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Abstract 

Background:  Research on causal reasoning often uses group-level data analyses that downplay individual differ-
ences and simple reasoning problems that are unrepresentative of everyday reasoning. In three empirical studies, we 
used an individual differences approach to investigate the cognitive processes people used in fault diagnosis, which is 
a complex diagnostic reasoning task. After first showing how high-level fault diagnosis strategies can be composed of 
simpler causal inferences, we discussed how two of these strategies—elimination and inference to the best explana-
tion (IBE)—allow normative performance, which minimizes the number of diagnostic tests, whereas backtracking 
strategies are less efficient. We then investigated whether the use of normative strategies was infrequent and associ-
ated with greater fluid intelligence and positive thinking dispositions and whether normative strategies used slow, 
analytic processing while non-normative strategies used fast, heuristic processing.

Results:  Across three studies and 279 participants, uses of elimination and IBE were infrequent, and most partici-
pants used inefficient backtracking strategies. Fluid intelligence positively predicted elimination and IBE use but not 
backtracking use. Positive thinking dispositions predicted avoidance of backtracking. After classifying participants into 
groups that consistently used elimination, IBE, and backtracking, we found that participants who used elimination 
and IBE made fewer, but slower, diagnostic tests compared to backtracking users.

Conclusions:  Participants’ fault diagnosis performance showed wide individual differences. Use of normative strate-
gies was predicted by greater fluid intelligence and more open-minded and engaged thinking dispositions. Elimina-
tion and IBE users made the slow, efficient responses typical of analytic processing. Backtracking users made the fast, 
inefficient responses suggestive of heuristic processing.
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Significance
Experts and novices often need to find (diagnose) the 
causes of specific problems, for example, when physi-
cians diagnose illnesses, citizens understand the causes 
of global warming, or a couple figures out why their 
teenager’s grades are plummeting. We studied fault-
diagnosis strategies like ruling out causes (elimination) 
and explaining the most effects with the fewest causes 

(inference to the best explanation or IBE). Because fault 
diagnosis is so widely applicable, understanding its 
underlying cognitive processes can lead to training that 
improves peoples’ ability to diagnose faults in a variety of 
physical systems and social situations. Prior research on 
training fault diagnosis strategies has taught either inef-
ficient backtracking strategies or overly specific strategies 
(e.g., for a water supply system) that may not generalize 
to new situations. Our studies found that elimination and 
IBE minimize the number of diagnostic tests, while some 
backtracking strategies save time. This suggests that peo-
ple should be taught a repertoire of strategies that fit dif-
ferent situations, e.g., elimination and IBE if tests are very 
expensive and backtracking for speed.
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Because strategies like elimination and IBE are useful 
in understanding policy issues, our findings are relevant 
to teaching critical thinking to the public. We found that 
intelligence and positive thinking dispositions (e.g., open-
mindedness, intellectual engagement) are positively 
associated with using elimination and IBE. Since think-
ing dispositions may be more trainable than intelligence, 
teaching thinking dispositions may be a more effective 
way to increase the use of elimination and IBE. These 
strategies can also be taught directly as part of education 
for critical thinking.

Background
This project focuses on individual differences in two 
aspects of causal reasoning. In causal learning, people 
induce general knowledge about the strength and struc-
ture of causal relationships after observing large-sample 
covariation data (Griffiths and Tenenbaum 2009) or by 
making interventions and observing their effects (Bram-
ley et al. 2017). In diagnostic reasoning, people use pre-
viously learned causal knowledge and a small number of 
observed events to make inferences about other specific 
events (Meder and Mayrhofer 2017a). In this paper, we 
focus on a particular kind of diagnostic reasoning known 
as fault diagnosis.

Fault diagnosis
Fault diagnosis is an arguably general-purpose1 pro-
cess that involves finding the causes that are producing 
specific abnormal effects in a system (symptoms). Fault 
diagnosis is common in equipment repair and medicine, 
but the reasoning used in fault diagnosis is applicable in 
other domains. Legal reasoning (Fenton et al. 2013) and 
some scientific argumentation (e.g., identifying causes 
of global warming) seek to identify the causes of spe-
cific observed events. Fault diagnosis is not just done by 
experts. Home care nurses sometimes need to diagnose 
faults on home medical devices and may have difficulty 
doing so (Lyons and Blandford 2018). If your laptop can-
not get a Wi-Fi signal but your cell phone can, the work-
ing cell phone allows you to eliminate an absent Wi-Fi 
signal as the cause and localize the fault to your laptop. 
Gugerty (1989) found that many undergraduates used 
this elimination strategy when diagnosing a household 
electrical problem. Causal attribution in social situations 
(Morris and Larrick 1995) uses causal inferences like dis-
counting, which is used in fault diagnosis.

Little lab-based research has been conducted on fault 
diagnosis, as most research has focused on experts work-
ing in complex, knowledge-rich domains, e.g., medi-
cal diagnosis (Patel et al. 2012). In this project, we used 
a fault diagnosis task that is more complex than many 
tasks used to study diagnostic reasoning but which does 
not require prior expertise and can be used in a labora-
tory setting. We focus on three fault diagnosis strategies: 
backtracking from the abnormal system output, eliminat-
ing potential faults that lead into normal system output, 
and inference to the best explanation (IBE). In IBE, people 
choose a causal explanation of a set of symptoms based 
on simplicity (minimizing the number of faults), coverage 
(maximizing the number of symptoms explained), and 
other factors (Lombrozo and Vasilyeva 2017).

Individual differences in normative performance
Researchers may obtain an inaccurate picture of peoples’ 
cognition by focusing only on group averages, especially 
when individuals can complete a task using different 
strategies. Such differences have been shown in learning 
and memory (Estes 1956; Hemmer et al. 2015) and spatial 
cognition (Logie 2018). However, within research on rea-
soning, many of the early heuristics-and-biases studies 
focused on group averages and concluded that the aver-
age person fell short of normative standards on a variety 
of inductive (Nisbett et al. 1983; Tversky and Kahneman 
1974) and deductive (Evans et al. 1983; Wason and Shap-
iro 1971) reasoning tasks.

More recent findings on individual differences have 
emphasized how subgroups of people vary from the 
group mean. First, a small group of participants reason 
normatively on many reasoning tasks, although most fail 
to do so. Second, the extent to which individuals reason 
normatively is positively correlated with fluid intelligence 
and thinking dispositions (e.g., open-mindedness), with 
each predictor contributing uniquely (Klaczynski and 
Lavalee 2005; Stanovich and West 1997, 1998; Toplak 
et  al. 2014). In the current studies, we investigate these 
two research questions using the complex reasoning task 
of fault diagnosis.

Many cognitive science researchers define normative 
cognition using models at Anderson’s (1991) rational 
level of explanation, which describes cognitive functions 
in terms of optimal adaptation to goals given environ-
mental constraints. Here, we use information gain as a 
metric for defining optimal or normative fault diagnosis. 
Information gain is a frequently used metric of norma-
tive performance in fault diagnosis (Navarro and Perfors 
2011) and other information search tasks (Nelson 2005).

1  Here, general-purpose only means applicable across knowledge domains. 
We make no claims about whether fault diagnosis knowledge is represented in 
memory in a general or domain-specific manner.
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Fluid intelligence and thinking dispositions
The ability to concurrently process and store informa-
tion in working memory is strongly correlated with per-
formance on a variety of reasoning tasks (Kyllonen and 
Christal 1990). Researchers have recently focused on a 
particular function of working memory—supporting 
inferences about hypothetical situations that are decou-
pled from perceptual representations of the world—as an 
important component of reasoning (Evans and Stanovich 
2013; Oaksford and Chater 2012). Evans and Stanovich 
(2013) suggested that tests of fluid intelligence assess this 
function of working memory; Shipstead et al. (2016) pro-
vided evidence supporting this viewpoint.

Stanovich (2011, 2018) proposed that tests of thinking 
disposition assess the degree to which people can detect 
the need to override less-effortful thinking that relies 
on prior knowledge and switch to analytic, hypotheti-
cal thinking. Common thinking disposition measures 
include motivation and effort toward cognitive tasks (e.g., 
Typical Intellectual Engagement; Goff and Ackerman 
1992) and openness to changing beliefs (e.g., Actively 
Open-Minded Thinking; Stanovich and West 1997). In 
this viewpoint, fluid intelligence assesses the capability 
for hypothetical thinking using working memory, while 
thinking dispositions assess the propensity to do this.

Research questions
Our goal was to test whether the individual differences 
findings described above, which have been demonstrated 
primarily on simpler reasoning tasks, extend to complex 
causal reasoning tasks. We conducted three studies in 
which participants completed tests of fluid intelligence 
and thinking dispositions and a task where they diag-
nosed faults in physical systems. We focused on the strat-
egies mentioned above—backtracking, elimination, and 
IBE—and considered two research questions related to 
individual differences. Are strategies that allow norma-
tive performance used less frequently than strategies not 
associated with normative performance (Q1)? Are strat-
egies associated with normative performance used more 
frequently by people with higher fluid intelligence and 
thinking dispositions (Q2)? Also, to better understand 
the cognitive processes used in fault diagnosis, we inves-
tigated whether elimination, IBE and backtracking have 
characteristics of analytic or heuristic processing (Q3).

Causal learning task
In two of our studies, participants completed a causal 
learning task (Liljeholm and Cheng 2009) in addition to 
the fault diagnosis task. As noted above, learning causal 
models of the world and using these models to make use-
ful inferences are two critical aspects of causal reasoning. 

This research design allowed us to pursue our research 
questions for both causal reasoning tasks and also to see 
whether the use of normative strategies was correlated 
across the two tasks. Due to length considerations, we 
were not able to present the findings from both tasks in 
this paper. We plan to present the causal learning find-
ings and the cross-task correlations in a separate paper.

Diagnostic reasoning
In causal learning, people learn a causal model describ-
ing the relationships among some causal and effect 
variables—including their structure and strength—by 
observing many co-occurrences of cause and effect vari-
ables (Lu et al. 2008) or by observing the effects of inter-
ventions they have selected (Bramley et al. 2017; Coenen 
et  al. 2015). Peoples’ causal models are general in that 
they are applicable to many situations. Many studies of 
diagnostic reasoning, including ours, assume that partici-
pants have already learned a causal model that describes 
a particular situation, based on either in-study training 
or prior expertise. Then, participants observe the state 
of a small number of variables in the model and make 
inferences that update their beliefs about the state of 
other model variables. We consider diagnostic reason-
ing to be a broad category that includes the following: (1) 
single-step inferences between directly linked variables, 
including diagnostic (effect-to-cause) and predictive 
(cause-to-effect) inferences; (2) multistep inferences such 
as inference chaining and discounting (Waldman et  al. 
2008); and (3) higher-level processes like fault diagnosis 
and forecasting. (In this paper, the term diagnostic infer-
ence refers to effect-to-cause inferences between directly 
connected variables, while diagnostic reasoning is a much 
broader term, as described here.)

Simpler diagnostic reasoning tasks
Much of the research in a recent review of diagnostic 
reasoning (Meder and Mayrhofer 2017a) used lab-based 
tasks with relatively simple causal structures, i.e., a few 
causes and fewer than a dozen effects. Researchers often 
assume that, given these simpler structures, people make 
diagnostic inferences in a quantitative fashion (e.g., 
Meder and Mayrhofer 2017b; Waldmann et al. 2008). For 
example, the ability to accurately estimate the posterior 
probability of a cause after observing its effect correlates 
positively with fluid intelligence and thinking disposi-
tions (McNair and Feeney 2015; Sirota et al. 2014).

Handling complexity
Realistic fault-diagnosis problems often have com-
plex causal structures. For example, based on verbal 
protocols given by physicians as they diagnosed real-
istic cases, Patel et  al. (1990) created causal networks 
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showing physicians’ predictive and diagnostic infer-
ences. One physician’s network contained 12 nodes 
representing evidence from the case and 24 causal 
nodes representing physiological conditions (includ-
ing the correct diagnosis). Another physician’s network 
contained four pieces of evidence and 15 causal nodes. 
In each problem of our fault diagnosis task, 25–35 
potential faults were present, and participants could 
gather 40–60 pieces of evidence.

Research has shown that as the complexity of decisions 
increases (e.g., more alternatives or attributes), partici-
pants shift from evaluating alternatives using quantitative 
reasoning (e.g., weighted additive strategy) to qualitative 
strategies like elimination by aspects, which iteratively 
eliminates choices (Payne and Bettman 2004). Studies 
of diagnosis by physicians and nurses suggest that they 
use qualitative reasoning as well, e.g., classifying diseases 
as being in or out of a set of potential causes instead of 
assigning each disease a graded probability of causing the 
symptoms (Eddy and Clanton 1982; Johnson et al. 1982; 
Rossi and Madden 1979). Also, evidence indicates that 
children (Schulz and Sommerville 2006) and adults (Aus-
terweil and Griffiths 2011; Lu et al. 2008; Yeung and Grif-
fiths 2015) often assume qualitative, deterministic causes 
(either strong or absent) even in complex domains where 
causal strength varies continuously. Sloman and Lagnado 
(2015) have highlighted the importance of qualitative 
reasoning in causal reasoning. In the current studies, we 

used a deterministic task and focused on how qualitative 
reasoning might be used in fault diagnosis.

Fault diagnosis
Our participants solved problems like in Fig.  1, which 
shows a network of water storage tanks through which 
water flowed from left to right. At the start of each prob-
lem, the display showed whether clean (C) or rusty (R) 
water was flowing through the network input and output 
pipes. The network is taking in clean water but outputting 
rusty water because a tank is rusty. The goal of the par-
ticipants was to find the rusty tank. They did this by mak-
ing diagnostic tests (testing a pipe revealed whether it 
contained clean or rusty water) and submitting diagnoses 
(checking a tank revealed whether it was clean or rusty 
inside). Results of tests and incorrect diagnoses (a C or R 
by a pipe or tank) remained on the display. Participants 
made tests and diagnoses until they diagnosed the rusty 
tank. They were instructed that (1) pipe tests and tank 
checks were costly and should be minimized, (2) only one 
tank was rusty, and (3) rusty tanks had very strong effects 
(i.e., deterministic causes). Participants were incentivized 
to observe the cost constraint by imaginary monetary 
costs and by delays between the time when they clicked 
on a pipe or tank and when the test result appeared (2.5 s 
delay and $10 for pipe tests; 5–12.5  s delay and $80 for 
tank checks). The cumulative amount of money spent on 
each problem was updated after each test or check. After 
diagnosing the rusty tank, participants received feedback 
about how well they had met the cost constraint. Partici-
pants could place visual markers on tanks, which were 
intended to reduce the memory load of using diagnosis 
strategies. “Appendix 1” shows the networks used in the 
studies. Similar tasks have been used by Carlson et  al. 
(1992), Kostopoulo and Duncan (2001), and Ham and 
Yoon (2007).

According to Nelson (2005), fault diagnosis is an exam-
ple of the general inductive problem where people have 
a set of hypotheses, and data relevant to the hypotheses 
are currently available or potentially available from que-
ries (e.g., diagnostic tests). In fault diagnosis, the causal 
hypotheses are that some system components could be 
faulty. The task involves efficiently selecting diagnostic 
tests, which allow observing the effects of potential faults 
and then updating beliefs about hypotheses based on 
observed effects. Many studies have focused on the test 
selection component of this inductive problem (Klay-
man and Ha 1987; Oaksford and Chater 1994, 2003; 
Ruggeri and Lombrozo 2015). In the current studies, we 
focused on the belief-updating component, i.e., how par-
ticipants updated their beliefs about causal hypotheses 
using observations, such as observing rusty versus clean 
water in pipes. In order to highlight to participants the 

Fig. 1  Initial display (before any tests made) for a fault diagnosis 
problem, showing a network of water storage tanks with water 
flowing from left to right and observations of clean (C) and rusty 
(R) water flowing in pipes. The overlays (which were not shown 
to participants) show the reduced fault set after using general 
backtracking (solid straight lines), elimination (dashed lines), and 
IBE (circle) based on the network outputs at the beginning of the 
problem. The pipe numbers and tank letters were not shown to 
participants. The rusty tank is circled
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importance of using efficient belief-updating strategies, 
in each study participants saw two problems like Fig. 1, 
where using elimination and IBE allowed diagnosing the 
rusty tank without any diagnostic (pipe) tests, based only 
on belief updating using the initial observations.

Researchers have distinguished two types of hypothesis 
testing (Ruggeri and Lombrozo 2015). The more efficient 
constraint seeking involves making diagnostic tests that 
reveal the effects of faults and then updating (narrowing) 
the fault set based on the observed effects. Hypothesis 
scanning, which focuses on root causes instead of effects, 
involves making diagnoses of potential faults. This 
approach is inefficient because it only narrows the fault 
set by one potential fault per diagnosis and provides no 
new observations that allow updating the fault set. Given 
our focus on belief updating, we set the time and money 
costs for diagnoses to be much higher than for diagnostic 
tests of pipes in order to motivate participants to mini-
mize the number of diagnoses and use pipe tests as their 
problem-solving operator. (In Study 1, where the delay 
after unsuccessful diagnoses was 5  s, a few participants 
made too many diagnoses. This tendency was reduced by 
setting this delay to 12.5 s in Study 2 and Study 3.) In the 
following, we describe the belief-updating strategies that 
we studied. All of these strategies narrow the fault set 
by eliminating some faults from consideration, although 
some strategies do this more efficiently than others.

General backtracking
In backtracking, reasoners update the fault set (which 
initially contains all tanks) at the outset of the problem 
by first making one-step diagnostic inferences from the 
observations of abnormal system state (rusty water), 
which generates the hypotheses that a tank outputting 
rusty water could be rusty or any pipe leading into it 
could carry rusty water. Instead of testing these hypoth-
eses about pipes with diagnostic tests, reasoners make 
diagnostic inferences from them. This process is repeated 
recursively until no more inferences can be made. These 
chains of diagnostic inferences create a set of potential 
faults that we call the backtracking set and eliminate 
tanks that that do not lead into rusty water. Figure  1 
shows the initial backtracking set, before any diagnostic 
tests have been made.

After the initial update, reasoners test pipes that 
directly connect tanks within the current backtracking 
set until they find a rusty water result and then update 
the backtracking set again. This test–update cycle is 
repeated until a diagnosis can be made, i.e., when a tank 
is identified with all clean water inputs and rusty water 
outputs. Backtracking is inefficient because it ignores 
useful information—observations of normal system state 
(clean water). We call this strategy general backtracking 

to distinguish it from a variant of backtracking described 
later.

Updating the backtracking set after each rusty-water 
test result means that tanks that were in the previous 
backtracking set but are not causally upstream of the lat-
est rusty water observation are eliminated from the fault 
set even though they lead into rusty water and could be 
rusty. For example, in Fig. 1, after pipe 2 has been tested 
and found to carry rusty water, the new backtracking set 
contains tank B and all tanks upstream of it, while tanks 
A, D, E and F are eliminated even though they could be 
rusty if there were multiple rusty tanks. This second type 
of elimination during backtracking depends on the single 
fault assumption. Whether participants using backtrack-
ing are consciously eliminating these tanks based on the 
single fault assumption or merely focusing on making 
diagnostic, upstream inferences until they find definitive 
evidence for a rusty tank is not clear.

Practiced elimination
At the outset of the problem, reasoners using elimina-
tion make recursive diagnostic inferences (without diag-
nostic testing) as in general backtracking but from the 
clean instead of the rusty water observations. This cre-
ates the initial elimination set (Fig.  1). Then, they test a 
pipe directly connecting two tanks in the current elimi-
nation set and update the set by eliminating tanks caus-
ally upstream of a clean water result and, as in general 
backtracking, not upstream of a rusty water result. This 
procedure is iterated until the faulty tank is identified. 
Although all the updating strategies we discuss involve 
elimination, only the strategy we call elimination rules 
out potential causes that predict effects that are dis-
confirmed by observations of normal system state. This 
approach is consistent with the idea of eliminating or 
ruling out hypotheses in medical diagnosis, which is dis-
cussed below. This strategy is called practiced elimination 
to distinguish it from a variant of elimination discussed 
below.

IBE
Researchers have identified a number of “explanatory vir-
tues” (Lipton 2004) that reasoners use to choose the best 
explanation of some effects. These explanatory virtues 
include explaining more effects (coverage) (Johnson et al. 
2014), having fewer root causes (simplicity) (Lombrozo 
2007; Pacer and Lombrozo 2017), and being more coher-
ent with background information (Koslowski et al. 2008). 
As its name implies, IBE also involves an inference pro-
cedure that evaluates the quality of various explanations 
in light of sometimes conflicting explanatory criteria. In 
fault diagnosis, starting with the current elimination set, 
the coverage and simplicity criteria allow eliminating 
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potential faults that do not explain all of the observations 
of abnormal system state (symptoms). One inference pro-
cedure that accomplishes this is to make predictive infer-
ences from each potential fault in the elimination set and 
eliminate those that are not causally upstream of all of 
the symptoms. This procedure is similar to one used in a 
machine learning model of IBE based on causal informa-
tion flow (Pacer et al. 2013). Note that in this viewpoint, 
IBE involves testing potential faults by making hypotheti-
cal, predictive inferences.

By telling participants that there was only one rusty 
tank per network, we primed them to use IBE by reveal-
ing that a simple, one-fault explanation could cover or 
explain all the symptoms. However, we did not tell them 
how to make the inferences to identify the best explana-
tion. Thus, if we find participants who always make tests 
and diagnoses within the IBE set, we cannot make the 
strong claim that they are using IBE without any aid, but 
we can claim that they are exhibiting the inferences that 
are part of IBE.

Examples
In Fig. 2a (where tank 6 is rusty), the general backtrack-
ing set is tanks 1, 2, 3, 5, 6, 8, and 9; the practiced elimi-
nation set is 3, 5, 6, 8, and 9; and the IBE set is 3 and 6. If 
someone tested the pipe connecting tanks 1 and 5, i.e., 
pipe 1–5 (with result C), and then tested pipe 2–5 (C), 
6–8 (R), and 3–6 (C), these four tests would be evidence 
for general backtracking but not elimination or IBE since 
some of the tests are outside the elimination and IBE sets. 
If someone tested pipe 5–8 (C), 6–8 (R), and then 3–6 
(C), this would be evidence for elimination but not IBE. 
People using IBE would only test pipe 3–6 (C), as this test 

isolates the fault. See the supplementary materials for 
demonstrations of the strategies.

Stepwise backtracking
In stepwise backtracking, reasoners make one-step diag-
nostic inferences from the observations available at the 
outset of the problem, and then (unlike in general back-
tracking) immediately test the pipes leading into the tank 
outputting rusty water. If a pipe test reveals rusty water, 
the strategy is applied recursively from this result. In 
Fig.  2b (with tank 5 rusty), the following test sequence 
exemplifies stepwise backtracking: 6–8 (C), 5–8 (R), 1–5 
(C), and then 2–5 (C). Thus, testing starts at the network 
rusty output and moves upstream.

Discovering elimination
Here we describe more exploratory reasoning that may 
allow reasoners to transition from backtracking to elimi-
nation. In Fig. 2b (general backtracking set: tanks 1, 2, 3, 
5, 6, and 8), suppose a reasoner using general backtrack-
ing hypothesized that pipe 3–6 contains rusty water. 
Instead of making a diagnostic test of this pipe, the rea-
soner could make the predictive inferences that pipes 
6–9 and the output for 9 contain rusty water. Since the 
final prediction is disconfirmed by observed evidence, 
pipes 3–6, 6–9, and 6–8 must contain clean water, and 
tanks 6 and 9 must be clean. A sequence of hypotheti-
cal predictive inferences like this could lead a reasoner 
to discover the elimination strategy. After practicing this 
discovery strategy, participants could develop the more 
efficient elimination strategy described earlier, in which 
they immediately rule out tanks leading to clean water 
without making predictive inferences. In the following, 
the term elimination refers to the practiced version.

Prior research on belief updating strategies
Gugerty (2007) found that college students used mostly 
backtracking on a version of the current task and showed 
little use of elimination. Johnson et  al. (1982) provided 
evidence that medical students, but not physicians, used 
stepwise backtracking during diagnosis. Carlson et  al. 
(1992) found that undergraduates trained in stepwise 
backtracking followed it more than an untrained group 
but that training did not reduce testing costs. Patel et al. 
(1990) and Johnson et al. (1982) documented instances of 
physicians using practiced elimination on patient cases.

We noted above that hypothetical thinking based on 
predictive inferences was used in discovering elimination 
and in IBE. This approach is important because hypo-
thetical thinking has been implicated as a key part of fluid 
intelligence and analytic thinking (Evans and Stanovich 
2013), which relate to two of our research questions. 
Gugerty (2007) found that participants who initially 

Fig. 2  Tank networks with two (panel A) and one (panel B) rusty 
network outputs. Water flows from top to bottom. “R” means rusty 
water in a pipe. “C” means clean water
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used only backtracking increased their use of elimina-
tion (relative to control participants) when trained to test 
fault hypotheses by predictive reasoning instead of diag-
nostic tests. Patel et al. (1990) and Johnson et al. (1982) 
observed physicians ruling out hypotheses that conflict 
with evidence by making predictive inferences instead of 
diagnostic tests. Finally, IBE has been observed in field 
studies of medical diagnosis (Eddy and Clanton 1982; 
Kassirer 1989).

Which strategies are normative?
We defined normative performance for updating strate-
gies in terms of maximizing information gain. Norma-
tive performance is a common metric for measuring 
peoples’ efficiency at posing questions to gather infor-
mation, including the test selection component of fault 
diagnosis. Nelson (2005) showed that information gain 
is at least as efficient as other metrics (e.g., diagnostic-
ity) for quantifying performance on question-posing 
tasks. For example, Navarro and Perfors (2011) proved 
that the half-split strategy—selecting the test that comes 
closest to eliminating half of the hypotheses—is norma-
tive in the sense that it maximizes information gain and 
minimizes the number of tests. Using a task where par-
ticipants asked yes–no questions to determine the cause 
of an event, Ruggeri and Lombrozo (2015) found a devel-
opmental shift between ages 7–18, whereby older par-
ticipants asked questions that more effectively narrowed 
the search space, resulting in higher information gain and 
fewer tests. Bramley et  al. (2017) used information gain 
to define normative performance at selecting interven-
tions to learn the causal structure of a system.

However, once people have selected an efficient diag-
nostic test, they must appropriately update the hypoth-
esis set to realize any information gain. Consider a 
reasoner who conducts a half-split pipe test that reveals 
clean water. If this person is unaware that tanks upstream 
of clean water can be eliminated, she might fail to update 
the fault set appropriately, resulting in no information 
gain. For deterministic problems where no further nar-
rowing can be accomplished by IBE, de Kleer and Wil-
liams (1987) proved that elimination minimizes the size 
of the fault set. It is important to note that the fact that 
elimination minimizes tests is an emergent property that 
falls out of the process of making diagnostic and pre-
dictive inferences from all of the available observations. 
When multiple abnormal system outputs are present, 
elimination and IBE can be used together. To the extent 
that the single-fault constraint is warranted, elimination 
followed by IBE is normative and minimizes the size of 
the fault set because it uses all the information and con-
straints that can reduce this set.

Thus, to minimize diagnostic tests during fault diag-
nosis, participants should use elimination and, if needed, 
IBE for belief updating and half split for test generation. 
However, given the size and structure of the networks 
used in our study, the updated fault sets after use of elim-
ination and IBE were usually so small that half-split could 
not be used (i.e., they contained three or fewer pipes). 
We asked participants to minimize the costs of diag-
nostic tests and diagnoses, which required minimizing 
the number of tests, because we wanted to assess their 
capabilities for normative fault diagnosis. In preliminary 
testing, when there was no delay after pipe tests, many 
participants seemed to be minimizing time use rather 
than costs, as they used mostly backtracking and made 
many very fast tests. The 2.5 s delay after each pipe test 
was implemented to encourage them to minimize tests.

Measuring strategy use
Elimination use and backtracking were measured on 
blocks of five to nine network problems that had one 
rusty output so that IBE could not be used. IBE use was 
measured on a separate block of five to nine problems 
that had two rusty outputs. The sequence and timing of 
pipe tests, tank checks, and markers placed was recorded 
for each problem. We used both types of diagnostic 
actions—pipe tests and tank checks—to measure elimi-
nation and IBE use. For each participant, strategy use 
variables were calculated for each network problem and 
then averaged over problems in a block.

Elimination
Since almost all participants confined their actions to the 
general backtracking fault set, the elimination use vari-
able was designed to measure the extent to which partici-
pants went beyond backtracking to use elimination on a 
single problem. We measured elimination use based on 
how frequently participants’ actions were within the set 
of potentially rusty tanks identified by this strategy. The 
percentage of elimination actions (%ElimActions) was the 
percentage of the total actions for a network that were in 
the current elimination set, which was updated after each 
test. However, since the elimination set is always a subset 
of the general backtracking set (e.g., Fig. 1), a participant 
using only backtracking will have some actions fall within 
the elimination set by chance. Therefore, actions in the 
elimination set do not unambiguously indicate elimina-
tion use. Accordingly, we only gave participants credit 
for using elimination if their percentage of elimination 
actions was above the percentage that would be expected 
for participants using backtracking. The chance percent-
age of actions falling within the elimination set given 
use of stepwise backtracking (chance%ElimActions) was 
estimated for each problem by averaging 10,000 runs of 
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a simulation that diagnosed the fault using the stepwise 
backtracking strategy and calculated the percentage 
of actions within the elimination set. Then, to calculate 
Elimination Use for a problem, %ElimActions was cor-
rected for chance:

Thus, elimination use measured how consistently an 
individual used elimination on a problem beyond the 
level expected from using only stepwise backtrack-
ing. Elimination use would be 100 for participants who 
used elimination for all actions on the problem and 0 
(on average) for participants who always used stepwise 
backtracking. (The chance percentage of elimination 
tests based on stepwise backtracking is higher than the 
percentage based on general backtracking. Thus, using 
stepwise backtracking as the baseline yields a more con-
servative estimate of elimination use.)

IBE
Because the use of IBE without elimination will not mini-
mize the fault set, we only gave people credit for using 
IBE if they also used elimination. Because the IBE set is 
always a subset of the elimination set, measuring IBE use 
presents the same problem as measuring elimination. 
Therefore, as for elimination, we only gave participants 
credit for using IBE if they made more tests in the IBE set 
than would be expected for someone using elimination 
but not IBE. The percentage of IBE actions (%IBEactions) 
was the percentage of the total actions for a network that 
were in the updated fault set based on using elimination 
and IBE. The chance percentage of actions falling within 
the IBE set for a person using elimination but not IBE 
was calculated for each network problem by simulation. 
Thus,

Participants who used elimination and IBE for all 
actions on a problem would score 100 on IBE use, and 
those who used only elimination would score around 0.

The elimination use and IBE use variables describe how 
frequently individuals used these strategies. However, 
since the elimination set was a subset of the backtrack-
ing set, the percentage of general (or stepwise) backtrack-
ing actions cannot be used directly to characterize how 
frequently individuals used these strategies. In the results 
section, we describe how we measured the backtracking 
strategies and how we classified individual participants in 
terms of whether they consistently used any of the four 
strategies across all of the problems.

(1)
Elimination use =

%ElimActions− chance%ElimActions

100− chance%ElimActions

(2)IBE use =
%IBEactions− chance% IBEactions

100− chance% IBEactions

Hypotheses and analyses
Infrequent versus modal strategies (Q1)
We expected that elimination and IBE would be used by a 
small percentage of participants, with backtracking being 
the modal strategy. Although this is a descriptive ques-
tion with an imprecise criterion, the pattern of infrequent 
normative performance has been found for resisting 
belief bias in syllogistic reasoning and the Wason selec-
tion task (Stanovich and West 1998). Also, these data are 
important in understanding whether some individuals 
can achieve consistent normative performance on rea-
soning tasks.

Predictors of strategy use (Q2)
Our description of the elimination and IBE strategies 
suggested that these strategies rely on hypothetical think-
ing using working memory. Therefore, following Evans 
and Stanovich’s (2013) assumption that fluid intelligence 
and thinking dispositions assess the capability and pro-
pensity, respectively, to engage in this kind of working-
memory intensive thinking, we hypothesized that fluid 
intelligence and thinking dispositions would correlate 
positively with elimination use and IBE use, with each 
predictor accounting for unique variance in using these 
strategies.

Heuristic versus analytic processing (Q3)
We also evaluated whether elimination, IBE, and back-
tracking involve heuristic or analytic processing. This 
evaluation was done in a post-hoc manner, without 
advancing a hypothesis. Analytic processing involves 
heavy use of working memory and exhaustive informa-
tion processing, while heuristic processing involves pro-
cessing environmental cues based on prior knowledge 
using mental shortcuts (Dreschler et al. 2014; Evans and 
Stanovich 2013). Elimination and IBE seem to have char-
acteristics of analytic processing, as they require making 
and maintaining many inferences in working memory 
and using all the available evidence. Both backtracking 
strategies have characteristics of heuristic processing, as 
they focus primarily on salient environmental cues (rusty 
water), and because they ignore useful evidence from 
clean water, make fewer inferences. Thus, elimination 
and IBE should yield more accurate but slower perfor-
mance compared to backtracking.

Contribution
Individual differences
Research on causal reasoning has begun to address indi-
vidual differences in causal learning strategies (Bram-
ley et al. 2017; Bramley et al. 2015; Buehner et al. 2003; 
Coenen et al. 2015). However, these studies did not study 
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fault diagnosis, and they did not investigate the cogni-
tive correlates of reasoning strategies. Individual differ-
ences studies that have focused on diagnostic reasoning 
have tended to use tasks that are much simpler than fault 
diagnosis (McNair and Feeney 2015; Sirota et  al. 2014). 
In contrast to these studies, the current project uses two 
causal reasoning tasks—fault diagnosis and causal learn-
ing—to investigate individual differences in the use of 
normative versus non-normative strategies and the cog-
nitive correlates of normative strategy use. We are not 
aware of individual differences research that has inves-
tigated peoples’ performance on two causal reasoning 
tasks.

Cognitive processes in fault diagnosis
Our fault diagnosis task differs from other lab tasks used 
to study diagnostic reasoning in a number of ways. Most 
lab-based diagnostic reasoning tasks involve simpler 
causal structures than the fault diagnosis task. Also, many 
diagnostic reasoning tasks require participants to make a 
single, explicit, quantitative judgment on each problem 
(e.g., posterior probability), whereas in the fault diagnosis 
task, participants make multiple realistic actions (diag-
nostic tests) and, to perform effectively, must do Bayesian 
updating of their problem knowledge after each test.

Few studies have investigated the higher-level cogni-
tive processes (e.g., strategies) used in fault diagnosis 
and diagnostic reasoning. Studies using fault diagnosis 
tasks similar to ours (Carlson et  al. 1992; Kostopoulo 
and Duncan 2001; Ham and Yoon 2007) have evaluated 
how training methods affect diagnostic performance but 
have not measured participants’ frequency of using par-
ticular strategies. Also, we are not aware of studies that 
investigated whether particular fault diagnosis strategies 
involved analytic versus heuristic processing.

Empirical studies
Studies 2 and 3 can be considered replications of Study 1; 
therefore, we present the results of the studies together. 
Here we describe minor variations across the studies. 
In Study 1, fluid intelligence was measured by SAT and 
ACT scores and thinking dispositions by open-minded-
ness (Stanovich and West 1997). A limitation of Study 1 
was that only one measure was used for each predictor 
variable. In studies 2 and 3, we added two fluid abilities 
tests, verbal analogies, and (because the fault diagnosis 
task seemed to have a spatial component) a spatial rea-
soning test. In Study 2, we added intellectual engagement 
as a thinking dispositions test (Goff and Ackerman 1992). 
The main focus of Study 3 was to test a hypothesis related 
to the causal learning task. Because this created time 
limitations, we did not measure thinking dispositions 
in Study 3. For studies 2 and 3, because each predictor 

was measured using multiple tests, we used structural 
equation modeling (SEM) with latent variables repre-
senting fluid intelligence and thinking dispositions. This 
approach allowed us to assess the reliability of our predic-
tors in the same causal model as our reasoning outcomes. 
Also, SEM identifies the unique variance accounted for 
among all observed variables, giving a more reliable esti-
mate of all relationships involved than would be obtained 
by aggregating predictors.

Participants completed 18 fault diagnosis problems 
in Study 1 and ten fault diagnosis problems in Studies 2 
and 3. To encourage participants to use mainly diagnos-
tic (pipe) tests, the delay after submitting an incorrect 
diagnosis was increased from 5 s in Study 1 to 12.5 s in 
Studies 2 and 3. Finally, the instructions for the fault diag-
nosis task were improved across the studies, as described 
below.

Methods
Participants
The participants in all studies were Clemson Univer-
sity students and were compensated with course credit. 
Study 1 had 79 participants (69% female; age M = 19.2, 
SD = 1.1). Data for three participants were excluded, as 
explained later. In Study 2, for structural equation mod-
eling, the two latent, predictor variables (intelligence 
and dispositions) were parsimonious with only five indi-
cators and moderately high loadings. Following proce-
dures in Maxwell (2000), we used a priori estimates for 
moderate correlations (r = 0.30) between the latent vari-
ables and between the latent variables and the outcomes. 
Power of 0.80 for the multiple R2 yields a sample size of 
approximately 65 and a sample size of approximately 145 
for the unique effect of each predictor. Study 2 had 106 
participants (66% female; age M = 19.2, SD = 1.1). Com-
puter errors resulted in eight participants missing fault 
diagnosis data, leaving 98 participants. In Study 3, four 
of the 111 participants were excluded for not finishing in 
the time allotted for the session, leaving 107 participants 
(53% female; age M = 19.4, SD = 1.1). Fault diagnosis task 
data for two participants were dropped, as described 
later.

Design
A correlational design tested whether participants’ fre-
quency of using elimination, IBE, and backtracking was 
correlated with performance differences and with dif-
ferences in fluid intelligence and open-mindedness. 
Descriptive analyses evaluated frequency of strategy use.

Materials and tasks
The fault diagnosis problems were presented via com-
puter. Figure 1 shows the display at the start of a problem. 
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A text box shows problem constraints (costs of pipe tests 
and tank checks). While solving a problem, participants 
clicked on a pipe or tank to test it, and after a delay of 
2.5 s for pipes and 5–12.5 s for tanks, they received feed-
back superimposed on the object (“C” for clean water in 
a pipe or a clean tank; “R” for rusty). After each test or 
check, the total amount of money spent on the current 
problem was updated in a text box. Participants could 
place circular markers around tanks by shift-clicking. 
After finding and checking the rusty tank, participants 
received feedback, e.g., “You spent $120; a good amount 
of money to spend on this problem is $80.” The spending 
goals were based on always using elimination and, when 
applicable, IBE and half split.

In all studies, the task training used graphics and text 
to convey how the networks, tanks, pipes, and mark-
ers worked; the monetary and temporal testing costs; 
the feedback concerning money spent; and a request to 
minimize monetary costs. The training also noted that 
each tank network had one rusty tank, each network had 
either one or two pipes outputting rusty water, and water 
from the rusty tank would not become diluted down-
stream. Following the training, participants completed 
three comprehension questions, including one about 
how many rusty tanks each network had, with the correct 
answer given as feedback. In Study 3, some information 
about how the tanks worked was repeated, comprehen-
sion questions were added, and questions were repeated 
if answered incorrectly.

Following training, participants completed three prac-
tice problems and 18 (Study 1) or ten (Studies 2 and 3) 
experimental problems. The first half of the experimental 
problems had one rusty network output; the last half had 
two.

Intelligence measures
For measures of fluid intelligence, participants in stud-
ies 1 and 2 self-reported their SAT and/or ACT compos-
ite scores. In Study 3, participants gave permission for 
retrieval of their SAT and/or ACT scores from university 
records. ACT scores were converted into SAT equiva-
lents. In studies 2 and 3, the speeded (5  min) 18-item 
verbal analogies test was taken from the AFOQT verbal 
analogies test (Berger et al. 1990). In Study 2, the spatial 
test was the 32-item arrow grammatical reasoning task 
(Kyllonen and Christal 1990). Because it showed poor 
psychometric properties, grammatical reasoning was 
replaced in Study 3 by paper folding (Ekstrom et al. 1976). 
Frey and Detterman (2004) showed strong correlations 
between SAT and measures of fluid intelligence (Raven’s 
Advanced Progressive Matrices, r = 0.72) and intelligence 
(g factor from the Armed Services Vocational Aptitude 
Battery, r = 0.86). Kyllonen and Christal (1990) found that 

verbal analogies and arrow grammatical reasoning loaded 
highly on fluid intelligence. Kane et al. (2004) found the 
same for verbal analogies and paper folding.

Thinking disposition measures
Open-mindedness was measured with the 41-item 
Actively Open-minded Thinking scale (Stanovich and 
West 1997). In Study 2, intellectual engagement was 
measured with the 60-item Typical Intellectual Engage-
ment scale (Goff and Ackerman 1992).

Procedure
In Study 1, participants completed the fault diagnosis 
task and then the Actively Open-Minded Thinking and 
SAT-ACT questionnaires. Sessions lasted about an hour. 
In studies 2 and 3, participants completed the fault diag-
nosis and causal learning tasks in random order. Then, 
they completed the tests measuring predictor variables 
(in Study 2, intelligence and thinking dispositions meas-
ures in random order; in Study 3, intelligence measures 
in random order). Sessions lasted approximately 1.5 h.

Results and discussion
In Study 1, three participants were excluded from data 
analysis before inferential analyses were conducted, leav-
ing 76 participants. One participant showed very low use 
of elimination, IBE, and general backtracking and was a 
statistical outlier on elimination and IBE use. Two par-
ticipants tested far too many tanks on each problem (and 
were statistical outliers on this variable), which made it 
hard to measure their strategy use. In Study 3, data for 
two participants were excluded because they did not fol-
low instructions to minimize tank checks (and were sta-
tistical outliers on this variable), leaving 105 participants. 
Nine participants in Study 2 and two participants in 
Study 3 had missing SAT and ACT scores; these scores 
were imputed, as explained later.

Frequency of strategy use (Q1)
The frequency of elimination and backtracking (general 
and stepwise) was calculated using the first block of nine 
or five problems where only a single rusty network output 
was present and IBE could not be used. The frequency of 
IBE use was calculated using the second problem block 
where two rusty outputs were present. In the introduc-
tion, we described how we measured the extent to which 
participants used elimination and IBE on individual 
problems (see Eqs. 1, 2). These two variables ranged from 
approximately 0, which indicated no use of a strategy, to 
100, which indicated constant use. These variables were 
averaged across the experimental problems in the first 
and second block to estimate overall elimination and IBE 
use, respectively, for each participant.
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Across the three studies, elimination use was low, 
with mean values (across all participants in a study) 
ranging from 17 to 28 on a scale from near 0 to 100, 
and showed high variability across participants (see 
Table 1). Figure 3 shows the reason for this variability. 
Elimination use was distributed approximately bimo-
dally with modes near 0 and 100. Because the elimi-
nation use variable corrects for chance (i.e., for tests 
in the elimination set that are consistent with back-
tracking), the roughly normal distribution around the 
mode near 0 (from − 35 to 25) is the degree of elimina-
tion use that would be expected for participants using 
only backtracking. The mode near 100 represents par-
ticipants using elimination. A few participants showed 
high negative elimination use (< − 40), which was prob-
ably due to their selecting tests using the less-efficient 
general backtracking strategy or sometimes testing out-
side the backtracking set. IBE use was approximately 
normally distributed and low, with means ranging from 
22 to 30 across the studies. Elimination and IBE use 
were highly correlated, Study 1: r = 0.74, p < 0.001, 95% 
CI [0.62, 0.83]; Study 2: r = 0.70, p < 0.001, 95% CI [0.58, 
0.79]; Study 3: r = 0.75, p < 0.001, 95% CI [0.65, 0.82].

Identifying consistent strategy use
Based on the distributions of elimination use for all 
three studies, we defined individuals who consistently 
used elimination as those with average elimination use 
above 80. Consistent IBE use was defined using the same 
threshold. Determining whether a participant was using 
the general and stepwise backtracking strategies was 
more difficult. To start, we calculated the percentage of 
fault-diagnosis actions on a problem that were within 
the updated general or stepwise-backtracking set (see 
Table  1). The key difficulty in measuring backtracking 
use stems from the fact that all diagnosis actions follow-
ing from the elimination strategy are also consistent with 
backtracking. Therefore, some participants who showed 
a very high percentage of actions within the general or 
stepwise backtracking sets were actually using elimina-
tion consistently (and possibly IBE), not backtracking.

Table  1 shows that all participants made almost all of 
their actions within the general backtracking set—sug-
gesting that all participants understood backtrack-
ing—and none did random testing among all network 
tanks. Because all tests in the elimination set are within 
the general backtracking set, participants who were not 
using elimination consistently were either using one of 
the backtracking strategies or transitioning from back-
tracking to elimination. Transitioning could occur by 
the strategy we described in the introduction as discov-
ering elimination, although it could occur in other ways. 
Therefore, based on the distributions in Fig. 3, we classi-
fied participants with low elimination use (below 30) as 
using either form of backtracking and participants with 
elimination use between 30 and 80 as transitioning from 
backtracking to elimination. Participants in the back-
tracking group were classified as using stepwise back-
tracking if their percentage of stepwise backtracking tests 
was greater than 90%; otherwise they were classified as 
using general backtracking.

Table  2 shows the percentage of participants in each 
study that were classified as consistently using different 
strategies by this scheme. Note that the first four strategy 
categories are defined to be mutually exclusive. Elimina-
tion was used consistently by 18% of participants in each 

Table 1  Performance on the calculated strategy variables

Means were averaged across the 10–18 experimental problems each participant completed and then across participants

Study 1 (N 76) Study 2 (N 98) Study 3 (N 105)

M SD M SD M SD

Elimination use (~ 0–100) 16.7 46.2 21.3 46.7 27.8 43.4

IBE use (~ 0–100) 30.1 38.5 21.7 43.7 24.7 43.4

% General backtracking actions 97.4 4.4 97.3 5.1 97.0 6.2

% Stepwise backtracking tests 77.1 16.1 72.1 20.8 72.1 22.8
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Fig. 3  Histograms of elimination use for studies 1, 2, and 3. Vertical 
lines are used to define consistent use of backtracking (either form) 
and elimination (see text)
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study. Some form of backtracking was the modal strat-
egy, as it was used by 55–67% of participants. Stepwise 
backtracking was less frequent than general backtrack-
ing. From 15 to 27% were transitioning from backtrack-
ing to elimination. Thus, the hypothesis that elimination 
use would be infrequent and backtracking more common 
was supported, even if the transitional participants are 
considered to be part of the elimination group. Consist-
ent IBE use was also infrequent (8–14%), as hypothesized.

Marker use
How participants used markers provides evidence for 
strategy use that is independent of the evidence above, 
which is based on the locations in the networks where 
participants conducted pipe tests and tank checks. As 
discussed in the introduction, elimination and IBE seem 
to put heavier loads on working memory than back-
tracking because they require maintaining and updating 
information about which tanks have and have not been 
eliminated. At the other extreme, stepwise backtracking 
seems to create minimal working memory load because 
it involves maintaining a very small set of potential faulty 
tanks. Since the markers could be used to reduce memory 
load, marker use was expected to be greatest with elimi-
nation and IBE and least with stepwise backtracking. We 
intended to measure marker use for each participant via 
the average number of markers used per problem. This 
variable showed extremely high positive skew, since most 
participants did not use markers on any of the problems, 
but a small percentage used them heavily. Therefore, we 
used a binary variable (whether a participant used one 
or more markers versus no markers at all across all prob-
lems). The marker use data were consistent with these 
expectations. In studies 1, 2, and 3, respectively, 57, 72, 
and 68% of the participants that were classified as con-
sistently using elimination used markers. In contrast, 
21, 22, and 17% of consistent general backtracking users 
used markers, and 0, 7, and 11% of stepwise backtracking 
users used markers. The frequency of marker use was sig-
nificantly higher in the elimination group than either of 

the backtracking groups (see “Appendix 2” for statistics). 
Also, 100, 55, and 80% of consistent IBE users used mark-
ers. The marker use data provides converging evidence 
for the strategy classifications.

Predictors of strategy use (Q2)
We hypothesized that fluid intelligence and thinking 
dispositions would each account for unique variance in 
using elimination and IBE and correlate positively with 
these strategies. For Study 1, we tested these hypotheses 
with multiple regression, which was an adequate proce-
dure since we used only one test to measure each pre-
dictor variable. For studies 2 and 3, we used structural 
equation modeling.

Study 1
We conducted two multiple regressions with elimination 
use and IBE use as separate outcome variables and SAT 
and open-mindedness as predictors. The mean SAT score 
was 1234 (SD 130). The mean open-mindedness score 
was 4.15 (SD = 0.40). SAT and open-mindedness scores 
were correlated, r = 0.291, p < 0.05. The regression analy-
sis for elimination use was significant, F(2, 65) = 4.64, 
p = 0.013, R2 = 12.5% (adj. R2 = 9.8). The SAT score was 
positively associated with elimination use, t = 2.84, 
p < 0.01, but open-mindedness was not, t = 0.25, p = 0.81. 
SAT and open-mindedness uniquely accounted for 10.5% 
and 0.1%, respectively, of the variance in elimination use. 
Common variance accounted for 2.0%.

The regression analysis for IBE use was significant, F(2, 
65) = 6.80, p = 0.002, R2 = 17.3% (adj. R2 = 14.7). SAT 
score was positively associated with IBE use, t = 2.91, 
p < 0.01, but open-mindedness was not, t = 1.31, p = 0.19. 
SAT and open-mindedness uniquely accounted for 9.6% 
and 2.2%, respectively, of the variance in IBE use. Com-
mon variance accounted for 5.4%. These analyses sup-
ported the hypothesis that use of elimination and IBE 
would correlate positively with fluid intelligence but did 
not support the hypothesis that these strategies would 
correlate with thinking dispositions.

Study 2
SAT, verbal analogies, and spatial reasoning scores were 
intended measures of intelligence. Typical Intellectual 
Engagement and Actively Open-minded-Thinking were 
intended measures of thinking dispositions. We had 
complete (N = 106) data for these variables except for 
nine missing SAT scores. These scores were imputed 
from the verbal analogies and transformed spatial rea-
soning scores using the Expectation–Maximization 
method (Gold and Bentler 2000). (When the analyses 
reported below were repeated without the nine par-
ticipants with imputed SAT scores, the same pattern of 

Table 2  Percentages of  participants who used strategies 
consistently

strategy Study 1 (N 
76) (%)

Study 2 (N 
98) (%)

Study 3 (N 
105) (%)

Elimination 18 18 18

Transition 15 20 27

General backtracking 45 47 38

Stepwise backtracking 22 14 17

Either backtracking 67 61 55

IBE 8 11 14
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significance and effect sizes occurred.) Because the spa-
tial-reasoning scores showed a ceiling effect and high 
negative skew, an inverse transformation was applied. 
The outcome variables were elimination and IBE 
use. Tables  1 and 3 show descriptive statistics for the 

predictor and outcome variables, respectively. Table  4 
shows the full correlation matrix.

Structural equation modeling was used to test whether 
the five predictor tests fit our hypothesized factor 
structure and then evaluate how well the hypothesized 
factors—fluid intelligence and thinking dispositions—
predicted individual differences in use of elimination, 
IBE, and stepwise backtracking. We included in the 
same analysis outcome variables for all strategy use vari-
ables that were independently measured from the data—
elimination use, IBE use, and percentage of stepwise 
backtracking tests—as opposed to being inferred using 
the classification scheme. Although we did not advance 
hypotheses about percentage of stepwise backtracking 
tests, we included it as an outcome variable because of its 
high correlation with elimination use. In an initial model 
including transformed spatial reasoning scores, spatial 
reasoning showed poor reliability as an indicator of intel-
ligence (reliability = 0.08) and showed signs of multidi-
mensionality through cross-loading. Due to this and the 
evidence of a ceiling effect, we removed spatial reasoning 
from the model. Keeping spatial reasoning in the model 
leads to the same pattern of effect sizes and significance.

Fit for the final model was excellent: X2(5) = 11.05, 
p = 0.14, CFI = 0.979. RMSEA = 0.077. Factor loadings 
and standardized and unstandardized regression coef-
ficients for all Study 2 variables except spatial reasoning 
are shown in Fig. 4. All predictors loaded 0.61 or higher 
on the hypothesized factors. Table 5 shows how the two 
factors accounted for unique and common variance in 
strategy use. Intelligence (F1) significantly predicted 
elimination and IBE use and uniquely accounted for large 
amounts of variance (> 25%) in each variable. Disposi-
tions (F2) did not significantly predict elimination or IBE 
use and uniquely accounted for little variance (< 3%) in 

Table 3  Descriptive statistics for  predictor variables 
in Study 2

*~ 0 to ~ 1.0 scale

N M SD Skewness

SAT (400–1600 scale) with no imputing 97 1220 130 0.29

SAT with nine imputed scores 106 1217 128 0.31

Verbal analogies (N correct of 18) 106 11.0 3.00 0.02

Spatial reasoning (% correct) 106 96.5 7.8 − 3.51

Spatial reasoning transformed 106 0.804 0.270 − 1.01

Actively open-minded thinking (1–6 
scale)

106 4.11 0.51 0.08

Typical intellectual engagement (1–6 
scale)

106 3.87 0.63 − 0.46

Table 4  Correlations of  predictors and  dependent 
variables in Study 2

*p < 0.05

Intelligence Dispositions Elimination 
use

IBE use

Intelligence 
(F1)

–

Dispositions 
(F2)

0.483* –

Elimination use 0.583* 0.413* –

IBE use 0.676* 0.455* 0.697* –

Stepwise − 0.155 − 0.364* − 0.531* − 0.439*

Fig. 4  Structural Equation Model of the effect of intelligence and thinking dispositions on causal inferences in Study 2. Covariances among the 
three dependent variable error terms are omitted for clarity. Standardized solution (unstandardized coefficients in parentheses), N = 98. *p < 0.05
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either. However, common effects of intelligence and dis-
positions accounted for 8–10% of variance in elimination 
and IBE.

Intelligence was not significantly related to stepwise 
backtracking use and accounted for very little variance 
in it. Interestingly, thinking dispositions showed a strong 
and significant negative association with stepwise back-
tracking use, uniquely accounting for 14% of the vari-
ance in the strategy. This fits with the finding by Sa et al. 
(2005) that participants with better thinking dispositions 
avoided poor argumentation techniques to a greater 
extent than those with lower dispositions.

Study 3
Because cognitive dispositions were not measured in 
Study 3, this study tested whether the findings of Study 
2 regarding the intelligence predictor variable were rep-
licated. SAT, verbal analogies, and paper folding were 
intended measures of fluid intelligence. Paper folding 
was scored in terms of number correct. Table  6 shows 
descriptive statistics for the predictor variables. We had 
complete (N = 105) data for these variables except for two 
missing SAT scores, which were imputed from the ver-
bal analogies and paper folding scores as in Study 2. (The 
findings were the same when the two participants with 
imputed SAT scores were dropped.) The outcome vari-
ables were elimination, IBE, and stepwise backtracking 
use.

Structural equation modeling was used to determine 
the loadings of our three predictor tests on the (latent, 
reflective) construct of intelligence, as well as how intel-
ligence predicted individual differences in strategy use. 
Fit for the model was very good: X2(6) = 10.88, p = 0.09, 
CFI = 0.943, RMSEA = 0.088 (see “Appendix  3”). Stand-
ardized loadings for intelligence on SAT, verbal analogies, 
and paper folding were 0.64, 0.58, and 0.76, respectively. 
Intelligence accounted for 34.4% of variance in elimina-
tion use and 43.1% of variance in IBE use. Both of these 
loadings were significant. In contrast, intelligence showed 
a nonsignificant and negative relationship with the use 
of stepwise backtracking, accounting for little variance 

(< 4%). These findings provided strong support for our 
individual-differences predictions regarding intelligence.

Analytic versus heuristic processing (Q3)
The default-interventionist version of dual-processing 
theories predicts that analytic processing will be accu-
rate and slow, whereas heuristic processing will be less 
accurate and fast. In the fault diagnosis problems, perfor-
mance accuracy is indicated by minimizing the number 
of tests. We tested whether elimination and IBE showed 
characteristics of analytic processing—fewer but slower 
diagnostic tests—while backtracking showed character-
istics of heuristic processing—more but faster tests. As 
all of the belief updating strategies discussed here are 
iterative, we used the time to complete one iteration, 
i.e., time per diagnostic test, as the measure of time use. 
The time for making each pipe test was measured from 
when the results of the previous test was displayed to 
when the participant clicked on a pipe or tank. Thus, the 
delays between initiating a test and seeing its result were 
excluded.

Table 7 shows data on number of tests per problem and 
time per test from the three studies for participants who 
were classified as consistently using different strategies. 
Participants made fewer tests during elimination (1.6–
1.8) than during general (5.5–6.1) and stepwise (4.9–5.9) 
backtracking. Participants took at least five times longer, 
on average, to make diagnostic tests during elimination 
(27–41  s), as during general (5–7  s) and stepwise back-
tracking (3–5 s). These effects were large and significant 
(d’s > 2, see “Appendix  2”). Because elimination and the 

Table 5  Predicting strategy use with intelligence (F1) and thinking dispositions (F2) in Study 2

*p < 0.05
†  Negative common variance may indicate slight suppression

Beta Variance components (R2 as proportion)

Intelligence Dispositions Error Total Intelligence 
unique

Dispositions 
unique

Common

Elimination use 0.500* 0.172 0.799 0.362 0.250 0.030 0.082

IBE use 0.595* 0.168 0.722 0.479 0.354 0.028 0.096

Stepwise backtracking 0.027 − 0.378* 0.931 0.133 0.001 0.143 − 0.010†

Table 6  Descriptive statistics for  individual differences 
predictor variables in Study 3

N M SD Skewness

SAT (400–1600 scale) 103 1227 162 − 0.15

SAT with two imputed scores 105 1224 162 − 0.12

Verbal analogies (N correct of 18) 105 10.8 3.2 − 0.12

Paper folding (N correct of 20) 105 13.4 3.9 − 0.66
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two backtracking strategies were measured using one set 
of problems and IBE using different problems, we did not 
statistically compare performance for the IBE group to 
the backtracking groups. However, like elimination, IBE 
users made few tests per problem (1.3–1.9) but slow tests 
(28–44  s). These data suggest that elimination and IBE 
have characteristics of analytic processing, whereas both 
backtracking strategies have characteristics of heuristic 
processing.

In addition, since analytic processes are defined as hav-
ing higher working memory load than heuristic processes 
(Evans and Stanovich 2013) and marker use is an indica-
tion of working memory load, the finding reported above 
that elimination and IBE involved more marker use than 
backtracking provides further evidence for this conclu-
sion. Table  7 shows that, over the course of a problem, 
the fewer tests made during elimination compensate 
for the longer time per test, so that time per problem is 
about the same with elimination and general backtrack-
ing. However, time per problem with stepwise backtrack-
ing is still faster than elimination.

One of our unexpected individual-differences findings 
was that, although the average time per test was much 
longer with elimination than stepwise backtracking, 14% 
of elimination users (across all three studies) made tests 
within the narrow range of fast times for stepwise-back-
tracking users. This finding is consistent with recent evi-
dence that people sometimes give normative responses 
as fast as non-normative heuristic responses, as if they 
have automatized normative “intuitions” (Bago and De 
Neys 2017; Newman et al. 2017).

General discussion
Main findings
Our main research questions focused on whether norma-
tive fault diagnosis strategies were used infrequently and 
were correlated with fluid intelligence and thinking dis-
positions. We focused on strategies for updating beliefs 
about the fault set after observing new data.

Normative versus non‑normative strategies
We showed that, by chaining diagnostic inferences from 
both normal (clean water) and abnormal (rusty) system 
observations, the practiced elimination strategy is nor-
mative—in the sense of maximizing information gain 
from each observation—and also minimizes the num-
ber of diagnostic tests2 required. IBE normatively maxi-
mizes information gain and minimizes number of tests 
when systems have multiple abnormal outputs that must 
be explained. In contrast to elimination, backtracking is 
inefficient because it ignores the valuable information 
from normal observations.

Individual‑differences findings
As predicted, in three studies, elimination and IBE were 
used infrequently, while the less efficient stepwise and 
general backtracking were the modal strategies. Another 
study that found infrequent use of normative strategies 
during causal reasoning was Bramley et al. (2017). Using 
the task of learning causal structure by making inter-
ventions, they found that 7–20% of participants in two 
studies followed the prescriptions of a rational Bayes-
optimal-observer model and were very accurate at deter-
mining structure.

As predicted, elimination and IBE use were strongly 
and positively correlated with fluid intelligence. In Study 
2, where variance in intelligence could be partialled out 
from variance due to thinking dispositions, intelligence 
uniquely accounted for 25 and 35% of the variance in 
elimination and IBE use, respectively. Our prediction that 
thinking dispositions would account for unique variance 
in elimination and IBE use was not supported. However, 
in Study 2, variance shared by thinking dispositions and 

Table 7  Mean performance on  the  fault diagnosis task per  problem by  strategy group. Standard deviations 
in parentheses

*p < 0.05 in comparison with elimination group

Strategy group Study 1 Study 2 Study 3

N tests Time/test (s) s/prob N tests Time/test (s) s/prob N tests Time/test (s) s/prob

Elimination 1.6 (0.3) 27.2 (12.0) 69 (30) 1.8 (0.4) 35.9 (16.8) 90 (23) 1.6 (0.4) 40.8 (23.9) 81 (34)

Transition 2.6 (0.5) 16.7 (5.5) 63 (14) 2.6 (0.8) 21.8 (19.8) 84 (27) 2.8 (0.9) 20.4 (14.6) 78 (39)

General backtracking 5.5* (2.0) 4.7* (2.3) 70 (45) 6.1* (1.6) 6.7* (4.3) 86 (36) 6.0* (1.6) 6.6* (4.1) 80 (35)

Stepwise backtracking 4.9* (0.5) 3.4* (2.5) 42* (17) 5.9* (0.7) 4.3* (2.0) 63* (17) 5.8* (0.8) 3.4* (1.8) 48* (23)

IBE 1.9 (0.1) 28.0 (6.2) 64 (12) 1.3 (0.3) 38.5 (16.9) 76 (16) 1.3 (0.2) 43.8 (16.4) 66 (21)

2  Money spent is not the best measure of whether elimination and IBE users 
approached normative performance levels because minimizing the money 
spent requires both minimizing diagnostic tests and making a single diagno-
sis. The latter variable was not expected to be affected by elimination and IBE. 
Money spent showed the same pattern of effects as the number of diagnostic 
tests.
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intelligence accounted for 8–10% of variance in elimina-
tion and IBE use. Furthermore, positive thinking dispo-
sitions were significantly associated with less use of the 
inefficient stepwise backtracking strategy, with disposi-
tions accounting uniquely for 14% of variance in stepwise 
backtracking use. Thus, fluid intelligence and thinking 
dispositions were moderately to strongly associated with 
using normative fault diagnosis strategies and avoiding 
inefficient strategies.

These findings support studies using other reasoning 
tasks by Stanovich and West (1997, 1998); Toplak et  al. 
(2014); and Klaczynski and Lavalee (2005) but extend the 
findings to a complex fault diagnosis task. These findings 
also fit with studies using a simpler diagnostic reasoning 
task by McNair and Feeney (2015) and Sirota et al. (2014). 
The association we found between positive thinking dis-
positions and less use of backtracking fits with Sa et  al. 
(2005), who found that open-mindedness was associated 
with avoiding unsophisticated argumentation techniques. 
This result also supports Stanovich’s (2011, 2018) claim 
that thinking disposition tests assess ability at monitor-
ing and overriding ineffective thinking. In general, our 
individual differences findings support a growing body 
of research showing that effective reasoning depends on 
non-intellective traits like self-discipline (Duckworth and 
Seligman 2005; Shoda et al. 1990) as well as on cognitive 
abilities.

Causal learning data
As noted earlier, in addition to the fault diagnosis task, 
participants in studies 2 and 3 also completed a causal 
learning task, which allowed us to investigate the gen-
erality of causal reasoning strategies. Since effective 
fault diagnosis depends on accurate causal models, the 
quality of individuals’ causal learning should correlate 
positively with the quality of their diagnostic reasoning. 
Instead of learning from interventions, our participants 
observed data on co-occurrences of a candidate causal 
variable and its effects and then made structure judg-
ments (by estimating their confidence that a causal link 
existed) and causal strength judgments (Lu et  al. 2008). 
As with the fault diagnosis task, we investigated the fre-
quency and the cognitive correlates of using normative 
strategies. We plan to report these findings in a follow-
up paper. Preliminary findings from the causal learning 
task (Shreeves et al. 2018) were similar to the fault diag-
nosis findings. Relatively few participants made norma-
tive strength judgments, as defined by the causal power 
model (Lu et  al. 2008), or normative confidence judg-
ments, as defined by Griffiths and Tenenbaum’s (2005) 
causal support model. Greater fluid intelligence was sig-
nificantly associated with making normative strength 
and confidence judgments. To our knowledge, no studies 

have compared the performance of the same participants 
on both fault diagnosis and causal learning tasks.

Analytic versus heuristic processing
Regarding our third research question, elimination and 
IBE users made fewer but slower tests compared to back-
tracking users. This finding supports the predictions of 
default–interventionist dual processing theories and pro-
vides strong evidence that elimination and IBE involve 
analytic processing while backtracking is heuristic. Simi-
larly, Bramley et al. (2017) claimed that the infrequently 
used normative procedure for selecting interventions 
(which was discussed above) heavily loads working 
memory. Thus, this procedure probably involves ana-
lytic processing. In contrast, their other participants used 
heuristics, which reduced memory load during causal 
learning.

In addition, one of our individual-differences findings 
supports recent theories that critique the default–inter-
ventionist view of dual processing (e.g., Newman et  al. 
2017). A small percentage of elimination users made nor-
mative responses but did so as quickly as the much faster 
backtracking users. These participants seemed to be able 
to quickly transfer prior knowledge of the elimination 
strategy to the fault diagnosis task.

Implications for fault diagnosis
The literature review and our analysis of fault diagno-
sis strategies suggested that when they are faced with 
complex problems, people use qualitative, hypotheti-
cal reasoning when updating fault hypotheses based on 
evidence. We pointed out that making predictive infer-
ences from hypotheses was important in discovering the 
elimination strategy and using IBE. Waldman and Hag-
mayer (2005) suggest that predictive inferences like these 
are a hallmark of causal reasoning and provide empirical 
evidence that people make predictive inferences when 
updating their causal beliefs based on evidence.

A limitation of the current studies is that we explicitly 
instructed our participants about the single-fault con-
straint. One could argue that, because of this, we should 
not have labeled participants who met our operational 
definition of IBE (based on Eq.  2) as IBE users. In the 
introduction, we argued that IBE goes beyond the sim-
plicity (single-fault) assumption. IBE involves making 
inferences to identify the explanation that best balances 
criteria including simplicity, coverage (maximizing the 
effects explained), and coherence with background infor-
mation. Our results demonstrate that the participants 
we classified as IBE users could make the normative 
inferences needed to identify the explanation that maxi-
mized both simplicity and coverage, while other partici-
pants did this less well. Thus, we feel that the IBE label is 
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appropriate, although we admit that our evidence for IBE 
use would be stronger if we had not explicitly communi-
cated the single-fault constraint and that the infrequent 
use of IBE in the current studies might be even lower if 
this constraint had not been mentioned.

Logical versus probabilistic reasoning
Although we have characterized fault diagnosis as involv-
ing inductive, probabilistic reasoning, an argument can 
be made that fault diagnosis of deterministic systems 
involves deductive logic. In probabilistic systems, net-
work components function as probabilistic, noisy-OR 
gates (Lu et  al. 2008); but in deterministic systems like 
the tank networks, components function as logical-OR 
gates (always outputting rusty water if they are rusty or 
get rusty input water). This argument follows Oaksford 
and Chater (2012), who pointed out that deductive logic 
is a special case of probabilistic reasoning. We agree 
with their proposal that human deductive and inductive 
reasoning can be accounted for by a unitary probabilis-
tic reasoning system that makes different assumptions 
(e.g., deterministic causal strengths in a causal model) 
in different task contexts. We make no claim regarding 
whether the participants in our task were using inductive 
or deductive reasoning.

However, researchers have found evidence for deter-
ministic, qualitative reasoning in tasks like medical diag-
noses, where deterministic assumptions are much less 
viable than in our task (Eddy and Clanton 1982; Rossi and 
Madden 1979; Yeung and Griffiths 2015). Our literature 
review suggests that physicians use practiced elimina-
tion and IBE. Using deterministic strategies in probabil-
istic domains can lead to errors. We see two ways that 
diagnosticians can benefit from deterministic reasoning 
without making too many errors. First, they can follow 
the practice that Payne and Bettman (2004) observed in 
research on decision-making, where participants some-
times used the qualitative elimination-by-aspects strategy 
to narrow a set of decision alternatives and then switched 
to the quantitative weighted-additive strategy on the sim-
pler problem. Second, they can use deterministic rea-
soning in a defeasible manner, switching to quantitative 
reasoning if deterministic reasoning leads to anomalies.

Applications
Our evidence suggesting that a small percentage of par-
ticipants showed fast but normative diagnosis perfor-
mance highlights the importance of learning effective 
diagnosis strategies. When fault diagnosis is viewed as 
finding the causes of specific problems, strategies like 
elimination and IBE are applicable in diagnosing disease 
and equipment malfunctions but also in scientific, legal, 
and political argumentation. Given this wide applicability, 

training fault diagnosis strategies may improve reasoning 
in a variety of domains. Prior research on improving fault 
diagnosis by explicit strategy training has taught either 
domain-specific strategies that seem unlikely to trans-
fer to new situations (Kostopoulo and Duncan 2001) or 
backtracking strategies that do not minimize tests (Carl-
son et  al. 1992). On average, elimination and IBE users 
minimized diagnostic tests at the cost of extra time, 
whereas stepwise backtracking users reduced time per 
test and per problem at the cost of excessive tests. This 
suggests that people should be taught a repertoire of fault 
diagnosis strategies. The extra time it takes to use elimi-
nation and IBE may be worthwhile if testing costs are 
high. Stepwise backtracking may be the best choice under 
time pressure, when testing costs are low or for people 
with lower fluid intelligence. This idea is consistent with 
research showing that people adaptively choose deci-
sion-making strategies to meet changing task constraints 
(Gigerenzer and Todd 1999; Payne and Bettman 2004).

Because strategies like elimination and IBE are use-
ful for understanding policy issues (e.g., causes of global 
warming or violent crime), our findings are relevant to 
teaching critical thinking to the public. We found that 
fluid intelligence and thinking dispositions were posi-
tively associated with using elimination and IBE. Since 
thinking dispositions may be more trainable than intelli-
gence (Klaczynski and Lavalee 2005), training in thinking 
dispositions may be the more effective way to indirectly 
increase use of elimination and IBE. Books on improving 
thinking skills often emphasize explicit teaching of think-
ing dispositions (Stanovich 2013; Kuhn 2005). A more 
direct route to improving critical thinking is to teach 
reasoning strategies explicitly, as is done in in books on 
improving thinking (Kuhn 2005; Nisbett 2015). An inter-
esting task for future research is to facilitate use of effec-
tive fault-diagnosis strategies either directly or indirectly.

Abbreviation
IBE: Inference to the best explanation.
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Appendix 1: Tank networks
The 18 tank networks used in Study 1, in order of pres-
entation. The rusty tank is indicated by a square. Rusty 
water output from the network is indicated by an R. 
All other network inputs and outputs were clean (C). 
The first nine networks have one rusty network out-
put, the second nine have two. Networks 3, 6, 10, 12, 
13, 21, 22, 25, 27, and 29 were used in studies 2 and 3.

Appendix 2: Statistical comparison of strategy use 
groups on performance variables
This appendix presents the statistical analyses of the 
performance of participants who used different strate-
gies that were discussed in the Results section under 
the heading “Analytic versus heuristic processing.” Par-
ticipants who were classified as transitioning between 
backtracking and elimination strategies were excluded 
from these comparisons as our expectations about 
the differences between analytic versus heuristic pro-
cessing applied only to backtracking and elimination 
(Tables 8, 9, 10).

Study 1
Number of diagnostic (pipe) tests
The number of pipe tests was approximately normally 
distributed but displayed heteroscedasticity (Levene’s 
test (2, 62) = 12.35, p < 0.001). An ordinary least squares 
one-way ANOVA was conducted to determine the effect 
of group membership on number of pipe tests, followed 
by a weighted least squares analysis. Groups significantly 
differed in pipe test usage, F (2, 62) = 37.13, p < 0.001, 
η2 = 0.545. Bonferroni-corrected post-hoc comparisons 
showed that those in the high elimination group made 
significantly fewer pipe tests (M = 1.59, SE = 0.074) than 
those using general backtracking, mean difference = 3.96, 
p < 0.001, CI.95 [− 5.08, − 2.84], d = 2.4, and those using 
stepwise backtracking, mean difference = 3.35, p < 0.001, 
CI.95 [− 4.32, − 2.08], d = 8.2. The number of pipe tests 
did not differ significantly between stepwise and general 
backtracking users, p = 0.349. (The same pattern of sig-
nificance occurred using weighted least squares.)

Time per test
Time per test and completion time were highly positively 
skewed in each condition, and simple transformations 
were not able to account for both skew and kurtosis. 
Gamma-distribution generalized linear models were 
used for group comparisons instead of general linear 
models for these variables. One participant was excluded 
as a multivariate outlier in time per test. A likelihood 
ratio test for the gamma distribution with an inverse link 
provided evidence for a significant difference between 
the groups, F (2, 63) = 114.10, p < 0.001, R2

L = 0.592. The 
high elimination use group (predicted value = 27.23  s) 
had significantly longer times per test than those in the 
stepwise backtracking group (predicted value = 2.83  s), 
t (63) = 203.84, p < 0.001, d = 3.4, and those in the gen-
eral backtracking group (predicted value = 3.65  s), t 
(63) = 164.71, p < 0.001, d = 2.9.

Marker use
Most participants used no markers, and data for par-
ticipants using any number makers more than zero 
were insufficient to approximate a normal distribution 
under any transformation. Additionally, extremely une-
qual variances between groups, including a variance of 
0 in the stepwise backtracking group (as nobody in this 

Table 8  Marker use by strategy group in study 1

Stepwise 
backtracking

General 
backtracking

High 
elimination

Did not use markers 17 27 6

Used any markers 0 7 8

Table 9  Marker use by strategy group in Study 2

Stepwise 
backtracking

General 
backtracking

High 
elimination

Did not use markers 13 36 5

Used any markers 1 10 13

Table 10  Marker use by strategy group in Study 3

Stepwise 
backtracking

General 
backtracking

High 
elimination

Did not use markers 16 35 6

Used any markers 2 7 13
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group used markers), prevented mean comparisons. Par-
ticipants were coded as either using any markers or no 
markers at all, and a Fisher’s exact test was conducted 
to determine if marker use was dependent on strategy 
group. See Table  8 for marker use. Marker usage was 
significantly different between groups, p < 0.001. When 
a Bonferroni corrected alpha level of 0.025 was used for 
post-hoc tests, those in the high elimination group were 
significantly more likely to use markers than those who 
used stepwise backtracking, p < 0.001, and those who 
used general backtracking, p = 0.019.

Time per problem
One additional participant was excluded from the time 
per problem data as a multivariate outlier, resulting in 64 
participants. A likelihood ratio test for the gamma distri-
bution with an inverse link provided evidence for a sig-
nificant difference between the groups, F (2, 63) = 13.18, 
p = 0.001, R2

L = 0.17. The high elimination use group 
(predicted value = 68.74  s) had significantly longer 
completion times than those in the stepwise backtrack-
ing group (predicted value = 42.50  s), t (63) = 11.701, 
p = 0.001, d = 1.1, but not those in the general back-
tracking group (predicted value = 63.96 s), t (63) = 0.336, 
p = 0.562, d = 0.03.

Study 2
Number of diagnostic (pipe) tests
The number of pipe tests was approximately normally 
distributed but displayed heteroscedasticity (Levene’s 
test (2, 75) = 6.23, p = 0.003). An ordinary least squares 
one-way ANOVA was conducted to determine the effect 
of group membership on number of pipe tests, followed 
by a weighted least squares analysis. Groups significantly 
differed in pipe test usage, F (2, 75) = 82.14, p < 0.001, 
η2 = 0.687. Bonferroni-corrected post-hoc compari-
sons showed that those in the high elimination group 
made significantly fewer pipe tests (M = 1.76, SE = 0.30) 
than those using general backtracking, mean differ-
ence = − 4.35, p < 0.001, CI.95 [− 5.19, − 3.53], and those 
using stepwise backtracking, mean difference = − 4.11, 
p < 0.001, CI.95 [− 5.18, − 3.05]. The number of pipe tests 
did not differ significantly between stepwise and general 
backtracking users, p = 0.796. (The same pattern of sig-
nificance occurred using weighted least squares.)

Time per test
Time per pipe test in Study 2 was highly positively 
skewed, so a gamma-distribution generalized linear 
model was used. A likelihood ratio test for the gamma 
distribution with an inverse link provided evidence 
for a significant difference between the groups, F (2, 
73) = 103.70, p < 0.001, R2

L = 0.44. Furthermore, the 

high elimination use group (predicted value = 35.90  s) 
had significantly longer times per test than those in the 
stepwise backtracking group (predicted value = 4.26  s), 
t (73) = 125.93, p < 0.001, and the general backtracking 
group (predicted value = 6.69 s), t (73) = 128.48, p < 0.001.

Marker use
Participants were coded as either using any markers or 
no markers at all (see Table  9 for marker use). Unlike 
that observed in Study 1, sufficient variance was present 
to conduct a binary logistic generalized linear model to 
compare marker usage among groups. Marker usage was 
significantly different between groups, F (76, 2) = 19.65, 
p < 0.001, R2

L = 0.204. Post-hoc comparisons using least 
significant difference found that those in the high elimi-
nation group were significantly more likely to use mark-
ers (72%) than those who used stepwise backtracking 
(7%), t (76) = 9.154, p = 0.002, and those who used gen-
eral backtracking (22%), t (76) = 12.359, p = 0.019.

Time per problem
Three additional participants were eliminated from the 
time per problem analysis as multivariate outliers. An 
ordinary least squares one-way ANOVA was conducted 
to determine the effect of group membership on com-
pletion time. Groups significantly differed in time per 
problem, F (2, 72) = 5.01, p = 0.009, η2 = 0.122. Bonfer-
roni-corrected post-hoc comparisons showed that those 
in the high elimination group took significantly longer 
to complete tasks than those using stepwise backtrack-
ing, mean difference = 26.82, p = 0.007, CI.95 [6.03, 47.62], 
but not those using general backtracking, mean differ-
ence = 10.91, p = 0.321, CI.95 [− 5.48, 27.29]. Time per 
problem did not differ significantly between stepwise and 
general backtracking users, p = 0.099.

Study 3
Number of diagnostic (pipe) tests
The number of pipe tests was approximately normally 
distributed but displayed heteroscedasticity (Levene’s 
test (2, 76) = 6.01, p = 0.004). An ordinary least squares 
one-way ANOVA was conducted to determine the effect 
of group membership on the number of pipe tests, fol-
lowed by a weighted least squares analysis. Groups sig-
nificantly differed in pipe test usage, F (2, 76) = 82.86, 
p < 0.001, η2 = 0.686. Bonferroni-corrected post-hoc com-
parisons showed that those in the high elimination group 
made significantly fewer pipe tests than those using gen-
eral backtracking, mean difference = − 4.35, p < 0.001, 
CI.95 [− 5.19, − 3.51], and those using stepwise back-
tracking, mean difference = − 4.13, p < 0.001, CI.95 [–5.13, 
− 3.14]. The number of pipe tests did not differ signifi-
cantly between stepwise and general backtracking users, 
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p = 0.820. (The same pattern of significance occurred 
using weighted least squares, F (2, 76) = 285.69, p < 0.001, 
η2 = 0.883.)

Time per test
The time per pipe test in Study 3 was highly positively 
skewed, so a gamma-distribution generalized linear 
model was used. A likelihood ratio test for the gamma 
distribution with an inverse link provided evidence 
for a significant difference between the groups, F (2, 
77) = 113.00, p < 0.001, R2

L = 0.434. Furthermore, the high 
elimination use group (predicted value = 40.84  s) had 
significantly longer times per test than the stepwise back-
tracking group (predicted value = 3.38 s), t (77) = 169.41, 
p < 0.001, and the general backtracking group (predicted 
value = 6.68 s), t (77) = 128.72, p < 0.001.

Marker use
Participants were coded as either using any markers or 
no markers at all (see Table  10 for marker use). Unlike 
that observed in Study 1, sufficient variance existed to 
conduct a binary logistic generalized linear model to 
compare marker usage among groups. Marker usage was 
significantly different between groups, F(77.2) = 19.36, 
p < 0.001, R2

L = 0.208. When a Bonferroni corrected alpha 

level of 0.025 was used for post-hoc tests, those in the 
high elimination group were significantly more likely to 
use markers (68%) than those who used stepwise back-
tracking (11%), t(77) = 10.10, p = 0.001, and those who 
used general backtracking (17%), t(77) = 13.68, p < 0.001.

Time per problem
One additional participant was excluded as a multivari-
ate outlier. An ordinary least squares one-way ANOVA 
was conducted to determine the effect of group member-
ship on completion time. Groups significantly differed in 
time per problem, F (2, 75) = 6.76, p = 0.002, η2 = 0.153. 
Bonferroni-corrected post-hoc comparisons showed that 
those in the high elimination group took significantly 
longer to complete tasks than those using stepwise back-
tracking, mean difference = 33.11, p = 0.001, CI.95 [10.89, 
55.32], but not those using general backtracking, mean 
difference = 2.37, p = 0.99, CI.95 [− 27.21, 31.96]. The time 
per problem did not differ significantly between stepwise 
and general backtracking users, p = 0.087.

Appendix 3: Structural equation modeling diagram 
and correlations for study 3
See Fig. 5 and Table 11.

Fig. 5  Structural Equation Model of the effect of intelligence on causal inferences. Fit was very good, X2(6) = 10.88, p = .09, CFI = 0.943, 
RMSEA = 0.088. Covariances among the dependent variable error terms are omitted for clarity (See Table 11). Standardized solution (unstandardized 
coefficients in parentheses), N = 105. *p < 0.05

Table 11  Correlations between  observed variables in  Study 3, with  standard deviation on  the  diagonal. Estimated 
correlations between dependent variables included in the model are in parentheses

N = 105

SAT Verbal analogies Paper-fold Elimination IBE Stepwise

SAT (imputed) 162

Verbal analogies 0.481 3.20

Paper folding 0.457 0.404 3.90

Elimination use 0.287 0.334 0.500 43.4

IBE use 0.366 0.326 0.556 0.749 (0.595) 43.4

Stepwise 0.015 − 0.106 − 0.218 − 0.518 (− 0.515) − 0.444 (− 0.436) 22.8
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