realigned)’’ is the simulated
alignments after re-alignment with PECAN which we use for all subsequent
analysis and refer to as simply ‘‘simgenome’’. ‘‘simgenome (original)’’ is the
simulated alignments generated by simgenome. Sequence identity and gap
fraction were estimated from the PECAN alignments; coding and intronic
fractions were estimated from [27].
doi:10.1371/journal.pone.0006478.t006

Table 7. Single and di-nucleotide frequencies for our
simulated data (left) closely match those in the twelve
Drosophila genomes (right).

A C G T A C G T

0.273 0.228 0.228 0.271 0.285 0.204 0.204 0.284

A 0.070 0.053 0.052 0.060 0.094 0.049 0.052 0.077

C 0.052 0.047 0.048 0.055 0.065 0.041 0.036 0.051

G 0.055 0.049 0.047 0.050 0.051 0.053 0.041 0.048

T 0.058 0.052 0.054 0.069 0.061 0.051 0.065 0.094

Our simulated data models heterogeneity in base composition across different
genomic features such as coding and intergenic sequence, but does not model
local fluctuations in base composition.
doi:10.1371/journal.pone.0006478.t007

Figure 7. Gene Ontology term enrichment for protein-coding genes with (filtered) predicted structured RNAs in 39 and 59 UTRs and
introns. The heat map color scale indicates statistical significance (white is most significant). We selected the forty most-significant terms for UTRs
and introns and then removed terms if a descendant in the GO was also present. ’’Regulation of nucleobase, nucleoside, nucleotide and nucleic acid
metabolic process’’ is truncated in the UTR figure (left) for readability.
doi:10.1371/journal.pone.0006478.g007
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a ncRNA gene to the likelihood that it is intergenic sequence. We

calculated the likelihood that the data represents a ncRNA gene by

summing over all possible structures,

P data ncRNAjð Þ~
X

secondary structure

P data, secondary structure ncRNAjð Þ:

We summed over possible structures in order to classify

ncRNAs in a manner agnostic to their true secondary structure.

This summation over possible structures was particularly impor-

tant for our ClosingBp grammar, which is structurally ambiguous

[38]: Closing base-pairs of stems can evolve under either a regular

base-pair model or a special substitution model estimated from the

closing base-pairs of ribosomal RNA (see ‘‘Patterns of nucleotide

substitution in non-coding RNA’’).

ROC curve preparation
The ROC curves were generated as follows. Whole-genome

alignments and D. melanogaster ncRNA annotations in FlyBase

release 5.4 [39] were used to estimate sensitivity, defined as

sensitivity~
number of ncRNAs recovered

total number of ncRNAs annotated in FlyBase
:

Simulated data (see ‘‘Simulations of neutral evolution’’) was

used to estimate the proportion of false positives (and thus the

specificity) as

FPR~
number of predictions in simulated data

total number of windows of simulated data
:

Both sensitivity and specificity are parametric functions of the

score cutoff used by our discovery procedure, thereby allowing us

to generate ROC curves.

We provide detailed instructions, including command-line

instructions for programs, for how to duplicate our ROC analysis

at http://biowiki.org/TwelveFlyRocCurveEstimation

Filtering criteria
Because our phylo-grammar-based approach treats gaps in the

alignment as missing data, our prediction method can predict

RNA structures in an alignment with little or no D. melanogaster

sequence if the other Drosophila genomes in the alignment exhibit

signals of structural conservation. Because we are primarily

interested in predictions in D. melanogaster, we filter out such

‘‘predictions’’ as described below.

Furthermore, our windowing approach gives rise to overlapping

predictions. Unless specified otherwise, if predictions overlapped

by more than 80%, then we retained the highest-scoring

prediction and discarded the other(s).

In order to obtain a high-quality set of predictions for

subsequent experimental verification, our prediction set was

further reduced by applying the following stringent filters (similar

to the ‘‘HighConf’’ filters used by EvoFold for [28]) to the

maximum-likelihood conserved structured predicted by our

model. Conserved structures were required to include at least

ten base-paired columns, at least two of which had to display

compensatory mutations (a compensatory mutation means a

substitution at one or both sites of a base-pair such that the

canonical base-pairing is preserved: for example, an A-U base-pair

aligned with a G-C). Alignment segments predicted to contain

conserved RNA secondary structure were discarded unless they

contained at least 20 bases of D. melanogaster sequence and

sequence from at least four other species with gaps in no more

than 7.5% of predicted base-pairs.

Finally, when looking for novel ncRNA genes (as opposed to

regulatory elements that might be located within protein-coding

genes), we excluded any predictions that overlapped with

previously annotated genes (protein-coding or non-coding),

pseudogenes or transposons in FlyBase release 5.4 [39]. We

further honed our prediction set by requiring overlap with

transcriptional fragments identified during the first twenty-four

hours of Drosophila development using Affymetrix tiling arrays [9],

thereby obtaining the ‘‘Intergenic+Transfrag (Filtered)’’ prediction

set referenced in the main paper.

Screening predictions against RFAM
We extracted the D. melanogaster sequence for all intergenic

predictions, including flanking sequence up to a total length of 100

nt. To avoid overcounting, we looked only at the 854 completely

non-overlapping predictions (compared with the 885 referenced in

the main paper). We then used the Infernal v0.81 utility

cmsearch with all RFAM 8.1 covariance models to perform a

homology search on our prediction set. RFAM and Infernal are

available from http://rfam.janelia.org/.

The Infernal manual suggests a rough prediction significance

cutoff on the reported bit score of log2 (2?length), where length is

the length of the target sequence. The total length of the query set

of 854 non-overlapping predictions is 85,526 nt, leading us to

Figure 8. Receiver Operator Characteristic (ROC) curves for the
ClosingBp grammar (see ‘‘Design of ncRNA gene model’’),
using our simulated data and two modes of shuffling to
generate true-negative datasets. True-positive datasets were taken
from the PECAN alignments of twelve Drosophila genomes based on
all annotated non-ribosomal ncRNAs in FlyBase Release 5.4 of the D.
melanogaster genome. False-positive estimates from a shuffling-based
approach depended strongly on the amount of shuffling. We ran the
shuffle-aln.pl script provided with the Vienna RNA package [52] in
‘‘conservative’’ and ‘‘complete’’ modes to create shuffled alignments of
all annotated ncRNAs in D. melanogaster.
doi:10.1371/journal.pone.0006478.g008
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chose a cutoff of log2(85, 526) s 16.4 bits. When a prediction

scored highly under more than one covariance model, we selected

the highest-scoring model.

Discussion

We predict approximately 1,500 novel structured RNAs in

intergenic regions which overlap embryonic transcriptional

fragments, as well as 3,000 in 39 and 59 UTRs of protein-coding

genes. Of these, 100 of the intergenic predictions and 800 of the 39

and 59 UTR predictions show very high conservation of both

sequence and structure, indicating likely functional relevance.

RFAM screens against our results include 22 new miRNAs and 36

new snoRNAs. Of the snoRNAs, 19 correspond to the RFAM

family snoR28, and 17 of these appear in a tandem array within

an unannotated protein-coding gene.

Our approach to ncRNA discovery is distinguished from prior

work by our robust evaluation of annotation models as well as a

novel procedure for false-positive estimation. Our xrate program

exposes the design of the prediction grammar in a configuration

file, allowing us to easily test many different predictions models to

identify their relative strengths. Combined with automation of our

entire workflow, this enabled us to evaluate a wider range of

prediction algorithms than previously (as well as two distinct

whole-genome alignment programs; see Text S1). While this paper

was in preparation, two other works discussing null models in

ncRNA prediction appeared in the literature [49,50].

Different classes of ncRNAs exhibit different patterns of

molecular evolution, making the comparative model evaluation

which we have described crucial to designing an effective whole-

genome screen. For example, explicitly modeling the substitutions

at the closing base-pairs of stems increased our recovery of tRNAs

by 10%, but decreased our recovery of other ncRNAs.

As discussed throughout this work, our methodology is inherently

alignment-sensitive and simply cannot detect structural conservation if

the input sequence is mis-aligned. This observation, combined with the

low overlap between the RNAz, EvoFold, and [13] screens, suggests

that we have probably missed many real ncRNAs. [12] have recently

presented a methodology for de novo ncRNA annotation which relies on

an input multiple alignment only for homology detection, and so is

capable of detecting conserved structure even in the presence of local

mis-alignment. Such an approach provides a promising direction for

ncRNA annotation.

At the most basic level, we are interested in investigating which

features of genomic data, both in structurally-conserved and

neutrally-evolving sequence, are important for de novo ncRNA gene

annotation. The thorough approach to model training, compar-

ative model evaluation and false-positive estimation which we have

described here will allow us to predict novel genomic features with

increasing precision and confidence.

Figure 9. Conceptual overview of the steps in our analysis pipeline, including model parameterization (‘‘training’’); generation of simulated
datasets; model evaluation (ROC curves); genome-wide prediction of conserved ncRNAs; and analysis of predictions. Rebuilding of any part of the
graph is fully automated using make: Nodes represent targets and edges represent dependencies. Names of programs used in key steps (xrate,
windowlicker.pl, MAVID, etc.) are shown near the relevant edges in the graph.
doi:10.1371/journal.pone.0006478.g009
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