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Orthogonal control of expression mean and
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Abstract

While gene expression noise has been shown to drive dramatic
phenotypic variations, the molecular basis for this variability in
mammalian systems is not well understood. Gene expression has
been shown to be regulated by promoter architecture and the asso-
ciated chromatin environment. However, the exact contribution of
these two factors in regulating expression noise has not been
explored. Using a dual-reporter lentiviral model system, we decon-
volved the influence of the promoter sequence to systematically
study the contribution of the chromatin environment at different
genomic locations in regulating expression noise. By integrating a
large-scale analysis to quantify mRNA levels by smFISH and protein
levels by flow cytometry in single cells, we found that mean expres-
sion and noise are uncorrelated across genomic locations. Further-
more, we showed that this independence could be explained by the
orthogonal control of mean expression by the transcript burst size
and noise by the burst frequency. Finally, we showed that genomic
locations displaying higher expression noise are associated with
more repressed chromatin, thereby indicating the contribution of
the chromatin environment in regulating expression noise.
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Introduction

While there is increasing evidence that non-genetic individuality in

cells arises in part from noise in the fundamental processes of gene

expression, there have been few studies elucidating either the

mechanistic basis of this expression noise from a given gene or its

coupling to the immediate genetic environment. Here, we take the

first steps toward understanding the molecular basis of gene

expression noise. It has long been known that isogenic populations

grown under identical conditions exhibit non-genetic heterogeneity

(Spudich & Koshland, 1976), which arises from the inherently

random nature of biochemical processes in which infrequent reac-

tions and/or low numbers of molecules regulate important behavior

in a system. Such random fluctuations or noise can be further

amplified by underlying biological networks to drive dramatic

phenotypic variations within isogenic populations of bacterial,

yeast, insect, and mammalian cells (Arkin et al, 1998; Balaban

et al, 2004; Weinberger et al, 2005; Wernet et al, 2006; Acar et al,

2008; Chang et al, 2008; Spencer et al, 2009; Balázsi et al, 2011).

In particular, gene expression noise arising from stochastic fluctua-

tions in transcription has been shown to be an important source of

non-genetic heterogeneity in mammalian cells. Over the last

decade, significant work has modeled and experimentally validated

this process of stochastic gene expression, enabled by the develop-

ment of powerful single-cell analysis techniques such as flow

cytometry, high-throughput microscopy, and recently single-mole-

cule RNA fluorescent in situ hybridization (smFISH) (Thattai &

van Oudenaarden, 2001; Elowitz et al, 2002; Blake et al, 2003;

Paulsson, 2004; Raser & O’Shea, 2004; Kaern et al, 2005; Friedman

et al, 2006; Raj et al, 2006; Raj & van Oudenaarden, 2008).

However, the mechanistic roles and impact of key molecular
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factors on gene expression noise remain largely undissected, which

is the focus of this work.

Transcriptional noise in the expression of a gene is modulated by

both the genomic location with its associated chromatin environ-

ment, and its promoter architecture. Elegant large-scale studies in

S. cerevisiae have investigated how noise scales with mean protein

expression for several endogenous genes (Bar-Even et al, 2006);

however, the contributions of the promoter architecture and geno-

mic location to gene expression noise were not explored. Addition-

ally, a study utilizing the well-characterized yeast Pho5 promoter

identified the contribution of different transcription factor mutants,

which remodel nucleosomes during transcriptional activation, to

expression noise (Mao et al, 2010). However, it was not clear

whether the results reflected the general dynamics of gene expres-

sion at different sites across the whole genome or were specific to

the particular endogenous locus examined. Also, while a number of

transcriptional regulatory mechanisms are conserved between yeast

and mammals, mammalian genomes exhibit additional complexity,

with differences in both large-scale chromatin dynamics and

promoter proximal chromatin marks that may limit the generaliza-

tion of findings from yeast to mammals (Rando & Chang, 2009;

Court et al, 2011). A recent study in mammalian cells investigated

the impact of cis-regulatory sequences on gene expression noise

(Suter et al, 2011); however, the use of pharmacological perturba-

tions that globally alter chromatin structure, as well as the small

dataset, did not enable a general understanding of the role of the

genomic location in regulating gene expression noise. Thus, our

understanding of how both genomic locations and underlying

molecular factors regulate gene expression noise is limited.

To address how genomic locations regulate expression noise, we

designed a lentiviral-based system that effectively deconvolves the

influence of the promoter sequence from genomic location, thereby

allowing a comprehensive and systematic study of how the genomic

environment influences gene expression noise regulation in a

mammalian system. In particular, semi-random lentiviral integration

efficiently samples a myriad of genomic locations while maintaining

the same promoter architecture (Jordan et al, 2001). Furthermore,

lentiviral promoters exhibit many archetypal features of endogenous

eukaryotic promoters, such as a TATA box, extensive cis acting

elements, and well-positioned nucleosomes along the promoter

(Verdin et al, 1993; Pereira et al, 2000). Therefore, to systematically

study the influence of genomic location on mRNA and protein

expression noise, we generated a large set of single-cell clones span-

ning hundreds of integration positions. Furthermore, to address the

question of which key molecular players may be involved in regulat-

ing expression noise, we extended recent studies in S. cerevisiae

(Mao et al, 2010; Weinberger et al, 2012)—which have begun to

unravel the roles of chromatin and chromatin-modifying complexes—

to a mammalian system by systematically measuring the chromatin

state of promoters integrated into different genomic locations.

While we and others have previously used lentiviral-based

vectors to study gene expression noise (Weinberger et al, 2005,

2008; Singh et al, 2010a; Skupsky et al, 2010; Dar et al, 2012), small

datasets and indirect measurements of transcription have resulted in

discrepancies in the results. Furthermore, these studies have been

unable to infer specific molecular features underlying the regulation

of expression noise. We previously found that the transcript

burst size—the number of transcripts generated during a

short interval during which a “bursty” promoter is mediating

transcription—primarily correlates with the mean level of gene

expression, whereas another study recently found that both the burst

size and frequency—the rate of promoter transitions into the produc-

tive bursty state—correlate with mean expression across genomic

locations (Skupsky et al, 2010; Dar et al, 2012). To discriminate

between these conflicting results, we conducted a large-scale analy-

sis to accurately quantify mRNA levels by smFISH as well as protein

levels by flow cytometry. We then integrated these data to show

orthogonal control of mean expression by the burst size and noise by

the burst frequency. Furthermore, to gain deeper molecular insights,

we assessed chromatin accessibility across integration sites and

found that noisier clones with infrequent bursts are associated with

more repressed chromatin. Identifying the molecular players and

sources of such non-genetic heterogeneity may offer better means to

target diseases such as viral pathogenesis or cancer (Balaban et al,

2004; Weinberger et al, 2005; Cohen et al, 2008; Spencer et al, 2009;

Sharma et al, 2010; Singh et al, 2010b; Miller-Jensen et al, 2011).

Results

High-throughput generation of single-integration clones to
comprehensively observe diversity in expression mean and
expression noise

To facilitate a comprehensive, systematic analysis of the modulation

of long terminal repeat (LTR) basal transcriptional dynamics across

genomic locations, a high-throughput workflow (Fig 1A) was

designed to create a diverse and representative set of clones. To

directly compare RNA and protein levels in single cells within such

clonal populations, and thereby provide a deeper and more direct

inference of the transcriptional dynamics than previously studied, a

model vector (LGM2) consisting of the HIV-1 LTR driving dual

protein (GFP) and RNA (M2 smFISH) reporters was developed.

Importantly, previous studies have used limited sets of fewer than

40 clones (Singh et al, 2010a; Skupsky et al, 2010) or used a short

half-life GFP variant (d2GFP; Dar et al, 2012) that, due to the

accompanying reduced fluorescence and sensitivity, limited analysis

to only the subset of genomic locations that yield high gene expres-

sion. Furthermore, our and others’ studies have strictly used GFP

reporters of gene expression activity as opposed to direct quantifica-

tion of mRNA molecules. Together, these previously used features

may provide a biased or limited portrait of expression dynamics

across genomic locations.

To capture a spectrum of single-integration clones that robustly

represent the wide and highly skewed bulk distribution (Fig 1B),

single cells were sorted into 96-well plates from a wide gate spanning

1.8 log10 RFU units, distinct from autofluorescence. This gate, chosen

to limit sampling bias toward any particular regime of mean expres-

sion level, resulted in 227 LGM2 clones. While we isolate clones

from the entire range of mean expressions, preferential integration of

HIV into actively transcribing genes and activating chromatin marks

potentially results in more clones being integrated within such

regions than within gene deserts, methylated CpG regions, and

repressive chromatin marks (Schröder, 2002; Lewinski et al, 2005;

Wang et al, 2007). Furthermore, to validate results obtained from

this first large set, we repeated the sorting scheme to isolate an
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additional, independent 191 LGM2 single-integration clones (Supple-

mentary Fig S6). We observed a high degree of population level

agreement between the two sets of clones, suggesting that any

potential effects arising from experimental bias were negligible.

The expression of each of the initial 227 clones was determined

by flow cytometry, and each distribution was subsequently gated

(Supplementary Fig S1) with a data-driven algorithm that samples a

small region of forward scatter and side scatter space and retains at

least 4,000 cells per clone. However, we found minimal dependence

between the gate chosen and the resulting scaling of the GFP distri-

bution moment (Supplementary Figs S2, S3, and S4). Importantly,

this ensemble of clones exhibited mean expression levels spanning

2 orders of magnitude, identical to the range observed in the bulk

distribution (Fig 1C).

A

B C

Figure 1. High-throughput single-integration clone generation robustly captures the diversity of expression mean and noise exhibited by HIV-1 across
integration sites.

A Clonal generation workflow. Jurkat T cells were infected at low MOI (~0.05) with HIV-1 LGM2 and allowed to reach steady state expression for 7 days. To facilitate
discrimination of infected cells by GFP fluorescence, the culture was stimulated with TNF-a for 16 h. Following stimulation, GFP-positive cells were sorted and
allowed to expand for 7 days. From this GFP+ population, single cells were sorted into 96-well plates and allowed to expand for 3–4 weeks to generate 227 clonal
populations.

B Unbiased clone sorting from long tailed polyclonal distribution. As indicated by the overlay of the polyclonal LGM2 GFP distribution with autofluorescence of
uninfected Jurkat T cells, the HIV-1 LTR supports wide and highly skewed gene expression with cells exhibiting expression 1–2 orders of magnitude greater than the
very low expression mode. For further analysis of the modulation of LTR gene expression across viral integrations, an unbiased gate distinct from autofluorescence
was used to capture a diverse and representative set of single-cell clones.

C Evidence of noise independence from mean expression across large set of clones. Analysis of GFP expression of the 227 clones by flow cytometry reveals
modulation of both the mean level of expression and expression ‘noise’ as indicated by significant differences in distribution width within groups of clones with
similar means. Each row within the plot represents the 1D kernel smoothed density of the GFP expression of a single clone, with the clones rank ordered by
mean expression.

ª 2015 The Authors Molecular Systems Biology 11: 806 | 2015

Siddharth S Dey et al Orthogonal control of expression mean and variance Molecular Systems Biology

3



Uncorrelated expression mean and noise suggest primarily
orthogonal control across genomic locations

For a given mean expression level, there was considerable variabil-

ity in distribution width (Fig 1C). If these distributions arose from a

constant-rate Poisson transcription process in which the promoter is

always in a productive state, we would expect distribution variance

to scale linearly with mean and the coefficient of variation (CV) to

decrease as CV/1=
ffiffiffiffiffiffiffiffiffiffiffiffi

Mean
p

. In contrast, for a non-Poissonian process

in which RNA is produced in infrequent bursts arising from stochas-

tic promoter transitions from a ‘Off’ state and an ‘On’ state, variance

would be anticipated to relate to mean through a power-law

relationship. We used the GFP distribution moments from the 227

clones to differentiate between these scenarios.

To infer whether either of these basic models of gene expression

could explain the observed distributions, we next examined the rela-

tionships between the mean and variance in gene expression for the

clonal populations, and between their expression mean and the

coefficient of variation (expression noise). Examination of the rela-

tionship (Fig 2A, blue line) between GFP mean and GFP variance

revealed that in log-transformed space, variance is highly correlated

with distribution mean (R2 = 0.86, Spearman correlation coefficient,

rs = 0.92), strongly suggesting an underlying power-law relationship

with r2/l2.1 � 0.1. This scaling is distinct from Poisson scaling

(Fig 2A, dashed black), which would predict a linear relationship

resulting from a constant rate of production. However, this power-

law relationship is consistent (P < 0.01) with distribution scaling

arising through promoter transitions between Off and On states.

While correlations between the first two moments is a useful

comparison to the theoretical models, analysis of a dimensionless

expression noise normalized with respect to mean, such as the coef-

ficient of variation (CV, r/l), provides a direct comparison to other

experimental systems (Elowitz et al, 2002; Bar-Even et al, 2006;

Singh et al, 2010a). Consistent with an underlying non-Poissonian

process, examination of the relationship (Fig 2B, blue line) between

GFP CV and GFP mean reveals an uncorrelated relationship

(R2 = 0.013, rs = 0.12). Interestingly, for a given mean level of

expression, a nearly constant range of CV is sampled (Fig 2B and

Supplementary Fig S5). This result stands in stark contrast to

genome-wide studies of expression noise in yeast (Bar-Even et al,

2006; Newman et al, 2006), which have indicated that ~CV/1=
ffiffiffi

l
p

.

We found that this lack of correlation was not an artifact of the

gating strategy used (Supplementary Fig S4). Furthermore, to

ensure that these results were not influenced by artifacts introduced

during infections, cell culture, or cell sorting, the second set of 191

isolated single-integration clones (as described in Fig 1A) repro-

duced a lack of correlation between mean expression and CV

(Supplementary Fig S6). Additionally, to ensure that the lack of

correlation between mean expression and CV was not influenced by

extrinsic sources of noise such as cell size, we noted that forward

A B

Figure 2. Scaling between distribution mean and variance is highly consistent with non-Poissonian transcription while CV scaling suggests independent
control of expression mean and noise across integration positions.

A Clonal distribution moment scaling. GFP fluorescence of approximately 104 cells from each clone was measured via flow cytometry. The highly significant power-law
relationship between distribution mean and variance with a log-log linear regression slope of 2.1 � 0.11 (blue line, R2 = 0.86, rs = 0.92, P < 0.001) is distinct from
Poisson scaling (dashed line) and is consistent with distribution scaling arising through ‘input-controlled’ promoter transitions between “Off” and “On” states.

B Expression mean and noise independence. Uncorrelated GFP expression noise, measured as log-log-transformed coefficient of variation (CV), and GFP mean across
clones (R2 = 0.013, rs = 0.12) suggests independent control of mean expression and expression noise across integration positions. Error bars represent 95% confidence
interval estimates derived from bootstrapped GFP fluorescence distributions for each clone. Red dots represent clones on which single-molecule mRNA FISH was
performed.
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scatter measurements in flow cytometry were not correlated with

GFP fluorescence (Supplementary Fig S2). Similarly, applying a

data-driven gating strategy that sampled a small region of forward

and side scatter space showed no linear or other monotonic correla-

tion between cell size and GFP expression (Supplementary Fig S3).

Furthermore, by choosing either a wide gate of forward and side

scatter of live cells or a small gate centered on the density mode of

forward and side scatter, we found that the observed independence

of gene expression noise and mean expression did not change

(Supplementary Fig S4A). Moreover, by changing the gate size

centered around the density mode to capture between 10–90% of

the cells, we found the slope of the variance in gene expression vs.

mean expression best-fit line did not change (Supplementary

Fig S4C). Finally, we previously performed extensive controls in our

experimental system to show that gene expression noise in our

system was dominated by intrinsic noise and was not influenced by

extrinsic sources of noise such as cell cycle, cell size, or aneuploidy

(Weinberger et al, 2005). Similarly, studies in other mammalian

systems have used two-color reporter systems to show that gene

expression noise is dominated by intrinsic sources (Raj et al,

2006). Taken together, these factors strongly suggest that across

genomic locations, expression mean and expression noise are

differentially controlled by intrinsic processes rather than extrinsic

sources of noise (see Supplementary Information for additional

details).

Subsetting clones for further analysis by smFISH reflects
properties of the full set of clones

The above results provide an initial, diagnostic assessment that is

strongly consistent with a non-Poissonian bursting transcriptional

mechanism. However, the observations are inherently dependent

on post-transcriptional processes that may obscure important

underlying information. In particular, the long half-life of the GFP

reporter potentially buffers and smoothens important dynamic

information, yet use of a destabilized, lower sensitivity GFP would

preclude analysis of all but the brightest clones. Therefore, to

provide a more direct and sensitive measure of transcriptional

mechanisms underlying the observed differential variation of

expression mean and expression noise across genomic locations, a

subset of 25 clones was selected for analysis by smFISH using a

probe against the M2 array in the integrated LGM2 provirus. These

clones were chosen by allocating the initial 227 distributions into

four clusters via a hierarchical clustering approach (Supplementary

Information and Supplementary Figs S7 and S8). To effectively

sample both the range of expression means and noises observed

in this full set of clones, and to enable detailed inferences about

the molecular factors regulating gene expression dynamics as a

function of the genomic location, pairs of clones with similar

means but markedly different CVs were selected from each cluster.

Examination of the relationship between mean and variance

(Supplementary Fig S9A), and mean and CV (Supplementary

Fig S9B), for this subset of clones revealed trends that are not

statistically different (F-test, P > 0.1) from those observed in the

full set of clones, indicating that the sample was representative.

We thus proceeded to quantify exact RNA copy numbers per cell

in both high noise (Fig 3A) and low noise (Fig 3B) clones from

this subset.

RNA distribution shape is highly related to protein
distribution shape

High-throughput computational image analysis resolved counts of

LGM2 RNA per cell for an average of 630 cells per clone (Fig 3C,

Supplementary Information and Supplementary Figs S10, S11, and

S12). To analyze whether the process was stereotypical Poisson vs.

non-Poissonian at the transcriptional level, we determined the rela-

tionships for RNA variance or RNA CV as a function of RNA mean

(Fig 4A, blue line and B, blue line, respectively). We find that

RNA mean and variance are highly correlated (R2 = 0.89, rs = 0.93)

with rRNA
2/lRNA

1.68 � 0.25. This relationship again follows a power

law, though the different slope from the protein result (Fig 2A),

indicating that post-transcriptional steps may augment noise.

However, we again find that RNA CV is only weakly dependent on

RNA mean (R2 = 0.31, rs = �0.38, P = 0.03), suggestive of a non-

Poissonian process (Fig 4B). This lack of correlation between CV

and mean at the RNA level further suggests that the observed ortho-

gonal control of expression mean and noise is not governed by extrin-

sic sources related to translation, such as the number of ribosomes.

Furthermore, it is frequently assumed that translation is a

constant-rate first-order process that does not vary between clonal

populations. Under such an assumption, we would expect RNA

mean and variance to strongly predict protein mean and variance.

To examine this assumption directly, RNA mean and variance of

distributions for each clone were compared to their corresponding

GFP moments. We find that variation in RNA mean predicts varia-

tions in GFP mean well (R2 = 0.79, P < 0.001) (Fig 4C), and RNA

variance predominantly explains GFP variance (R2 = 0.73,

P < 0.001) (Fig 4D). This suggests that GFP distribution shape is

predominantly determined by the underlying RNA distribution, with

contributions from post-transcriptional processes.

Systematic fitting of RNA distributions reveals that a two-state
model can describe both low and high noise clones

While scaling of the RNA distributions is highly suggestive of an

underlying non-Poissonian process, with distribution shape predom-

inantly determined by stochastic promoter transitions between ‘On’

and ‘Off’ states, further analysis may yield insights into the unantici-

pated independence of mean expression level and noise. This may

imply that distinct molecular mechanisms could regulate the mean

and noise of gene expression, thereby allowing cells to precisely tune

gene expression distributions. We therefore examined kinetic param-

eters underlying the gene expression distribution shapes. Specifi-

cally, maximum-likelihood estimation (MLE) of kinetic parameters

was performed for the ‘standard’ two-state transcription model

(Supplementary Figs S13 and S14), which has received considerable

attention by ourselves and other recent studies (Raser & O’Shea,

2004; Raj et al, 2006; Skupsky et al, 2010). While this model is an

idealization of complex molecular phenomena, it has an analytical

solution (Peccoud & Ycart, 1995; Raj et al, 2006) and has been found

to parsimoniously explain observed protein and RNA distributions

for synthetic and endogenous promoters in yeast and mammalian

systems (Raser & O’Shea, 2004; Raj et al, 2006; Skupsky et al, 2010).

MLE best-fit parameters for all 25 clones analyzed with smFISH

quantitatively fit the measured mRNA histograms (Fig 4E). Specifi-

cally, we find that each clone can be described by the average rate of
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promoter transitions to the ‘On’ state and the average number of tran-

scripts produced in the ‘On’ state. In particular, we find that the two-

state model can effectively fit both the low (Fig 4E right/dark gray in

each pair) and high noise (Fig 4E left/light gray in each pair) clone

pairs with similar mean expression levels previously selected for

smFISH analysis. Consistent with prior work (Singh et al, 2010a;

Skupsky et al, 2010), burst size (the ratio of transcription rate to

promoter ‘Off’ rate) and frequency (the inverse of promoter ‘On’ rate)

vary across genomic locations. Furthermore, we find that all fitted

clones are non-Poissonian with inferred burst sizes larger than 1.

Finally, systematic fitting of the RNA distributions obtained from

smFISH for clones with integration positions over the entire genome

was the first step toward understanding the molecular features that may

explain the observed protein and mRNA distribution shape scaling.

Differential control of expression mean and noise by burst size
and rate of promoter ON transitions

Systematic determination of RNA distributions with smFISH and

fitting to a stochastic model of transcription revealed several

interesting correlations. Burst size is primarily correlated with RNA

mean (Fig 5A, R2 = 0.75, rs = 0.8), whereas the promoter ‘On’ rate

(normalized by the measured rate of RNA degradation) explained

expression noise (Fig 5D, R2 = 0.75, rs = �0.89). This suggested

that burst size and promoter On rate may differentially regulate

mean expression and noise and may thus have distinct molecular

underpinnings. To further analyze these relationships, we examined

correlations between burst frequency and RNA mean (Fig 5B) and

between burst size and RNA noise (Fig 5C). Surprisingly, we found

that neither is correlated significantly (P > 0.3). This result strongly

suggests that while burst size and burst frequency vary across geno-

mic locations, they independently determine the mean and noise of

expression (Supplementary Fig S15). Specifically, increased burst

sizes drive higher mean RNA expression, while an increasing rate of

promoter transitions to the ‘On’ state reduces expression noise in a

highly monotonic relationship. While the kinetic linkage between

promoter On rate and expression noise has been theorized, this is to

our knowledge the first experimental demonstration that the rate of

promoter transitions to the ‘On’ state is inversely correlated with the

level of transcriptional noise.

A B

C

Figure 3. Hybrid unsupervised segmentation of both cells and smFISH signals enables high-throughput analysis of expression output of thousands of
single cells.

A, B Transcriptional bursting and expression heterogeneity in high and low clones. (A) Significant heterogeneity in RNA copy number and GFP within a high noise clonal
population and direct evidence of transcriptional bursting is revealed by a false-colored maximum intensity projection (MIP) of a deconvolved wide-field optically
sectioned field of cells imaged at 100× magnification in three channels (GFP, DAPI, TAMRA). (B) Same as (A), with image from a low noise clonal population.

C High-throughput image analysis of microscopy images. Custom morphological segmentation of cells in fields and FISH signals enabled analysis of over 15,000 cells
across 25 clones. For each clone, a distribution of RNA number per cell is determined (see Supplementary Information for details).
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A B

C

E

D

Figure 4. RNA distribution scaling and systematic fitting of RNA distributions reveal that LTR expression output is primarily controlled by intrinsic
fluctuations in promoter activity.

A RNA variance correlated with mean RNA copy number. Log-log linear regression of RNA variance as a function of RNA mean finds a high-confidence scaling with a
slope of 1.68 � 0.25 (R2 = 0.89, rs = 0.92, P < 0.001), which is intermediate to Poisson and ‘input-controlled’ scaling.

B RNA mean and noise primarily independent. Log-log linear regression of RNA CV (noise) as a function of mean finds an approximately uncorrelated of noise on
mean expression (slope = �0.2 � 0.13, R2 = 0.31, rs = �0.38, P = 0.03). This suggests that RNA mean and expression noise are controlled by primarily independent
mechanisms.

C, D RNA distribution shape predominantly explains GFP distribution shape. RNA and GFP means are highly correlated (C) (R2 = 0.79, rs = 0.86, P < 0.001). Similarly,
RNA and GFP variances are strongly correlated (D) (R2 = 0.73, rs = 0.84, P < 0.001), with RNA variance explaining the majority of variation observed in GFP
variance. Together, these suggest that contributions to the mean and width of the protein distributions from processes downstream of transcription are minimal.
Furthermore, this strongly implies that intrinsic transcriptional dynamics are the primary determinant of protein distribution shape.

E Maximum-likelihood fitting of a two-state model to RNA distributions. Copy number distributions were determined by smFISH and automated analysis of the set
of 25 selected LGM2 clones. Resulting distributions were fit to the analytical probability density function (pdf) of a stochastic two-state transcriptional model
through maximum-likelihood parameter estimation. mRNA copy number distributions are depicted as paired density histograms for six representative pairs of high
noise (pair left, light gray) and low noise (pair right, dark gray). Each pair represents clones with similar mean expression but different CV. Experimentally
determined histograms are shown overlaid with the probability density functions (red curve) evaluated using best-fit model parameters for each clone.

Data information: In (A–D), error bars on RNA moments represent 95% confidence interval estimates derived from bootstrapped smFISH distributions for each clone.
rs represents the Spearman correlation coefficient for the explanatory and response variables in each pairwise regression, and P-values represent support for correlation.
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Our finding of the independent variation and kinetic control of

expression mean and noise across genomic locations contrasts with

previous findings (Dar et al, 2012). This may be a consequence of the

previous use of clones with a bias toward high expression (burst

sizes ~100–200) or a lack of systematic parameter estimation. Regard-

less, our results significantly enhance our mechanistic understanding

by providing a concise kinetic mechanism that can account for the

observed orthogonality between mean and expression noise initially

observed in both GFP and RNA moment scaling (Figs 2 and 4).

However, what mechanism may differentially affect burst size and

On rate remains to be discovered. The relationship between promoter

On rate and expression noise led us to question whether stochastic

A B

C D

Figure 5. Maximum-likelihood fitting of a stochasticmodel of transcription to smFISH distributions reveals burst size primarily accounts for expressionmean
while promoter transitions from Off to On primarily accounts for expression noise.

A Burst size accounts for variation in mean expression. Maximum-likelihood estimation of burst size for each clone significantly accounts for a majority of the variation
observed in mean RNA copy number across integration positions (slope = 1.35 � 0.35, R2 = 0.75, rs = 0.8, P < 0.001).

B Promoter On transitions are uncorrelated from expression mean. Maximum-likelihood estimation of promoter On rate normalized by the rate RNA degradation
cannot account for variation in mean RNA copy number (R2 = 0.05, rs = 0.2, P = 0.37).

C Burst size is uncorrelated from expression noise. Burst size cannot account for the variation in observed expression noise (CV) (R2 = 0.01, rs = 0.01).
D Promoter On transitions accounts for expression noise variation. Normalized On rate (by rate of RNA degradation) significantly accounts for variation in expression

noise (CV) across integration positions (slope = �0.52 � 0.14, R2 = 0.75, rs = �0.89, P < 0.001). This independence in cross-correlations suggests that while both
burst size and promoter On rate vary across integration positions, expression mean and noise are controlled by primarily orthogonal mechanisms.

Data information: Error bars on RNA moments represent 95% confidence interval estimates derived from bootstrapped smFISH distributions for each clone. Error bars
on model parameters represent 95% confidence intervals estimated using 1.92 log-likelihood ratio units. rs represents the Spearman correlation coefficient for the
explanatory and response variables in each pairwise regression and P-values represent support for correlation.
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molecular events such as chromatin or nucleosome dynamics might

control the promoter On rate and expression noise.

Nucleosome occupancy at the transcription start site regulates
gene expression noise and burst frequency

HIV-1 has well-positioned nucleosomes along the entire length of

the viral genome (Verdin et al, 1993; Rafati et al, 2011). In particular,

the promoter has one nucleosome (called Nuc-1) that is immediately

adjacent to the transcriptional start site (TSS) and another that is

450 nucleotides upstream (called Nuc-0) (Fig 6A). Such well-

positioned nucleosomes, stereotypical of TATA-containing promoters

in yeast and mammalian cells, are in a strong position to regulate

gene expression dynamics. We thus hypothesized that the nucleo-

some organization at the LTR and the chromatin density at the site

of integration may play a critical role in influencing transitions

between the Off and On promoter states, thereby regulating the

width of the RNA/protein distributions. Since HIV-1 integrations

sample a large diversity of genomic locations (Jordan et al, 2001),

our model system offers further mechanistic insights into how chro-

mosome location may be important in regulating expression noise

of endogenous genes.

To quantitatively measure the chromatin accessibility of the LTR

across different genomic locations, we used DNase I sensitivity

assays as previously described (Dey et al, 2012; Miller-Jensen et al,

2012). Initially, to assess whether the chromatin accessibility at the

promoter may be related to gene expression noise in general, we

probed a large region of the promoter centered on the TSS (as indi-

cated by the black bar, Fig 6A and B) for 6 pairs of clones (Fig 4E),

with each pair expressing similar mean levels of RNA/protein but

different expression noise. In agreement with our hypothesis that

the chromatin density at the promoter may regulate expression

noise characteristics, we found that the ratio of chromatin inaccessi-

bility between high and low noise clone pairs of the same mean was

> 1 in all cases, implying that clones that are integrated into more

closed chromatin display noisier gene expression (Fig 6B). Thus, it

A B

C D E

Figure 6. Noisier clones exhibit more inaccessible promoters.

A HIV-1 LTR exhibits positioned nucleosomes. Schematic figure showing the well-characterized placement of nucleosomes along the HIV-1 promoter. Nuc-1 is
positioned at the transcription start site (TSS), and Nuc-0 is placed further upstream along the promoter.

B Significant differences in DNA accessibility around TSS between high and low noise clones. The region highlighted in black was probed after digestion with DNase I
for 16 clones. The figure plots the level of chromatin inaccessibility for pairs of clones that exhibit similar mean levels of expression. Clones that exhibit noisier gene
expression also have more closed chromatin.

C–E Differential DNA accessibility between high and low noise clones across three distinct sites in the LTR. The HIV-1 promoter was probed in greater detail with the
color scheme matching that shown in (A). As in (B), it was found that for similar mean levels of gene expression, noisier clones exhibited more closed chromatin
along the entire length of the promoter (ratios > 1 in all cases). Interestingly, compared to the two other regions of the promoter, the hypersensitive site (HSS)
showed maximum differences in chromatin inaccessibility between high and low noise clones.

Data information: qPCR experiments were performed in triplicate, and the error bars reflect the standard deviation from the mean.
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appeared that chromatin features within the promoter potentially

regulate gene expression noise, independent of the mean level of

expression.

To gain a more detailed molecular picture of chromatin features

regulating gene expression noise, we performed DNase I sensitivity

analysis of 3 shorter regions (Rafati et al, 2011) along the length of

the viral promoter: (i) Nuc-1, a nucleosome that has previously been

shown to be important for LTR-mediated gene expression, (ii) the

hypersensitive site (HSS) between Nuc-1 and Nuc-0, a region that

contains binding sites for critical transcription factors NF-jB and

Sp1, and (iii) Nuc-0. Recently, it was shown that the presence of a

nucleosome at Nuc-1 or HSS could potentially significantly influence

the gene expression state of the viral promoter (Rafati et al, 2011).

Analysis of the chromatin state at these three sites showed that the

ratio of chromatin inaccessibility for the high noise clone to its low

noise partner is always > 1, further supporting our hypothesis that

high noise clones have more closed chromatin (Fig 6C–E) along the

entire length of the promoter.

Furthermore, while the ratios are > 1 at all three sites, the differ-

ence in the chromatin state between high and low noise clones is

maximized at the HSS (Fig 6D). This high ratio at the HSS could

arise from more inaccessible chromatin for the high noise clones or

more open chromatin for the low noise clones at the HSS. We found

that while the high noise clones appear to have consistently high

and similar levels of chromatin inaccessibility at all three sites along

the promoter, the HSS site for the low noise clones has significantly

lower levels of chromatin inaccessibility than the other two sites

(Nuc-1 and Nuc-0) in the promoter (Supplementary Fig S16). Thus,

low noise clones appear to have particularly open chromatin at HSS,

which might arise from the binding of transcription factors such as

NF-jB and Sp1 to sites within this region (Burnett et al, 2009). Thus,

these results show that for a given mean level of gene expression,

noise in expression (of RNA/protein distribution) is correlated with

integration site-specific chromatin accessibility at the promoter.

We next sought to quantify whether chromatin accessibility at

the promoter correlates with the primary metrics describing ‘bursty’

transcription – the transcript burst size and the rate of promoter

transitions from the Off to On state. Interestingly, we found that the

rate of promoter On transitions correlates very strongly with the

chromatin density around the transcription start site at Nuc-1

(R2 = 0.69, rs = �0.85, P < 0.001) (Fig 7). This relationship was

much weaker in the case of the HSS (R2 = 0.49) or Nuc-0

(R2 = 0.41) site (Supplementary Fig S17). Finally, to understand

whether some linear combination of the chromatin density around

Nuc-1, HSS, and Nuc-0 is a better predictor of the rate of promoter

On transitions, we performed principal components analysis (PCA),

which established that the rate of promoter transitions is nearly

inversely correlated with the chromatin density at Nuc-1 and essen-

tially orthogonal to the HSS and Nuc-0 axis (Supplementary

Fig S18A). Thus, the chromatin state at Nuc-1 is the best predictor

of the burst frequency, with increased chromatin density at the tran-

scription start site resulting in more infrequent transitions to the On

promoter state and greater expression noise. In contrast, the burst

size appears to be uncorrelated with the chromatin state of the

promoter (Supplementary Fig S18B).

These studies demonstrate that the chromatin environment

around the LTR at different genomic locations, especially the nucleo-

some Nuc-1 proximal to the transcription start site, correlates

strongly with the rate of promoter transitions to the On state, and the

CV (expression noise) of the RNA/protein distributions (Supplemen-

tary Fig S19). To our knowledge, these findings provide the first

indication of molecular features that determine gene expression

noise across different genomic locations in a mammalian system.

Discussion

Quantitative investigation of the flow of genetic information from

dynamic chromatin regulation to transcription and translation is

fundamental to our understanding of genome function and cellular

behavior. While the nature of noisy stochastic gene expression has

received intense interest in both synthetic and natural systems

(Arkin et al, 1998; Thattai & van Oudenaarden, 2001; Elowitz et al,

2002; Golding et al, 2005; Weinberger et al, 2005; Raj et al, 2006),

the molecular mechanisms underlying noisy expression phenotypes

have remained elusive. Here, using a dual-reporter lentiviral model

system, we analyzed over 400 clonal populations by flow cytometry

and over 15,000 single cells from 25 clonal populations by smFISH.

By linking clonal protein expression, single-cell measurements of

mRNA copy number, and measurements of promoter chromatin

occupancy, we provided three key insights. First, expression mean

and CV are uncorrelated across integration positions. Second, this

observed large-scale independence between expression mean and

CV can be systematically explained by the independent control of

gene expression mean by burst size and CV by promoter On rate.

Lastly, chromatin density at the promoter can explain the promoter

activation rate but does not provide an explanation for burst size. In

particular, we systematically demonstrate that promoter chromatin

density correlates with promoter activation rate, which in turn regu-

lates the CV or noise of the RNA distribution. This suggests that

local chromatin density may modulate the frequency of transcrip-

tional bursting and thereby tune expression noise.

Figure 7. Nuc-1 occupancy can explain variation in promoter activation
rates across genomic positions.
Chromatin state around the transcription start site is strongly correlated with
the promoter activation rate. Unlike other regions of the HIV-1 promoter (see
Supplementary Fig S17), chromatin inaccessibility around Nuc-1 was strongly
correlated with the frequency of promoter transition from the Off to On state
(slope = �1.1 � 0.5, R2 = 0.69, rs = �0.85, P < 0.001). Clones with more closed
chromatin produced more infrequent transitions from the Off to On promoter
state. qPCR experiments were performed in triplicate, and error bars reflect the
standard deviation from the mean. Error bars on ka represent 95% confidence
intervals estimated using 1.92 log-likelihood ratio units. rs represents the
Spearman correlation coefficient for the explanatory and response variables in
each pairwise regression, and P-values represent support for correlation.
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These findings contrast with recent studies suggesting equal

modulation of burst size and frequency with expression mean

across genomic sites (Dar et al, 2012). The equal modulation of

burst size and frequency observed by Dar et al was inferred from

polyclonal populations that were assumed to correspond to single-

cell clones to model underlying gene expression kinetic parameters.

Also, the clustered polyclonal populations were treated as isogenic

populations based on the qualitative similarity of their CV values.

Therefore, it is unclear how the clustering procedure may obscure

the estimation of kinetic parameters across genomic locations.

Furthermore, reported burst sizes (> 100 for most clones) lie at the

high end of the full range of LTR-driven expression (Skupsky et al,

2010). As a result, conclusions on the role of genomic location on

noise characteristics are limited.

In addition, our results contrast with the assertion that cis-

regulatory elements but not chromatin structure influence expres-

sion noise and bursting dynamics (Suter et al, 2011). However, this

conclusion rests on very limited clonal data gathered using tricho-

statin A, a highly cytotoxic histone deacetylase inhibitor that globally

remodels chromatin and has unknown molecular effects on the

specific genomic locations studied. Furthermore, their dataset shows

that a few clones exhibit large changes in transcription rates and

burst sizes upon stimulation with TSA, suggesting that chromatin

can influence bursting kinetics, thereby making the claims of Suter

et al inconclusive. The conclusions of another recent study may

similarly be affected by the use of the strong, global inhibitors TSA

and 5-AzaC (Viñuelas et al, 2013). While differences in results

between these studies could arise from some of the reasons

mentioned above, the use of different model organisms, cell types,

promoters, and chromosomal locations could also influence the final

conclusions of these studies. Taken together, these recent studies

and our work suggest that both promoter architecture and the local

chromatin environment may combine to yield the observed expres-

sion distributions and inferred transcription dynamics. Further stud-

ies are needed to systematically study the nature of this coupling,

which may influence the evolution of promoters and selection for

non-random positioning of genes within the genomes to minimize

noise (Batada & Hurst, 2007).

We also observed differential nucleosome occupancy across

genomic locations and quantitatively correlated chromatin density

with the rate of promoter activation. Our observation of differential

chromatin density across genomic locations is supported by

genome-wide studies in Drosophila that quantified nucleosome

dynamics and showed that different regions of the genome could

have variable nucleosome turnover rates (Deal et al, 2010).

Together, these findings may suggest that variable nucleosome

occupancy is a general mechanism for regulating promoter switch-

ing rates and noise. Furthermore, we provide quantitative evidence

that the chromatin density around the TSS plays the most important

role in regulating the promoter On rate. Several biochemical

processes could result in the independent control of expression

mean and noise observed in this study. While we show that the

nucleosome positioned at the transcription start site plays the most

important role in regulating gene expression noise, variability in

chromatin modifications and transcription factor recruitment at

different genomic locations may influence polymerase processivity

or burst size, thereby independently regulating mean gene expres-

sion. Finally, the interplay between these processes, together with

other mechanisms of gene regulation such as DNA methylation or

polymerase pausing, could potentially result in the independent

control of expression mean and noise. Further investigation of the

molecular underpinnings of burst size modulation will further

deepen our molecular interpretation of bursting dynamics.

Nucleosomes have been known to regulate transcription by

setting a threshold for initiating transcription (Lam et al, 2008;

Miller-Jensen et al, 2012). This work shows that in mammalian

systems, nucleosomes and chromatin density around the TSS may

also be important to fine-tune transcription (Tirosh & Barkai, 2008;

Hornung et al, 2012). Such a strategy where the chromatin environ-

ment regulates gene expression noise could be an important mecha-

nism to generate different cellular phenotypes from isogenic

populations in a manner that can confer increased evolutionary

fitness. For example, in simple eukaryotes, such phenotypic switch-

ing has been shown to confer increased survival fitness (Acar et al,

2008). Similarly, such cell-to-cell heterogeneity in cancer popula-

tions may be an important mechanism that contributes to different

drug sensitivities and drug-tolerant states (Cohen et al, 2008;

Spencer et al, 2009; Sharma et al, 2010; Singh et al, 2010b). Finally,

phenotypic heterogeneity may be an important contributor to

producing low-frequency latent HIV-1 infections that remain one of

the main obstacles to completely eliminating the virus from a

patient (Weinberger et al, 2005; Ho et al, 2013). Thus, understand-

ing the contribution of the chromatin environment in regulating

gene expression noise and the resulting phenotypic heterogeneity

may be important for understanding the design principles governing

evolution and for developing better treatments in a variety of

diseased states. Just as miRNAs have been implicated in imparting

robustness to genetic and environmental perturbations (Ebert &

Sharp, 2012), nucleosomes may perform a similar function. There-

fore, this study quantitatively establishes that nucleosomes and

chromatin density around the TSS, in addition to its known func-

tions in controlling expression levels and imparting cellular

memory, may regulate gene expression noise.

Materials and Methods

Viral cloning

To facilitate single-molecule detection of transcripts, the M2 array

from pGEM-M2-32x (Raj et al, 2006) was cloned as a directional

SalI-XhoI fragment into the single XhoI site of HIV CLG (Weinberger

et al, 2005) to generate HIV CLGM2 used in this study.

Cell culture

Jurkat cells, used for creating clonal LGM2 cell line and HEK293T

cells, used for packaging virus were cultured in RPMI 1640 and

Iscove’s DMEM, respectively. Cells were maintained at 37°C and

5% CO2 with the cell media supplemented with 10% fetal bovine

serum (FBS) and 100 U/ml of penicillin–streptomycin.

Viral harvesting, titering, and infections

To package the LGM2 construct, HEK293T cells were transfected

with 10 lg of the plasmid along with the helper plasmids
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pMDLg/pRRE, pcDNA3 IVS VSV-G, and pRSV-Rev as described

previously and harvested (Dull et al, 1998). Harvested lentivirus

was concentrated by ultracentrifugation to yield between 107 and

108 infectious units/ml. To titer, 105 Jurkat cells per well were

infected with a range of concentrated virus doses, and 6 days

post-infection, gene expression was stimulated with 20 ng/ml tumor

necrosis factor-a (TNF-a, Sigma-Aldrich). After stimulation for 18 h,

GFP expression was measured by flow cytometry, and titering

curves were constructed by determining the percentages of cells that

exhibited GFP fluorescence greater than background levels.

Clone generation

Assuming a Poisson distribution, the well with 5% GFP-infected

cells was selected for expansion. This corresponds with a low MOI

of ~0.05 and as previously demonstrated ensures at most one inte-

gration event per infected cell within the population (Weinberger

et al, 2005). The selected population was expanded for 7 days and

stimulated with TNF-a as described above. Approximately 105 cells

were sorted from the GFP+ population on a DAKO-Cytomation

MoFlo Sorter. The resulting population, which represents a poly-

clonal ensemble of single-integration clones, was expanded for

7 days. Single-cell clones were sorted from a wide gate distinct from

background fluorescence into multi-well plates and cultured for

3–4 weeks to facilitate expansion.

Flow cytometry

GFP expression of expanded clonal cultures was assessed by flow

cytometry using a Beckman Coulter FC500 analytical cytometer.

Multiple reads over the course of a week were obtained to ensure

that measured fluorescence represented stationary distributions of

gene expression. Flow cytometry data were processed using Biocon-

ductor packages in custom R scripts as described in the Supplemen-

tary Information.

Cell fixation

For each sample, 1–2 million cells washed once in PBS and allowed

to adhere to 0.01 mg/ml poly-L-lysine (Sigma-Aldrich P5899)-coated

chambered #1 cover glass (Nunc Lab-Tek #155380). Cells were fixed

with 4% formaldehyde (Sigma-Aldrich 252549) solution in PBS.

Slides with fixed cells were washed once with PBS and 70% cold

ethanol added to permeabalize cellular membranes. Slides were

stored at 4°C until hybridization.

In situ hybridization

Single-molecule labeling of LGM2 transcripts was performed as

previously described with the following exceptions (Raj et al, 2006):

(a) 35% formamide was used in the hybridization buffer, (b) a

shorter, TAMRA dual end labeled probe (BioSearch Inc., 50-GTC
GATCAGCTGGCTGGTGCTCTTCGTCCACAAAC-30) was used, and c)

the hybridization reaction was carried out for 16 h at 30°C. Prior

to imaging, slides were washed twice with 2× SSC 35% formamide.

Cell nuclei were counterstained with 0.5 lg/ml DAPI. Just prior to

imaging, samples were mounted under a coverslip with aqueous

oxygen scavenging buffer system (Raj et al, 2008).

Imaging and deconvolution

84 randomly selected fields were imaged per sample. To facilitate

imaging of the entire cell volume, each field was imaged in three

channels (GFP, DAPI, TAMRA) 90 z-axial slices at 0.2-lm spacing

with a 100× oil immersion objective on a Deltavision Core (API)

widefield deconvolution microscope equipped with standard fluo-

rescent filters. Image stacks were iteratively deconvolved using an

experimentally determined point-spread function (PSF) with

Huygens Core 3.3 (SVI) running on a small Linux cluster. Optimal

deconvolution parameters were empirically determined to yield

the best subjective image quality. Custom Tcl scripts running

under Silicon Grid Engine were used to manage job creation and

scheduling.

Image processing

Deconvolved image stacks were processed using custom software

developed in MATLAB (Mathworks Inc.) using the DIPImage Tool-

box (Quantitative Imaging Group, TU Delft). Under minimal user

intervention, the software automatically segments cells and smFISH

objects within single cells. A detailed protocol for the processing

pipeline is contained in the Supplementary Information.

Model fitting

RNA distributions were fit using maximum-likelihood estimation

(MLE) of model parameters using the full analytical solution to the

two-state stochastic gene expression model (Peccoud & Ycart,

1995). MLE was implemented using custom code in Mathematica 8

(Wolfram Inc.) as numerical minimization over the negative log-

likelihood function defined over the pdf given the observed RNA

counts the rate of RNA degradation set to our experimentally deter-

mined rate and transcription rate assumed to be constant across

integration sites as previously discussed (Skupsky et al, 2010). In

this manner, the effective fit parameters are the burst frequency and

burst size.

Statistical analysis

95% confidence intervals on descriptive statistics of RNA distribu-

tions were estimated from the 2.5% and 97.5% quantiles of boot-

strapped copy number counts per cell. 95% confidence intervals on

fit parameters were estimated from the log-likelihood function

assuming asymptotic normality of the estimates. These analyses

were performed in Mathematica 8. All regression and correlation

analysis was performed in R using the lm and rcorr functions. The

regression P-values of all primary inferences reported in this study

fall below an a of 0.05. Distribution clustering and principal compo-

nent analysis were performed in MATLAB (Mathworks Inc).

DNase I sensitivity assay

The assay was performed using the EpiQ Chromatin Analysis Kit

(Bio-Rad) as previously described (Dey et al, 2012; Miller-Jensen

et al, 2012). Briefly, 2.5 × 105 cells were either treated with DNase I

or left untreated for 1 h at 37°C. After quenching the reaction, DNA

was extracted and quantified by qPCR using the EpiQ Chromatin
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SYBR Supermix (Bio-Rad). The following primers were used to

quantify the chromatin density at the HIV promoter:

LTRfor (50-GGACTTTCCGCTGGGGACTTTCCAGGG-30)
LTRrev (50-GCGCGCTTCAGCAAGCCGAGTCCTGCGTCGAG-30)
Nuc-1for (50-AGCTCTCTGGCTAACTAGGG-30)
Nuc-1rev (50-AAAGGGTCTGAGGGATCTCTAG-30)
HSSfor (50-GGGACTTTCCGCTGGGGAC-30)
HSSrev (50-CCCAGTACAGGCAAAAAGCAGC-30)
Nuc-0for (50-GAGCCTGCATGGGATGG-30)
Nuc-0rev (50-CTCCGGATGCAGCTCTC-30)

The qPCR results were normalized by the chromatin density at

the hemoglobin promoter using the primers:

hHBBfor (50-AAGCCAGTGCCAGAAGAGCCAAGGA-30)
hHBBrev (50-CCCACAGGGCAGTAACGGCAGACTT-30)
qPCR experiments were performed in triplicate with melt curves to

ensure product specificity.

mRNA extraction and RT–qPCR

To determine the half-life of transcripts, a polyclonal LGM2 popula-

tion was stimulated by a-amanitin and total RNA was extracted

from cells at different time points using TRIzol (Invitrogen). RNA

was also extracted from unstimulated cells at these time points.

LGM2 and b-actin mRNA were quantified by RT–qPCR using the

single-step Quantitect SYBR Green RT–PCR kit (Qiagen). qPCR

experiments were performed in triplicate. For additional details and

primers, see Supplementary Information.

Supplementary information for this article is available online:

http://msb.embopress.org
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