
1 August 2019 | Volume 10 | Article 904

REVIEW

doi: 10.3389/fphar.2019.00904
published: 16 August 2019

Frontiers in Pharmacology | www.frontiersin.org

Edited by: 
Johan M. Lorenzen,  
University of Zurich,  

Switzerland

Reviewed by: 
Regalla Kumarswamy,  

Centre for Cellular and Molecular 
Biology (CSIR),  

India 
Dan-Qian Chen,  

Northwest University,  
China

*Correspondence: 
Swayam Prakash Srivastava 

swayam.srivastava@yale.edu 
Keizo Kanasaki 

kkanasak@med.shimane-u.ac.jp 
Julie Goodwin 

julie.goodwin@yale.edu

Specialty section: 
This article was submitted to 

Renal Pharmacology,  
a section of the journal  

Frontiers in Pharmacology

Received: 25 January 2019
Accepted: 18 July 2019

Published: 16 August 2019

Citation: 
Srivastava SP, Hedayat AF, 

Kanasaki K and Goodwin JE (2019) 
microRNA Crosstalk Influences 

Epithelial-to-Mesenchymal, 
Endothelial-to-Mesenchymal, and 

Macrophage-to-Mesenchymal 
Transitions in the Kidney.  

Front. Pharmacol. 10:904.  
doi: 10.3389/fphar.2019.00904

microRNA Crosstalk Influences 
Epithelial-to-Mesenchymal, 
Endothelial-to-Mesenchymal, and 
Macrophage-to-Mesenchymal 
Transitions in the Kidney
Swayam Prakash Srivastava 1*, Ahmad F. Hedayat 1, Keizo Kanasaki 2*  
and Julie E. Goodwin 1*

1 Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States, 2 Internal Medicine 1, Shimane 
University Faculty of Medicine, Izumo, Japan

microRNAs (miRNAs) are small, non-coding nucleotides that regulate diverse biological 
processes. Altered microRNA biosynthesis or regulation contributes to pathological 
processes including kidney fibrosis. Kidney fibrosis is characterized by deposition of excess 
extracellular matrix (ECM), which is caused by infiltration of immune cells, inflammatory 
cells, altered chemokines, and cytokines as well as activation and accumulation of 
fibroblasts in the kidney. These activated fibroblasts can arise from epithelial cells via 
epithelial-to-mesenchymal transition (EMT), from bone marrow-derived M2 phenotype 
macrophages via macrophage-to-mesenchymal transition (MMT), from endothelial 
cells via endothelial-to-mesenchymal transition (EndMT), from resident fibroblasts, 
and from bone marrow-derived monocytes and play a crucial role in fibrotic events. 
Disrupted microRNA biosynthesis and aberrant regulation contribute to the activation of 
mesenchymal programs in the kidney. miR-29 regulates the interaction between dipeptidyl 
peptidase-4 (DPP-4) and integrin β1 and the associated active transforming growth factor 
β (TGFβ) and pro-EndMT signaling; however, miR-let-7 targets transforming growth 
factor β receptors (TGFβRs) to inhibit TGFβ signaling. N-acetyl-seryl-aspartyl-lysyl-proline 
(AcSDKP) is an endogenous anti-fibrotic peptide, which is associated with fibroblast 
growth factor receptor 1 (FGFR1) phosphorylation and subsequently responsible for the 
production of miR-let-7. miR-29 and miR-let-7 family clusters participate in crosstalk 
mechanisms, which are crucial for endothelial cell homeostasis. The physiological level 
of AcSDKP is vital for the activation of anti-fibrotic mechanisms including restoration of 
anti-fibrotic microRNA crosstalk and suppression of profibrotic signaling by mitigating 
DPP-4-associated mesenchymal activation in the epithelial cells, endothelial cells, and 
M2 phenotype macrophages. The present review highlights recent advancements in the 
understanding of both the role of microRNAs in the development of kidney disease and 
their potential as novel therapeutic targets for fibrotic disease states.

Keywords: microRNAs, diabetic kidney disease, kidney fibrosis, microRNA crosstalk, epithelial-to-mesenchymal 
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ORIGIN OF FIBROBLASTS IN KIDNEY
Kidney fibrosis is the final outcome of progressive diabetic kidney 
disease that can lead to end stage renal disease (ESRD) (Parving, 
2001; Remuzzi et al., 2002; Alicic et al., 2017; Isaka, 2018; Luyckx 
et al., 2018; Umanath and Lewis, 2018; Allison, 2019; Cooper 
and Warren, 2019; Djudjaj and Boor, 2019). It results in the 
massive destruction of cellular structures and kidney function. 
Kidney fibrosis is caused by prolonged injury and deregulation 
of normal wound healing processes in association with excess 
deposition of extracellular matrix (ECM) (Lee and Kalluri, 
2010; Nogueira et al., 2017). In such fibrotic processes, kidney 
fibroblasts play vital roles, but the origin of fibroblasts still 
remains unclear and a matter of ongoing debate (Kanasaki 
et al., 2013a; El Agha et al., 2017; Di Carlo and Peduto, 2018). 
These debates were based on each report that stick to the idea 
that one single cell type can explain majority of fibrogenesis 
events in kidney; renal fibrogenesis is the consequence of the 
interaction between all the cell types in kidney, either kidney cells 
or invaded inflammatory cells (Liu, 2011; Medici and Kalluri, 
2012; Lebleu et al., 2013; Mack and Yanagita, 2015; Nogueira 
et al., 2017). Also, complete conversion into mesenchymal cell 
types is not essential; intermediate phenotypes of mesenchymal 
programs were sufficient to induce alteration in fibrogenic 
programs (Kanasaki et al., 2013a; Lebleu et al., 2013; Kim et al., 
2017; Xing and Tian, 2019). Activation of resident fibroblasts is 
the first step in renal fibrogenesis (Grgic et al., 2012; Sato and 
Yanagita, 2017). Figure 1 depicts the sources of fibroblasts that 
have been proposed, including from pericytes, fibrocytes, bone 
marrow-derived monocytes, and fibroblast originating from 
bone marrow-derived M2 type macrophages via macrophage-
to-mesenchymal transition (MMT), fibroblasts originating from 
epithelial-to-mesenchymal transition (EMT), and endothelial-
to-mesenchymal transition (EndMT) (Barnes and Gorin, 2011; 
Lebleu et al., 2013; Yan et al., 2016; Sato and Yanagita, 2017; Di 
Carlo and Peduto, 2018; Xiong et al., 2018; Glover et al., 2019). 
The available treatments for kidney fibrosis are unsatisfactory 
to address this problem, and approved therapies are not cell-
specific in nature (Lee et al., 2015; Quiroga et al., 2015; Breyer 
and Susztak, 2016). Current treatment strategies may slow the 
rate of disease progression but cannot prevent progression to 
ESRD (Brenner et al., 2001; Lee et al., 2015; Quiroga et al., 2015; 
Johnson et al., 2016; Luyckx et al., 2018); hence, current therapies 
are ineffective.

EMT IN RENAL FIBROSIS
EMT involves a series of events through which epithelial cells 
lose their epithelial characteristics and acquire properties of 
typical mesenchymal cells (Hills and Squires, 2011; Grande et al., 
2015; Lovisa et al., 2015; Marquez-Exposito et al., 2018). Figure 1 
displays the unique phenotypes of epithelial, endothelial, and 
mesenchymal cells. Epithelial cells are normally associated 
tightly with their neighbor cells, which inhibits their potential 
to dissociate from the epithelial layer. In contrast, mesenchymal 
cells do not form a layer of cells or intercellular adhesion complexes 

(Srivastava et al., 2013). Mesenchymal cells are elongated in shape 
and exhibit end-to-end polarity and focal adhesions, allowing for 
increased migratory capacity (Srivastava et al., 2013). In adults, the 
main function of fibroblasts, which are prototypical mesenchymal 
cells that exist in many tissues, is to maintain structural integrity 
by secreting extracellular matrix (ECM). Fibroblast-specific 
protein 1 (FSP-1; also known as S100A4), alpha-smooth muscle 
actin (αSMA), fibronectin, and collagen I have proved to be 
reliable markers to characterize the mesenchymal products 
generated by EMT that occurs during the development of fibrosis 
in various organs (Kalluri and Weinberg, 2009; Srivastava et al., 
2013; Alidadiani et al., 2018). Inflammatory injury to the mouse 
kidney can result in the recruitment of a diverse array of cells 
that can trigger EMT through their release of growth factors, 
such as transforming growth factor-beta (TGFβ), platelet-derived 
growth factor (PDGF), epidermal growth factor (EGF), and 
fibroblast growth factor-2 (FGF-2) (Kalluri and Weinberg, 2009; 
Alidadiani et al., 2018; Liu et al., 2019b).

ENDMT IN RENAL FIBROSIS
Vascular endothelial cells can also originate fibroblasts by undergoing 
a phenotypic transition, referred to as EndMT (Srivastava et  al., 

FIGURE 1 | The origins of kidney myofibroblasts. Myofibroblasts are 
originated from resident fibroblasts, bone marrow-derived monocytes, 
bone marrow-derived M2 phenotype macrophages via macrophage-to-
mesenchymal transition (MMT) process, from epithelial cell via epithelial-
to-mesenchymal transition (EMT) program, and from endothelial cells 
via endothelial to mesenchymal transition (EndMT) program. During the 
process of EMT, epithelial cells loose the epithelial markers (E-cadherin and 
occludins) and gain the mesenchymal markers (FSP-1, α-SMA, N-cadherin, 
and fibronectin). In the EndMT process, endothelial cells lose the endothelial 
markers (CD31 and VE cadherin) and gain the mesenchymal markers. 
However, during the process of MMT, the myo-fibroblasts co-express M2 
phenotype macrophage markers (CD206) with mesenchymal markers. TGFβ, 
BMP, and Wnt signaling play a crucial role in the activation of mesenchymal 
transition processes. The myofibroblasts are polar, pointed, and elongated in 
shape and ability to migrate and invade the neighbor cells.
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2013; Curci et al., 2014; Li et al., 2017; Lovisa and Kalluri, 
2018; Glover et al., 2019). Figure 1 displays the process and 
contribution of EndMT to fibrogenesis. EndMT is the process 
that is characterized by the loss of endothelial markers, including 
cluster of differentiation 31 (CD31) and vascular endothelial 
cadherin (VE-cadherin), and acquisition of the expression of 
mesenchymal proteins including αSMA (Zeisberg et al., 2007; 
Srivastava et al., 2013; Curci et al., 2014; Lovisa and Kalluri, 2018; 
Glover et al., 2019). EndMT contributes to cardiac fibrogenesis 
(Zeisberg et al., 2007; Kovacic et al., 2019), pulmonary fibrosis 
(Good et al., 2015; Cho et al., 2018), idiopathic hypertension 
(Kitao et al., 2009; Ranchoux et al., 2015), and fibrosis in the 
cornea (Nakano et al., 2008; Medici, 2016; Lee et al., 2018). Many 
signaling pathways that govern EMT also regulate EndMT 
in the embryonic heart, during the development of cardiac 
fibrosis (Pardali et al., 2017; Man et al., 2019) and pulmonary 
fibrosis (Guan and Zhou, 2017; Pardali et al., 2017), and in liver 
fibrogenesis (Dufton et al., 2017; Pardali et al., 2017). Compared 
to EMT, comparatively little is known about EndMT. The 
contribution of EndMT to renal fibrosis has been reviewed in 
recent years (Srivastava et al., 2013; Curci et al., 2014; Medici, 
2016; Glover et al., 2019). In the adult organism, pathological 
conditions such as injury, inflammation, or aging can induce 
EndMT and influence organ fibrosis (Cho et al., 2018). Zeisberg 
et al. (2008) performed a seminal experiment that confirmed the 
contribution of EndMT in renal fibrosis in three mouse models: 
unilateral ureteral obstruction (UUO), a surgical model used to 
study progressive tubulointerstitial fibrosis, streptozotocin (STZ)-
induced diabetic mice, and α3 chain of collagen type 4 (COL4A3) 
knockout mice (a mouse model for Alport syndrome). The 
authors reported that a considerable number of myofibroblasts 
co-expressed CD31 with αSMA and FSP-1 in all three models 
(Zeisberg et al., 2008). The authors analyzed the kidneys of 
diabetic CD-1 mice 6 months after a single injection of STZ and 
showed that kidneys had progressive glomerular sclerosis and 
tubulointerstitial fibrosis. The co-immunofluorescence analysis 
in the kidneys of diabetic CD-1 mice displayed approximately 
40% of all FSP-1 positive cells, and 50% of αSMA positive stromal 
cells were CD31-positive (Zeisberg et al., 2008). Similarly, in the 
kidneys of COL4A3 knockout mice, 45% of all αSMA-positive 
fibroblasts and 60% of all FSP-1-positive fibroblasts were CD31-
positive, suggesting that these fibroblasts are of endothelial origin 
and that EndMT might contribute critically to the development 
and progression of renal fibrosis (Zeisberg et al., 2008). Li et al. 
(2009) confirmed that EndMT contributes to the activation of 
myofibroblasts in early diabetic renal fibrosis. In the landmark 
experiment using endothelial cell-lineage tracing with Tie2-Cre 
and LoxP-enhanced green fluorescent protein (EGFP) transgenic 
mice, the authors confirmed a large population of interstitial 
αSMA-positive cells of endothelial origin in the fibrotic kidneys 
of STZ-induced diabetic mice (Li et al., 2009). These endothelial 
cells demonstrated a set of biomarkers including VE-cadherin, 
CD31, tyrosine kinase with immunoglobulin-like EGF-like 
domains 1 (TIE1), TEK receptor kinase (TIE2), von Willebrand 
factor (vWF), and cytokeratins (Srivastava et al., 2013). During the 
process of EndMT, biochemical changes leads to the decreased 
expression of endothelial markers and the gain of mesenchymal 

markers such as FSP-1, αSMA, smooth muscle 22-alpha (SM22α), 
N-cadherin, fibronectin, vimentin, type I and III collagen, nestin, 
cluster of differentiation 73 (CD73), matrix metalloproteinase -2 
(MMP-2), and matrix metalloproteinase-9 (MMP-9) (Medici 
and Kalluri, 2012; Srivastava et al., 2013; Srivastava et al., 2016).

MMT IN RENAL FIBROSIS
Interstitial fibrosis is the key characteristics in chronic renal 
allograft injury (Boor and Floege, 2015; Bontha et al., 2017). 
In the chronic renal allograft injury, diverse ranges of immune 
and nonimmune responses cause the macrophages to undergo 
macrophage-to-mesenchymal transition (MMT) process 
(Wang et al., 2019; Zhou et al., 2019). Higher rate of MMT 
contributes in the development of interstitial fibrosis (Wang 
et al., 2017). Wang et  al. performed the seminal experiments 
on MMT and identified that the kidneys in the patients and 
in the experimental chronic renal allograft injury displayed 
co-expression of macrophage marker (CD68) with myofibroblast 
marker (α-SMA) (Wang et al., 2017). Approximately 50% cells of 
total myo-fibroblasts cells in the kidneys were CD68+/α-SMA+ 
and were associated with interstitial fibrosis after the chronic 
renal allograft injury (Wang  et al., 2017). Moreover, MMT 
processes were observed mainly in the bone marrow-derived 
M2-phenotype macrophages (Wang et al., 2017). However, 
M1-phenotype macrophages are responsible for pro-inflammatory 
cytokine production and contribute in the graft loss in the 
kidneys (Ma et al., 2013; Kwan et al., 2014; Salehi and Reed, 
2015). These data are in accord with previous observation that 
showed that bone marrow-derived monocytes and macrophages 
can contribute in the collagen formation by inducing the MMT 
processes in the kidneys of mouse model of ureteric obstruction 
and in the progressive chronic kidney disease (CKD) subjects 
(Yang et al., 2013; Liu et al., 2018). The MMT processes were 
dependent on TGFβ-smad3 signaling (Wang et  al., 2017). 
However, M2-to-M1 phenotype conversion can induce 
cytokines that lead to the higher MMT process and can be TGFβ 
independent (Wang et al., 2017).

MICRORNAS REGULATE EMT AND 
ENDMT
MicroRNAs (miRNAs) are well known for their regulatory role in 
diseases like diabetes, cancer, and fibrosis (Ruiz and Chakrabarti, 
2013; Srivastava et al., 2013; Shah et al., 2016; Miao et al., 2018; 
Nadeem et al., 2018; Tan et al., 2018). They are small (around 
22 nt) evolutionarily conserved, non-coding RNAs that regulate 
the expression of protein coding genes at the post-transcriptional 
level by binding to regions complementary to the 3’untranslated 
regions (UTR) of target mRNA. miRNAs suppress protein 
expression by either inhibiting mRNA translation or facilitating 
mRNA degradation (Kaur et al., 2011; Gebert and Macrae, 2019). 
Differential expression in tissues and tissue-specific selectivity 
enable them to play an important role in understanding the 
pathophysiology as well as the potential therapy of kidney 

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


microRNAs in KidneySrivastava et al.

4 August 2019 | Volume 10 | Article 904Frontiers in Pharmacology | www.frontiersin.org

diseases (Lv et al., 2018; Nascimento and Domingueti, 2019; 
Zhao et al., 2019). Modulation of kidney-specific miRNAs may 
enable renal-specific expression of target proteins that are vital 
for kidney function (Metzinger-Le Meuth et al., 2019).

Differential miRNA expression data suggest a role of altered 
miRNA in the pathogenesis of kidney disease (Bhatt et al., 2011; 
Lorenzen et al., 2011; Zhong et al., 2011; Chau et al., 2012; Chung 
and Lan, 2015; Van Der Hauwaert et al., 2015; Schauerte et al., 
2017; Zhang et al., 2017; Hajarnis et al., 2018; Thomas et al., 2018; 
Xi et al., 2018; Yang et al., 2018; Zheng et al., 2018; Fujii et al., 
2019; Liu et al., 2019a; Liu et al., 2019c; Zhao et al., 2019). The 
term fibromiR has been suggested for those miRNAs that regulate 
fibro-proliferative diseases (Pottier et al., 2014). So far, researches 
in this area have included TGFβ-associated regulation of 
miRNA expression in diabetic nephropathy (Kato et al., 2007; 
Kato et al., 2010; Kato et al., 2011; Kolling et al., 2017; Zanchi 
et al., 2017; Assmann et al., 2018; Zhang et al., 2018; Nascimento 
and Domingueti, 2019; Regmi et al., 2019), p53 induction of 
miR-34a in ischemic acute kidney injury (Bhatt et al., 2010), and 
miR-15a regulation of the cell division cycle regulator Cdc25A 
(Lee et al., 2008). Natarajan and colleagues reported that TGFβ-
induced up-regulation of miR-192, miR-216a, and miR-217 in a 
diabetic mouse model and in glomerular mesangial cells (Kato 
et  al., 2007; Kato et al., 2010) via targeting smad interacting 
protein 1 (SIP1), protein-tyrosine phosphatase (PTEN), and 
y-box binding protein 1 (Ybx1) played critical roles in collagen 
expression (Kato et al., 2007; Kato et al., 2010). However, clinical 
studies of diabetic nephropathy display remarkably lower miR-
192 expression; further studies are required to explain this 
discrepancy (Krupa et al., 2010). In other studies, miR-335 
and miR-43a encourage renal cell senescence by suppressing 
mitochondrial antioxidative enzymes (Bai et al., 2011). miR-
192 has been shown to mediate lysine deficient protein kinase 
1 (WNK1)-regulated sodium and potassium balance (Elvira-
Matelot et al., 2010) and TGFβ-induced fibrosis (Chung et  al., 
2010). Moreover, angiotensin-converting-enzyme inhibitor 
(lisinopril) treatment caused an anti-fibrotic effect in the kidneys 
of Munich Wistar Fromter rats (a mouse model of progressive 
nephropathy) by inhibiting miR-324-3p-dependent suppression 
of prolyl endopeptidase (POP), a serine peptidase involved in 
the synthesis of the endogenous antifibrotic peptide AcSDKP, 
which is critical in the homeostasis of ECM secretion (Macconi 
et al., 2012). A recent study demonstrated that a feedback loop 
between miR-21 and programmed cell death protein 4 (PDCD4) 
and activated protein (AP-1) drives progression in a mouse 
model of renal fibrosis (Sun et al., 2018). A significant number 
of reviews have addressed the role of miRNAs in renal fibrosis 
(Li et al., 2010; Amrouche et al., 2011; Lorenzen et al., 2011; 
Chandrasekaran et al., 2012; Srivastava et al., 2013; Chung and 
Lan, 2015; Kato and Natarajan, 2015; Van Der Hauwaert et al., 
2015; Zhang et  al., 2017; Assmann et al., 2018; Lv et al., 2018; 
Fujii et al., 2019; Nascimento and Domingueti, 2019; Regmi et 
al., 2019; Zhao et al., 2019). miRNA actions can be pro-fibrotic or 
anti-fibrotic depending on the kidney cell type. Figure 2 depicts 
the altered level of miRNAs in EMT and EndMT processes, 
which regulates fibroblast synthesis and fibroblast accumulation 
in kidney.

ANTI-FIBROTIC MICRORNAS IN THE 
KIDNEY

miR-29 Family
The miR-29 family clusters emerge as a major anti-fibrotic 
player in kidney fibrosis associated with Smad-dependent 
and Smad-independent pathways (Chung and Lan, 2015). The 
expression level of members of miR-29 family is significantly 
suppressed in both renal fibrosis (Lan, 2012; Meng et al., 2013; 
Srivastava et  al., 2014) and diabetic (Srivastava et al., 2016) 
and hypertensive nephropathy (Wei et al., 2013). miR-29 is 
downstream of Smad3 and can suppress the upstream TGFβ–
Smad3 signaling by miR-29b-mediated negative feedback (He et 
al., 2013). miR-29b binds to the coding region of TGFβ1 mRNA 
at exon 3, which blocks the translation of TGFβ1, resulting in 
the suppression of Smad3-dependent fibrosis (Zhang et al., 
2014). miR-29 binds to the promoter region of smad3 and exerts 
anti-fibrotic properties. In vitro, overexpression of miR-29 
inhibited, but knockdown of miR-29 enhanced, TGFβ1-induced 
expression of collagens I and III in cultured proximal tubular 
epithelial cells (TECs) (Qin et al., 2011; Wang et al., 2012a; Qi 

FIGURE 2 | Alterations in microRNA expression influence the EMT and 
EndMT programs. In the epithelial cells, the antifibrotic miRNAs (miR-29 
and let-7s) and profibrotic microRNAs (miR-15, miR-192, miR-200, miR-
293, miR-34, miR-33, miR-214, miR-439, and miR-141) are expressed 
physiologically. Similarly, in the endothelial cells, antifibrotic microRNAs (miR-
29, let-7, miR-20, miR-23, miR-129b, miR-148a, miR-532, and miR-155) 
and profibrotoic microRNAs (miR-125b, miR-127b, miR-130a, miR-27, miR-
33, miR-21, and miR-1265) are expressed. The differential expressions of 
microRNAs in the epithelial cells and endothelial cells regulate the biological 
pathways and signaling events and maintain the homeostasis. As depicted 
by changes in font size, when healthy cells undergoes the mesenchymal 
transition process, the expression of anti-fibrotic microRNAs decreases, 
while pro-fibrotic microRNA expression increases and disrupts the cellular 
homeostasis.
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and Yang, 2018). However, ultrasound-mediated gene delivery 
of miR-29 blocked progressive renal fibrosis in obstructive 
nephropathy (UUO) (Qin et al., 2011; Qi and Yang, 2018). Data 
from various studies have shown that members of the miR-29 
family target different isoforms of collagen and have an anti-
fibrotic role (Wang et al., 2012a; Qi and Yang, 2018). TGFβ1 
inhibits the beneficial role of miR-29 family by down-regulating 
the expression in TECs (Du et al., 2010; Wang et al., 2012a), 
mesangial cells (Wang et al., 2012a), and podocytes (Wang et 
al., 2012a). miR-29b suppression contributes to progressive 
renal injury in several mouse models of chronic kidney 
disease (CKD) (Qin et al., 2011; Wang et al., 2012a; Ramdas 
et al., 2013); however, overexpression of miR-29b provides a 
therapeutic benefit in UUO and db/db mice (Qin et al., 2011; 
Chen et al., 2014a). In db/db mice, miR-29a has been shown to 
be elevated in the liver and regulate gluconeogenesis (Pandey 
et al., 2011). Of note, treatment of rats with losartan caused a 
remarkable increase in the level of miR-29b expression, which 
was linked with lower expression of collagen, fibronectin, and 
laminin, and provided protection from kidney fibrosis (Wang 
et al., 2012a). miR-29 family clusters also inhibit elevated 
dipeptidyl dipeptidase-4 (DPP-4) protein levels by targeting 
the 3’UTR of its mRNA (Kanasaki et al., 2014; Shi et al., 2015). 
TGFβ2-mediated induction of DPP-4 and down-regulation 
of miR-29 are associated with EndMT (Kanasaki et al., 2014; 
Shi et al., 2015). miR-29 and TGFβ signaling exhibit a negative 
feedback loop and regulate each other, as induction of TGFβ 
signaling suppresses downstream miR-29 (Kanasaki et al., 
2014) and miR-29 suppresses upstream TGFβ signaling (Zhang 
et al., 2014), This relationship is quite interesting and supports 
an anti-fibrotic role of miR-29 in kidney fibrosis. The schematic 
diagram displays the renal protective action of miR-29 in 
EndMT and associated renal fibrosis (Figure 3).

A new pro-fibrotic molecular mechanism exists, which is 
associated with the interaction between DPP-4 and integrin β1 
and is a therapeutic target for kidney fibrosis during diabetes 
(Shi et al., 2015). In endothelial cells, miR-29 negatively 
regulates the DPP-4 and integrin β1 interaction (Shi et al., 
2015). This interaction is a key regulator of the switch between 
vascular endothelial growth factor 1 (VEGFR1) and vascular 
endothelial growth factor 2 (VEGFR2) (Shi et al., 2015). 
VEGFR1 is a positive effector of monocyte and macrophage 
migration and has been reported as a negative regulator of 
the VEGFR2 signaling capacity of VEGF-A (Olsson et al., 
2006). Integrin β1 is involved in several biological processes, 
including cell migration, cell adhesion, formation of basement 
membrane, and control of cell cycle (Mulrooney et al., 2001; 
Tanjore et al., 2008; Kanasaki et al., 2013b). Decreased 
expression of DPP-4 or integrin β1 inhibits TGFβ2-stimulated 
heterodimer formation of transforming growth factor β 
receptors (TGFβRs), thereby abolishing active TGFβ signaling 
(Figure 3A). Increased expression of TGFβ causes suppression 
of miR-29 (Qin et al., 2011) and increases the interaction 
between DPP-4 and integrin β1-induced VEGFR1 expression 
level with concomitant reduction of VEGFR2 expression levels, 
leading to active TGFβ and pro-EndMT signaling (Figure 3B). 
The DPP-4 inhibitor linagliptin is associated with EndMT 

inhibition by suppressing the interaction between DPP-4 
and integrin β1 and elevating the miR-29 level (Kanasaki et 
al., 2014). TGFβ2 increases VEGFR1 levels, and TGFβ2-
induced up-regulation of VEGFR1 can be suppressed by  
linagliptin (Figure 3C).

FIGURE 3 | miR-29s regulate DPP-4–integrin β1-associated active TGFβ 
signaling and switch between VEGFR1 and VEGFR2 in the endothelial 
cells. (A) Absent TGFβ signaling; in the absence of TGFβ, miR-29 families 
were expressed at normal level, which targets the 3’UTR of DPP-4 mRNA 
and 3’UTR of Colla 1 mRNA. Suppressed level of DPP-4–β-integrin further 
leads to suppression in the TGFβ signaling. (B) Active TGFβ signaling 
resulting in EndMT. Active TGFβ signaling causes suppression in the miR-29, 
which results to the higher DPP-4 mRNA and Colla1 transcription. Higher 
level of DPP-4–β-integrin and VEGF influences the active TGFβ signaling. 
(C) Suppressed TGFβ signaling mediated by DPP-4 inhibitor (linagliptin) 
restores miR-29 expression level and reduces the level of VEGF. The 
elevated level of miR-29 causes the suppression of the DPP-4–β-integrin 
level. The concomitant effect of reduced level of VEGF suppressed level 
DPP-4–β-integrin and finally leads to inhibition of active TGFβ signaling and 
suppression in the EndMT processes.
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miR-let-7 Family
miR-let-7 family clusters demonstrate an anti-fibrotic role in 
lung fibrosis (Pandit et al., 2010; Rajasekaran et al., 2015), cardiac 
fibrosis (Wang et al., 2015), and renal fibrosis (Brennan et al., 2013; 
Srivastava et al., 2014; Srivastava et al., 2016). It was shown that 
TGFβ1 reinforces its signaling by mitigating miR-let-7b production, 
which targets the 3’UTR of TGFβR1 mRNA in rat TECs (Wang 
et al., 2014). Down-regulated miR-let-7b expression was found in 
mouse models of diabetic (Nagai et al., 2014) and non-diabetic 
renal fibrosis (Brennan et al., 2013). Similarly, miR-let-7c targets 
TGFβR1, collagen type 1 alpha 1 (COL1A1), collagen type 1 alpha 
2 (COL1A2), and thrombospondin in human TECs (Brennan 
et al., 2013). Lipoxins, which are endogenously produced lipid 
mediators, decrease renal fibrosis in a UUO model in the rats by 
elevating miR-let-7c expression (Brennan et al., 2013), promote the 
resolution of inflammation, and inhibit fibrosis in cultured human 
proximal tubular epithelial (HK-2) cells (Brennan et al., 2013). 
Lipoxin A4 (LXA4) has been shown to decrease TGFβ1-induced 
expression of mesenchymal markers, i.e., fibronectin, N-cadherin, 
thrombospondin, and the notch ligand jagged-1 in HK-2 cells 
through a mechanism by inducing of miR-let-7c (Brennan et al., 
2013). In the UUO model of renal fibrosis, the expression level 
of miR-let-7c was up-regulated by treatment with LXA4 analog. 
LXA4 treatment caused up-regulation of miR-let-7c and inhibited 
TGFβR1 and its associated signaling. Therefore, LXA4-associated 
up-regulation of miR-let-7c expression suppresses TGFβ1-
induced fibrosis, which is a key pathway that is dysregulated in 
human renal fibrosis. We discussed the role of lipid mediators in 
diabetic nephropathy in our previous published review (Srivastava 
et al., 2014). Protein kinase C (PKC) activation and ceramides are 
associated with the suppression of antifibrotic microRNAs, and 
cumulative effects lead to the induction of fibrogenic processes 
in the kidney; several anti-dyslipidemic drugs have a differential 
effect on renal outcome (Srivastava et al., 2014). AcSDKP inhibits 
EndMT-driven renal fibrosis by ameliorating the miR-let-7 family 
clusters (Nagai et al., 2014; Nitta et al., 2016; Li et al., 2017) and the 
miR-let-7s-FGFR1 axis inhibits TGFβ signaling in fibrotic kidneys 
(Nagai et al., 2014). AcSDKP inhibits TGFβ–smad3 signaling and 
EndMT via activation of the fibroblast growth factor receptor 1 
(FGFR1)–mitogen-activated protein kinase kinase kinase kinase 4 
(MAP4K4) pathway (Li et al., 2017). AcSDKP-associated induction 
of MAP4K4 signaling inhibits integrin β1 phosphorylation, leading 
to anti-EndMT signals (Li et al., 2017). AcSDKP exerts anti-
EndMT and antifibrotic effects in several mouse models of organ 
fibrosis (Nagai et al., 2014; Nitta et al., 2016; Srivastava et al., 2016). 
However, the precise molecular mechanisms by which AcSDKP 
suppresses TGFβ–smad3 signaling and EndMT are not fully 
investigated. FGFR1 is a key inhibitor of TGFβ-induced EndMT 
(Chen et al., 2014b). FGFR1 is critical in the AcSDKP-induced 
suppression of TGFβ-associated EndMT by elevating the level of 
miR-let-7 family clusters (Nagai et al., 2014). AcSDKP-associated 
activation of MAP4K4 suppresses DPP-4–integrin β1 signaling 
in endothelial cells (Vitorino et al., 2015) and DPP-4–integrin 
β1 influences TGFβ signaling and EndMT (Shi et al., 2015). 
MAP4K4 is a crucial downstream protein responsible for the anti-
EndMT effect of AcSDKP (Li et al., 2017). Figure 4 depicts the 

contribution of interactions among AcSDKP, FGFR1, miR-let-7 
family clusters, and MAP4K4 in endothelial cell homeostasis. The 
interaction between AcSDKP and FGFR1 mitigates the TGFβ–
smad3 signaling associated EndMT by activating the MAP4K4 
signaling pathway and by inducing miR-let-7 production. 
AcSDKP restores both diabetes-suppressed FGFR1 and MAP4K4 
phosphorylation levels. The AcSDKP–FGFR1–MAP4K4 signaling 
axis offers significant information towards the understanding of 
endothelial cell homeostasis and provides a future target for the 
study of EndMT-associated organ fibrosis.

ANTIFIBROTIC CROSSTALK REGULATION 
BETWEEN MIR-29 AND MIR-LET-7 FAMILY 
CLUSTERS
Previous reports show that TGFβ down-regulates anti-fibrotic 
miRNAs such as miR-29 family clusters (Wang et al., 2012a). 
TGFβ1-regulated crosstalk of miRNAs was de-regulated 

FIGURE 4 | AcSDKP-mediated regulation of active TGFβ signaling and 
EndMT processes. (A) Phosphorylation of FGFR1 is the key mechanism for 
AcSDKP action. Phosphorylation of FGFR1 leads to activation of MAP4K4 
signaling and miR-let-7 production. miR-let-7b targets the 3’UTR of TGFβR1 
mRNA. AcSDKP-associated production of miR-let-7 family clusters and 
activation of MAP4K4 negatively regulates the DPP-4 integrin β1-associated 
active TGFβ signaling in the endothelial cells. (B) In the absence of AcSDKP, 
reduced FGFR1 phosphorylation leads to down-regulation of miR-let-7b 
gene expression and suppressed MAP4K4 signaling, finally resulting in active 
TGFβ signaling and activation of pro-EndMT signals.
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early in type 1 diabetes subjects who had accelerated rates 
of progression to ESRD (Pezzolesi et al., 2015). In addition, 
clusters of the miR-29 family and the miR-let-7 family 
displayed crosstalk regulation. AcSDKP is a key peptide for 
the homeostasis of this crosstalk in HMVECs (Srivastava et al., 
2016) (Figure 5). Interestingly, miR-29 family clusters have shown 
negative, bidirectional regulation with TGFβRs. miRNAs could be 
regulating gene expression of each other directly or indirectly. 
Such a novel crosstalk phenomenon could be associated with 
maintenance of an anti-fibrotic milieu in the kidney, and 
disruption of such a mechanism could accelerate renal fibrosis. 
Pharmacological interventions that prevent the disruption of this 
crosstalk may be beneficial in renal fibrosis. The DPP-4 inhibitor 
(linagliptin) has been shown to suppress EndMT-driven TGFβ 
signaling in STZ-induced renal fibrosis in diabetic CD-1 mice by 
inducing miR-29 family clusters (Kanasaki et al., 2014). miR-29 
directly targets DPP-4; therefore, DPP-4 inhibition is proposed 
for the therapy of diabetic nephropathy (Kanasaki et al., 2014). 
The development of renal fibrosis in mice is largely dependent 
upon strain types (Srivastava et al., 2018). The CD-1 mouse is 
well-known as a fibrotic mouse strain, while 129sv and C57Bl6 
mouse strains are less fibrotic (Srivastava et al., 2016; Srivastava 
et al., 2018). The suppression of miR-29 and miR-let-7 family 
clusters and the induction of TGFβ–smad3 signaling were 
observed in the fibrotic kidneys of diabetic CD-1 mice; however, 
such alterations were not observed in the less fibrotic kidneys of 
diabetic 129sv mice, suggesting that miR-29 and miR-let-7 family 
clusters play key roles in regulation of TGFβ signaling (Srivastava 
et al., 2016).

MiR-let-7 has been shown to inhibit TGFβR1 (Chen et al., 
2012), and TGFβ–smad3 signaling has been demonstrated as 
an inhibitory pathway of miR-29 (Qin et al., 2011; Blahna and 
Hata, 2012; Wang et al., 2012a; Kanasaki et al., 2014); therefore, 
it was expected that miR-let-7 could induce the expression level 
of miR-29. An alternative mechanism of miR-29-associated miR-
let-7 expression was explained by the interferon-gamma (IFNγ)–
FGFR1 axis. miR-29 targets IFN-γ mRNA (Ma et al., 2011). 
However, IFN-γ has been shown to inhibit FGFR1. FGFR1 
exhibits vital roles in the production of miR-let-7 family clusters 
(Chen et al., 2012). Suppressed miR-29 causes elevation of IFN -γ; 
subsequently, higher levels of synthesized IFN-γ discourage 
FGFR1 and FGFR1-associated expression of miR-let-7 family 
clusters. This suppression of miR-let-7 causes induction of 
TGFβR1 protein expression. Triggering TGF-β/smad3 signaling, 
in turn, inhibits the expression of miR-29 family clusters 
(Kanasaki et al., 2014). This series of events limits control over 
the crosstalk regulation between miR-29 and miR-let-7 during 
fibrotic events in kidneys of diabetic mice. AcSDKP contributes 
to kidney homeostasis, at least in part, by maintaining the anti-
fibrotic crosstalk regulation between miR-29 and miR-let-7.

MIR-192 AND MIR-200
TGFβ1-linked renal fibrosis has been shown to associate with 
miR-192 and miR-200; however, TGFβ1 has shown inconsistent 
effects on miR-192 expression in various in vivo and in vitro 

models (Meng et al., 2015). TGFβ1 has been shown to have diverse 
regulation of miR-192 in cultured mesangial cells and cultured 
TECs (Kato et al., 2007; Chung et al., 2010; Wang et  al., 2010; 
Putta et al., 2012). Likewise, higher expression levels of miR-192 
were found in fibrotic kidneys of mice after UUO (Chung et al., 
2010). Conversely, lower expression of miR-192 was found in the 
fibrotic kidneys from a rat 5/6 nephrectomy model (Chung et 
al., 2010; Sun et al., 2011); however, the expression level of miR-
192 was both up-regulated and down-regulated in experimental 
mouse models of diabetic nephropathy (Kato et al., 2007; Wang et 
al., 2010; Putta et al., 2012). These conflicting results were due to 
variations in the animal models, differences in the disease stage 

FIGURE 5 | Antifibrotic microRNA crosstalk between miR-29s and miR-
let7s is crucial for endothelial cell homeostasis. MiR-29 and miR-let-7 
families show crosstalk regulation by inducing FGFR1 phosphorylation and 
targeting TGFβR1. AcSDKP potentiates crosstalk regulation in the endothelial 
cells, which is required for endothelial cell homeostasis. DPP-4 inhibition 
and/or AcSDKP elevate the crosstalk regulation in the endothelial cells. 
AcSDKP induces the production of miR-let-7 families; miR-let-7b targets 
TGFβR1 and TGFβ signaling. Suppressed levels of TGFβ signaling results in 
up-regulation of miR-29 gene expression, which in turn causes the FGFR1 
phosphorylation. FGFR1 phosphorylation is critical for miR-let-7 production. 
In the presence of higher DPP-4 activity level or absence of AcSDKP, miR-
let-7 families are down-regulated, which in turn causes activation of TGFβ 
signaling. Higher levels of TGFβ signaling results in suppression of miR-29 
family expression and finally influences EndMT and fibrogenesis.
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analyzed, and/or the diverse in  vitro experimental conditions 
used. In the early stages, biphasic induction of miR-192 by 
TGFβ1 in mouse mesangial cells involves the smad dependent 
pathway, which is followed by an induction of the concomitant 
mechanism that causes expression miRNA by loosening the 
compacted chromatin structure of the miR-192 gene via Ets1 and 
histone H3 acetylation (Kato et al., 2013). An identical finding 
was shown in the glomeruli of db/db mice. In contrast, normal 
levels of miR-192 expression are found in mouse mesangial 
cells and human TECSs. In this case, both hepatocyte nuclear 
factor (HNF) and p53 constitutive binding regions are present 
in its promoter. TGFβ1 suppresses miR-192 transcription by 
reducing the binding between HNF and the miR-192 gene 
(Jenkins et al., 2012). HNF expression is restricted to the tubular 
compartment; however, it is expressed neither in mesangial cells 
nor in podocytes (Igarashi et al., 2005), thus substantiating the 
cell-specific regulation of miR-192.

TGFβ1 treatment of mouse mesangial cells and glomeruli 
from diabetic mice leads to up-regulation of miR-192 and miR-
200b/c expression; TGFβ1 treatment causes induction of Col1a2 
and Col4a1 by suppressing the E-box repressors Zeb1 and Zeb2 
(Kato et al., 2007; Kato et al., 2011; Putta et al., 2012). Clinical 
studies in Southwestern American Indians with type 2 diabetes 
have suggested that expression of miR-192 inversely correlates 
with Zeb1 and Zeb2 expression levels (Deshpande et al., 2013). 
In contrast, TGFβ1-induced down-regulation of the miR-200 
family (Tang et al., 2013), miR-192 (Krupa et al., 2010; Wang et al., 
2010), and miR-215 (Krupa et al., 2010) causes diminished levels 
of E-cadherin (as miRNA targets E-cadherin transcriptional 
repressors Zeb1 and Zeb2) in TECs, UUO models of fibrosis 
(Jenkins et al., 2012), and diabetic models of fibrosis (Wang  
et al., 2010).

miRNA-regulated circuits in mouse mesangial cells and in the 
glomeruli of diabetic mice cause amplification of TGFβ1 signaling 
by forming an auto-regulatory loop involving TGFβ1, miR-192, 
and miR-200 family members (Kato et al., 2011). TGFβ1 induces 
crosstalk between p53 and miR-192. Since miR-192 targets Zeb2, 
this crosstalk has been explained as an auto-regulatory loop in 
mesangial cells and glomeruli from the kidneys of diabetic mice 
(Deshpande et al., 2013).

CLINICAL DEVELOPMENT OF MIRNA-
BASED THERAPEUTICS
To date, around 20 clinical trials have been launched using 
miRNA and siRNA-based therapeutics against several diseases 
(Chakraborty et al., 2017). SPC3649 (miravirsen, Santaris 
Pharama Denmark), which is an antagomir of miR-122, is 
the only miRNA-based therapeutic available for the treatment 
of hepatitis C virus infection (Janssen et al., 2013; Gebert 
et  al., 2014). In recent years, therapeutic microRNAs are 
some significant biopharmaceuticals that are (or will be) in 
the commercial space as future medicine for the treatment of 
kidney diseases (Brandenburger et al., 2018). A recent advance 
in miRNA-based therapeutics (RG-012) is now in the pipeline 
to initiate a phase 2 clinical trial. RG-012 (anti-miR-21) is being 

developed by Regulas Therapeutics for the treatment of Alport 
nephropathy and its complication (Chau et al., 2012; Gomez et 
al., 2015).

Several issues have been noticed during the design of miRNA-
based therapeutics related to the absorption, distribution, 
metabolism, and excretion (ADME) of new chemical molecules 

FIGURE 6 | A hypothetical schematic diagram demonstration. (A) Anti-
fibrotic; in the presence of AcSDKP, normal glucose, and lipid level, miR-29 
and let-7 are found at normal expression level, whereas the expression 
level of miR-21 and miR-33 is down-regulated. (B) Profibrotic; in the 
absence of AcSDKP, the presence of hyperglycemia and hyperlipidemia 
suppresses the expression level of miR-29 and miR-let-7 but induces 
the expression level of profibrotic microRNA (miR-21 and miR-33) and 
influences mesenchymal activation in epithelial cells, endothelial cells, and M2 
phenotype macrophages. Hyperglycemia is linked with up-regulation in the 
expression level of miR-21, whereas hyperlipidemia is found to be associated 
with miR-33. There would be a possibility that a kind of crosstalk mechanism 
exists among anti-fibrotic and pro-fibrotic microRNAs, which influences the 
EMT, EndMT, and MMT processes, and the endogenous peptide AcSDKP 
regulates such profibrotic mechanisms. Figures were created using the 
Servier Medical Art illustration resources.
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(Caldwell, 2000; Ruiz-Garcia et al., 2008). miRNA-based 
therapies are often less efficient candidates in terms of absorption 
(Khatsenko et al., 2000); a more efficient delivery system and 
more research is needed. Importantly, the delivery of miRNA-
based therapy to the target tissues is challenging because of 
poor pharmacological properties including off targeting, low 
serum stability, and poor innate immune response (Miller, 2013; 
Hong and Nam, 2014). Recent advances in the available delivery 
systems of miRNA-based therapy, such as PEGylated liposome 
vesicles, are 50–100 nm, which prevents the medicine from 
being filtered by the kidneys (Love et al., 2010; Broderick and 
Zamore, 2011; Hong and Nam, 2014). Liposomal encapsulation 
technology can improve the half-life of therapeutic miRNAs 
in blood; this is an area of active research and development at 
pharmaceutical companies.

PERSPECTIVE AND FUTURE DIRECTIONS
Some miRNAs display down-regulated status in kidney disease, 
suggesting protective roles. Anti-fibrotic mechanisms of miRNAs 
could be dependent on signaling molecules in TGFβ pathways 
or independent from TGFβ pathways, i.e., targeting signaling 
molecules of ECM-secreting pathways. miRNA-based therapeutics 
are superior to those of conventional drug approaches because 
they are able to target complex pathogenic gene networks. Further 
benefits include sustained outcomes, expansion of drug-ridden 
targets to virtually any miRNA, rapid drug development, and 
limited potential for drug interactions (Pottier et al., 2014; 
Morishita et al., 2015). Using efficient delivery methods such as 
liposome-based delivery or nanoparticle-based delivery systems 
can minimize both the dose required and the toxicity level, both 
of which could be beneficial for the treatment of kidney diseases.

microRNAs can be used as biomarkers and therapeutic 
targets for kidney diseases (Fujii et al., 2019; Nascimento 
and Domingueti, 2019). The challenges to translate their 
therapeutic potential to clinical applications are a subject of 
ongoing research. miRNA-based therapies offer a significant 
promise for the treatment of kidney diseases. miR-let-7c-5p and 
miR-29a-3p were significantly linked with protection against 
rapid progression of renal fibrosis, whereas miR-let-7b-5p and 
miR-21-5p were linked with higher risk of ESRD. Controlling 
HgbA1c and other covariates, miR-let-7c-5p and miR-29a-3p 
were associated with significant (>50%) decline in increased 
progression, whereas miR-let-7b-5p and miR-21-5p were linked 
with more than a 2.5-fold higher rapid risk of ESRD (Pezzolesi 

et al., 2015). Some microRNAs need further investigation 
to establish their potential. miR-200b pre-cursor has been 
shown to be anti-fibrotic and its mimic can ameliorate renal 
interstitial fibrosis in UUO kidneys (Oba et al., 2010). Similarly, 
urinary expression of levels of miR-29b and miR-29c is linked to 
proteinuria and kidney function in immunoglobulin A (IgA) 
nephropathy, while urinary levels of miR-93 are coordinated with 
glomerular scarring (Wang et al., 2012b). MicroRNAs regulating 
the M2-to-M1 phenotype macrophages regulate MMT processes 
in kidneys. MiR-9, miR-125b, miR-127, and miR-155 induce 
the M1 polarization, whereas miR-124, miR-233, miR-34a, miR-
132, miR-146a, and miR-125a induce M2 polarization (Essandoh 
et al., 2016). MicroRNAs regulating the TGFβ signaling (miR-let-7 
family and miR-29 family) or smad3 dependent suppression in the 
antifibrotic microRNAs can be crucial in the regulation of MMT 
processes. Moreover, this new area needs further investigation.

Altered metabolic states can alter the expression level of 
pro-fibrotic and anti-fibrotic microRNAs. Figure 6 depicts a 
hypothetical representation showing possible crosstalk among 
pro-fibrotic miRNAs (miR-33 and miR-21) and anti-fibrotic 
microRNAs though which mesenchymal activation is regulated. 
Hyperglycemia and hyperlipidemia up-regulate pro-fibrotic 
miRNAs, which could be a result of up-regulated TGFβ/smad3 
signaling (Zhong et al., 2011; Chau et al., 2012; Kumarswamy 
et al., 2012; Nishiga et al., 2017). TGFβ signaling has been shown 
to up-regulate miR-21 (Liu et al., 2016; Kolling et al., 2017; 
Schauerte et al., 2017; Chau et al., 2012; Wang et al., 2012c; Kim, 
2018; Sun et al., 2018) and down-regulate miR-29 (Qin et al., 
2011). Identification of novel miRNA crosstalk mechanisms in the 
kidney is quite relevant to the understating of renal health and disease. 
Restoring anti-fibrotic miRNA crosstalk mechanisms provides renal 
protection. Physiologically relevant anti-fibrotic crosstalk may 
potentially be useful in combating diabetic kidney disease.
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