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The advent of modern medicine has allowed for significant advances within the fields of
emergency care, surgery, and infectious disease control. Health threats that were histori-
cally responsible for immeasurable tolls on human life are now all but eradicated within cer-
tain populations, specifically those that enjoy higher degrees of socio-economic status and
access to healthcare. However, modernization and its resulting lifestyle trends have ush-
ered in a new era of chronic illness; one in which an unprecedented number of people are
estimated to contract cancer and other inflammatory diseases. Here, we explore the idea
that homeostasis has been redefined within just a few generations, and that diseases such
as colorectal cancer are the result of fluctuating physiological and molecular imbalances.
Phytochemical-deprived, pro-inflammatory diets combined with low-dose exposures to
environmental toxins, including bisphenol-A (BPA) and other endocrine disruptors, are now
linked to increasing incidences of cancer in westernized societies and developing countries.
There is recent evidence that disease determinants are likely set in utero and further perpet-
uated into adulthood dependent upon the innate and environmentally-acquired phenotype
unique to each individual. In order to address a disease as multi-factorial, case-specific,
and remarkably adaptive as cancer, research must focus on its root causes in order to
elucidate the molecular mechanisms by which they can be prevented or counteracted via
plant-derived compounds such as epigallocatechin-3-gallate (EGCG) and resveratrol. The
significant role of epigenetics in the regulation of these complex processes is emphasized
here to form a comprehensive view of the dynamic interactions that influence modern-day
carcinogenesis, and how sensibly restoring homeostatic balance may be the key to the
cancer riddle.
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MODERNIZATION, ACCULTURATION, AND RISK FOR
COLORECTAL CANCER
Human homeostasis, defined as the internal state necessary for
establishing systemic equilibrium and maintaining stability, has
arguably shifted in less than a century. It is well documented
that individuals adhering to a phytochemical-depleted diet and
relatively sedentary lifestyle are more likely to develop obesity,
contract chronic conditions such as diabetes, cardiovascular dis-
ease, and cancer, and spend a significant segment of their later
lives dependent upon health care and pharmaceuticals. Trends
in consumerism and shifts in societal preferences toward conve-
nience and modernization continue to peak in the United States
and other “westernized” countries, and are now apparent in devel-
oping countries around the world. So are the trends for cancer
incidence. In 2008, an estimated 1.234 million cases of colorec-
tal cancer occurred worldwide, with 60% of these cases arising in
developed regions (GLOBOCAN Colorectal Cancer Data, 2008).
Between the years of 1983–1987 and 1998–2002, colorectal cancer
incidence rates for both genders increased in 27 out of 51 registries

of the IARC, most notably within regions of recent urbanization
and economic transition such as most of Asia and numerous South
American countries (Center et al., 2009).

When incidence, death, and 5-year prevalence rates are exam-
ined among world cultures ranging from traditional to modern,
the differences in statistics are startling. The three regions with
the lowest rates (East Mediterranean, African, and Indian) had
on average a 26-fold lower incidence rate, a 16-fold decrease in
related death, and a substantial 41-times lower 5-year prevalence
of colorectal cancer when compared to rates within the category of
“more developed regions” (GLOBOCAN Colorectal Cancer Data,
2008). It is interesting to note that cultures exhibiting the lowest
rates of colorectal cancer are also more likely to follow a pas-
toral way of life reflecting reliance upon the natural world. The
reduced risks of cancer and other chronic diseases enjoyed by
these individuals are attributable in some ways to genetic disposi-
tion, but also correlate largely with environmental factors arising
from their retention of preventive dietary and lifestyle practices;
the same practices that have allowed human beings to utilize their
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environments in order to survive them throughout the course of
evolution. However, considering the pace at which urbanization,
industrialization, and technology spread in the twentieth century,
a historically unprecedented scenario of environmental exposures
has emerged within a timeframe too rapid for an appropriate adap-
tive physiological response. Therefore, the recent shift away from
“low risk” lifestyles has promoted persistent pro-disease pheno-
types within certain populations that are concerning and costly in
terms of time, resources, and quality of life.

Age-standardized incidences for colorectal cancer, as well as
most other cancers, were highest in Australia, Canada, Western
Europe, Japan, and the United States; the lowest incidences were
reflected for the majority of the African continent (except for
South Africa), India, the Middle East, and South American coun-
tries surrounding the Amazon basin (GLOBOCAN Colorectal
Cancer Data, 2008). Notably, colorectal cancer rates stabilized in
the US in the mid-1980s, and have steadily declined since (SEER
data), especially in distal as compared to proximal cases, likely
contributable to positive societal factors such as increased aware-
ness, early detection through endoscopic screening, and advances
in preemptive outpatient polyp removal (Umar and Greenwald,
2009). However, influences such as these have not prevented the
rapid rise in colorectal cancer observed since 1985 in Japan and
the Republic of Korea, with rates now comparable to those of
the US and Canada (GLOBOCAN Colorectal Cancer Data, 2008).
Largely by virtue of conflict, these two countries were directly
influenced by American culture, now apparent in the lives of post-
war Japanese and Korean generations. Clearly this form of cancer,
in addition to other chronic diseases, is directly associated with
acculturation falling under the umbrella of westernized culture.
The simple clues to overcoming this caveat can be realized by
examining ways in which modern lifestyles and environments have
altered human physiology, and how the traditional peoples of the
world still practice prevention.

INFLAMMATION, HOMEOSTATIC DISRUPTION, AND CANCER
In what ways has homeostasis been altered by modern living?
Instead of a few minor deviations, humans have both consciously
and unknowingly introduced numerous hurdles to maintaining
appropriate physiological functioning. The general awareness that
a failure to eat right and exercise can lead to poor health is now
extensively supported by scientific data demonstrating the molec-
ular and cellular toll of failing to safeguard one’s health. The physi-
cal body can be thought of as a sophisticated machine that relies on
proper fuel, regular flushing, and routine upkeep in order to func-
tion at its maximum efficiency. If organisms are largely what they
eat, and humans are turning to nutrient-poor, yet toxin-rich food,
it is no surprise that signs of wear and fatigue are evident in many
populations. Chronic inflammation is recognized or suspected to
be an underlying cause of a plethora of modern pathologies,
including cardiovascular disease, diabetes, autoimmune disorders,
neurological dysfunctions, and cancer. Imbalances on molecular
and cellular levels that promote inflammation are numerous and
arise predominately from intrinsic factors such as redox fluctua-
tions that evoke free radical damage and stress signaling to resolve
acute challenges. Whereas short-term signals are necessary for sur-
vival, it is in the case of unresolved insult that the body begins

to waste its energy and develop abnormal responses to internal
and external triggers, thus gradually promoting susceptibility to
chronic diseases such as cancer (Coussens and Werb, 2002).

Humans have the means for controlling inflammation through
a number of innate pathways including the cholinergic pathway
which strongly influences cytokine production and suppression.
Another inherent mechanism for counteracting inflammation is
dependent upon vitamin D, a nutrient once obtained in abundance
through UV exposure, but now found to be severely lacking in the
serum of humans living in developed regions. When obtained at
appropriate levels, vitamin D acts as a prohormone via its nuclear
receptor in cooperation with the retinoid X receptor to bind DNA
and modulate anti-inflammatory gene expression. In addition
to this and other modern-day nutrient deficiencies, humans in
fast-paced and demanding societies now tend to display physical
symptoms of prolonged mental and emotional stress, which can
induce chronically elevated cortisol, cytokine, and chemokine lev-
els. Although modern living can be mentally rigorous at times,
the requirement of physical labor for survival has been nearly
eliminated in certain cultures, thereby leading to dramatic reduc-
tions in physical energy expenditures. This trend is coupled with
unprecedented increases in hyperconcentrated caloric intake from
unnaturally dense foods, such as high-fructose corn syrup, that
lessen perceptions of satiety after a meal. In addition to being
more susceptible to weight gain, a consistently static body is less
likely to efficiently circulate oxygen and nutrients as well as fil-
ter lymph contents, further emphasizing how modern living has
escalated homeostatic imbalance.

While calorically excessive, the westernized diet lacks essential
nutrients including vitamins, minerals, and mediators of oxygena-
tion, thereby promoting acidification, hypoxiation, and dehydra-
tion of the body. Given that various tissues and fluids must exist
within a narrow pH range in order to function properly, pH
imbalances can contribute to altered homeostasis. Cancer cells and
tumor microenvironments are typically within a relatively acidic
range due to their preference for anaerobic, lactic acid-generating
metabolism. It should be noted that chemotherapy, phototherapy,
and even hyperthermia induce tumor acidification, and the spread
of melanoma in a mice study was shown to be fostered by an acidic
microenvironment (Rofstad et al., 2006). Related to corrupted pH,
membrane potential may be altered in certain cells. It has been
demonstrated that bioelectrical signaling serves as a regulator of
cellular proliferation and differentiation, and it is possible that
altered membrane potential can influence ion flux in a way that
would allow for preferential uptake or exclusion of compounds by
cancer cells (Sundelacruz et al.,2009). Given the amount of sodium
present in processed food, it is clear why molecular activities linked
to sodium channels are often dysregulated. Furthermore, the esti-
mated fourfold increase in refined sugar intake in the last century
has merely provided fuel for glycolysis-addicted cancer cells. When
the body is full of solutes and deficient in its intended solvent, cel-
lular osmotic balance is threatened by dehydration. In addition to
a lack of water, optimal flushing of waste products from the body
has been limited by the switch from whole to processed grains,
which eliminated a major source of the fibrous content once con-
sumed by humans. Gut microflora composition is also altered in
modern times, as beneficial levels of probiotics intended to aid
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in digestion are depleted by poor diet and excessive antibiotic use.
These evidences of recent alterations in human physiology support
the idea that environmentally induced imbalances set the stage for
cancer and other chronic diseases.

Modern diets contain significantly higher levels of pro-
inflammatory compounds in comparison to the anti-inflammatory
nutrients common in the diets of early peoples (Simopoulos,
2008). Considering that Americans have doubled their consump-
tion of meat and dairy in the last century, a disproportionally large
intake of animal fat compared to plant fats has occurred. Different
lipids have different metabolic functions and the essential fatty
acids (FAs) must be obtained via the diet for biosynthesis of other
key compounds, some of which have opposing effects on inflam-
mation. The ratio of omega-6 to omega-3 unsaturated FA con-
sumption of primitive humans is estimated to have been roughly
1:1, with high amounts of anti-inflammatory molecules such as
EPA and DHA. Today’s omega-6:3 consumption in the average
American is estimated to be almost 17:1 (Simopoulos, 2002). This
indicates a relatively rapid and dramatic increase in the intake of
pro-inflammatory molecules like arachidonic acid, the precursor
of prostaglandins and thromboxanes, coupled with a decrease in
the intake of vital anti-inflammatory FAs such as alpha-linolenic
acid (ALA). Therefore, eicosanoid-controlled mechanisms that
accelerate cardiovascular and inflammatory pathologies such as
colon cancer are upregulated by the westernized diet.

Fatty acid-induced chronic inflammation combined with
DNA methylation is suspected to fuel colon cancer growth as
prostaglandin E2 was shown to silence tumor suppressor genes
and promote intestinal tumor progression (Xia et al., 2012). The
accumulation of excessive body fat from unhealthy sources is
further deleterious as visceral adipose tissue can have a direct
pro-inflammatory effect on surrounding tissues (Lysaght et al.,
2011), and adipose tissue-derived stem cells have been shown
to participate in building the breast tumor microenvironment to
facilitate growth and metastasis (Muehlberg et al., 2009). Elevated
consumption of low-density lipoprotein (LDL) has a direct inflam-
matory effect on LDL receptor-expressing cells, and an altered
distribution of cholesterol and sphingolipids within the plasma
membrane can drastically influence a cell’s response to its envi-
ronment via lipid signaling. Levels of inflammatory enzymes such
as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase
(iNOS) are also likely to be upregulated in individuals adhering to
the western diet, as well as levels of inflammatory cytokines such
as IL-6 and TNF-α. Altered cell signaling involving the EGFR-
associated Ras/Raf and PI3K/Akt pathways can be induced via
inflammation, and constitutive activation of these cascades is
common in GI cancers (Risio, 2011). The introduction and perpet-
uation of these complex arrays of cellular imbalances can manifest
into chronic disease when left unchecked. This effect can occur
within a short span of time, as immigrants who adopt a western
lifestyle soon acquire increased colorectal cancer risk.

Factors that interfere with homeostasis by creating physiolog-
ical instability are most apparent at the cellular and subcellular
level, but are likely influential on the most basic, quantum inter-
actions that drive the atomic and molecular bonding crucial for
cellular functions. Chronic inflammation can lead to nucleic acid
damage, lipid peroxidation, protein misfolding and accumulation,

prolonged heat shock induction, excessive growth factor secre-
tion, and unnecessary immune activation or subversion. The later
effects may be mediated by perturbations in regulatory T-cell
numbers and functions, which are now suspected to play an impor-
tant role in the developing epidemic of allergic, autoimmune, and
inflammatory conditions (Fazekas de St Groth, 2012). Unresolved
inflammation has numerous tumor-promoting effects (Manto-
vani et al., 2008), and is an underlying factor behind the fatigue and
debilitating pain plaguing millions of otherwise healthy people.
However, inflammation is a vital component of normal pathways
that initiate immune responses, wound healing, and apoptosis in
severely damaged cells. Therefore, acute inflammatory responses,
much like acute stress, are beneficial for an organism’s survival
by inducing a swift and potent response to cellular changes, but
chronic conditions can lead to a perpetual state of perceived
wound healing. Inflammation is thoroughly involved in all steps
of carcinogenesis including initiation via genetic and epigenetic
gene expression changes, progression promoted by aberrant cell
signaling, and creation of the local and distant tumor microenvi-
ronments (Coussens and Werb, 2002). It is now thought that these
processes are occurring within a specific cell type, known as a can-
cer initiating cell or cancer stem cell (CSC). This unique cellular
niche retains key stem-like properties allowing it to be responsible
for driving tumorigenesis in the same way that it would otherwise
drive wound healing and tissue regeneration. Given that embry-
onic and adult stem cells appear to perform a range of roles, from
therapeutic to pathological, it can be argued that local and systemic
environments determine these roles by checking and balancing or
dysregulating their behavior.

In an attempt to repair prolonged cellular damage, proliferative
fibroblasts promote local fibrosis and scarring, and angiogene-
sis occurs to increase delivery of wound healing mediators. All
the while, circulating cytokines and chemokines may sustain a
chronic inflammatory state by inducing excessive neutrophilic
actions that cause further free radical damage. Tissue-derived
and mesenchymal stem cells are intimately involved in the repair
and regeneration of inflamed tissue. Homeostasis of the intestinal
epithelium, the majority of which gets replaced weekly, is main-
tained by stem cells residing within crypt bases that respond to
cues from the microenvironment such as morphogenetic signaling
through Wnt, Notch, Hedgehog, and BMP (Medema and Ver-
meulen, 2011). Three stem cell compartments exist within the
human colon: crypt epithelial stem cells, subepithelial stem cells
which include pericryptic myofibroblasts, and immigrating mes-
enchymal stem cells. These specialized stem cell niches interact to
orchestrate epithelial cell differentiation, renewal of the colonic
mucosa, and chronic inflammatory responses underlying colorec-
tal oncogenesis (Sipos et al., 2012). One major genetic instability
often linked to the initiation of colon cancer is chromosome 1p
deletion, which otherwise encodes the glutathione-S-transferases
and other enzymes involved in detoxification, as well as numer-
ous tumor suppressors, DNA repair, and checkpoint genes vital
for preventing malignancy (Payne et al., 2011). Studies in human
GI cancers and rodent models indicate that loss of heterozygosity
of the Adenomatous polyposis coli (APC) gene is associated with
early tumorigenesis. It was found that silencing of this tumor sup-
pressor could occur in the absence of mutation or a gain or loss of
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genetic material, providing evidence that epigenetic regulation is
involved (Amos-Landgraf et al., 2012).

As we will discuss, cellular alterations arising from complex
epigenetic changes are an important level of gene expression reg-
ulation beyond DNA mutation and are highly pertinent to cancer
causation and its prevention. Silencing of critical tumor suppres-
sor functions along with gains in oncogenic expression can be
transformative in a long-lived stem cell that has already acquired
various mutagenetic and epigenetic changes, or could lead to plas-
ticity within a terminally differentiated cell causing it to reacquire
stem-like properties and transform (Rapp et al., 2008). Extrinsic or
innately driven accumulation of chromosomal instabilities within
a stem cell can allow for unchecked clonal expansion of this cell and
its progenitors into CSCs. These transformed stem-like cells then
build and recruit a protective niche of heterogeneous tumor tissue
and stroma where they can remain highly functional, relatively
quiescent, treatment-resistant, and poised to migrate if surgically
disturbed. CSCs can also facilitate the epithelial-to-mesenchymal
transition (EMT) and migrate along the SDF-1/CXCR4 chemo-
taxis pathway, which is implicated in angiogenesis and metastasis
(Liekens et al., 2010).

With these considerations, it is clear that correlations exist
between modernization, acculturation, and increased risk for
chronic diseases such as colorectal cancer, which is now the third
leading cause of all deaths in industrialized countries (Barone
et al., 2011). According to GLOBOCAN worldwide data, the
three cultures with the lowest cancer rates (East Mediterranean,
African, and Indian) interestingly consume the most potently anti-
inflammatory, plant-based diets in the world, while maintaining
adherence to their traditional ways of life. Currently, one in three
Americans contracts cancer and one in four American deaths is
cancer related (National Cancer Institute, 2005). The steady rise
in life expectancy previously observed within the US population
is now forecasted to begin declining (Olshansky et al., 2005), sug-
gesting that for the first time in centuries, American children will
not live as long as their parents. Therefore, for the sake of poster-
ity, it is time to acknowledge and address risk factors arising from
our daily habits and living environments in order to reverse rising
global trends in chronic disease. Explicit links between environ-
mental exposures and cancer have already been made in the case
of ionizing radiation and asbestos, and other parallels remain to be
found within the ranks of the 80,000 chemicals currently registered
with the US EPA, the vast majority of which remain untested.

Given that health challenges such as infection, injury, and child-
birth are medically manageable in modern times, the average life
expectancy has increased greatly. Since aging cells are more prone
to oncogenesis, it could be argued that the observed trends in can-
cer rates are due to the simple fact that humans are living long
enough to contract it (Dunn, 2012). Age is a considerable risk fac-
tor, but it does not account for incidences in young and otherwise
“healthy” individuals such as those contributing to the rising rates
of Acute Lymphoblastic Leukemia (ALL) and brain cancer in chil-
dren in recent decades. Considering that certain early cultures did
enjoy a longer lifespan, age would have been a risk factor then as
well, in addition to mutation through inheritance or opportunistic
infection. Cancer in antiquity did exist, as bone malignancies have
now been identified in mummified remains, although at a 0% rate

in samples from children and a 1.2% rate in adult specimens (Zink
et al., 1999). It must be noted that this analysis did not account for
cancer in non-osseous locations, so overall cancer rates in ancient
Egyptians were surely higher, but still only a fraction of the 33%
cancer incidence rate for present-day Americans.

In spite of limited historical records and pathological evidence,
it is generally thought that the occurrence of malignancy was
remarkably low in ancient times compared to modern times, sug-
gesting a role for present-day environmental exposures (David
and Zimmerman, 2010). Also rising are incidences of cancer in
uncommon locations, such as the esophageal-gastric junction and
the salivary gland, with trends currently unaccounted for (Zheng
et al., 1997). It should be acknowledged that the number of can-
cer related deaths in the US is on the decline due to significant
advances in oncology. However, in spite of our medically progres-
sive society, cancers induced by poor diet and lack of exercise are
still causing one third of all preventable deaths, with another pro-
portion attributable to tobacco and alcohol use (American Cancer
Society, 2012). A big-picture analysis reveals that homeostasis has
largely been redefined by the abrupt changes in daily habits such as
low phytochemical intake, electromagnetic field (EMF) exposure,
and toxin accumulation largely absent from human existence until
recent times. These factors now constitute the unintended health
and environmental legacy of westernization, with health impacts
arising on a global scale that may have serious implications for
adaptation in the modern world.

LOW-LEVEL ENVIRONMENTAL EXPOSURES
According to a recent report from the President’s Cancer Panel,
the vast majority of cancers arise from environmental factors,
directing attention to the fact that toxins play a significant, yet
unappreciated role in carcinogenesis and the lives of Americans
(National Cancer Institute: President’s Cancer Panel, 2009). There
are many types of common environmental and physiological con-
taminants including heavy metals, radioactive isotopes, industrial
solvents, agricultural chemicals, petroleum byproducts, and plastic
components, some of which are classified as endocrine disrupting
compounds (EDCs). The endocrine system is comprised of a net-
work of vital chemical messengers (hormones) and cellular targets
that together orchestrate homeostasis in liaison with the nervous
system. Many environmental EDCs such as BPA, diethyl hexyl
phthalate (DEHP), and the parabens act as xenoestrogens. Thus,
these compounds are capable of exerting potent hormonal disrup-
tion via the estrogen receptors (ERs), which are fairly promiscuous
in ligand binding, and mediate non-genomic and genomic signal-
ing via presence in multiple cellular locations. The mechanisms
allowing EDCs to influence estrogenic signaling arise from direct
ER interactions, as well as indirectly through metabolic enzymes
involved in estrogen synthesis, such as aromatase (ARO), and tran-
scription factors like the aryl hydrocarbon receptor (AhR; Shanle
and Xu, 2011).

Endocrine disrupting compounds may also exert their effects
by acting as anti-androgens or interfering with the hypothalamic-
pituitary-adrenal axis and/or thyroid gland functioning, the later
shown to be the case for triclosan, the active ingredient in most
antibacterial soaps (Dann and Hontela, 2011). Xenohormones
can induce changes in estrogen- and androgen-responsive tissues

Frontiers in Oncology | Gastrointestinal Cancers June 2012 | Volume 2 | Article 57 | 4

http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Gastrointestinal_Cancers
http://www.frontiersin.org/Gastrointestinal_Cancers/archive


Sokolosky and Wargovich Homeostatic imbalance and colon cancer

including the developing breasts, ovaries, prostate, and testis; it is
noteworthy that prostate and breast cancer are predicted to be the
most common non-skin cancers diagnosed in 2012 according to
the NCI, having now advanced past lung cancer. The increase in
breast cancer incidence is not restricted to women, as cases in men
are becoming more frequent. An alarming trend in early matu-
ration of young females is also occurring. A recent study found
the proportion of girls with breast development at age eight to be
higher than reports from 10- to 30-years ago; 18% of white, 43%
of black, and 31% of Hispanic girls evaluated had undergone the
onset of puberty by 8 years old (Biro et al., 2010). Therefore, when
present in utero and during early reproductive development, low
levels of EDCs may contribute to or counteract endogenous hor-
mone production and xenoestrogen exposure is likely capable of
promoting feminine phenotypes.

Xenoestrogens are present in an overabundance of products
that American consumers use frequently. BPA is found in poly-
carbonate plastics, metal can linings, dental sealants, epoxy resins,
and register receipts. This chemical appears to be strongly linked
to premature puberty in females, the induction of male infertility,
and spontaneous miscarriage due to its hormonal, mutagenic, and
genotoxic activities (Tiwari et al., 2012). DEHP is one of the many
plasticizers used to soften polyvinyl chloride (PVC) during manu-
facturing and may constitute a large percentage of a final product’s
weight, from which it actively leaches out upon hydrolysis, heat,
and/or pressure. PVC plastic and phthalates are used in a wide
array of products making them nearly ubiquitous in our lives in
the form of plumbing pipes, electrical cords, food packaging, vinyl
floors, faux leather handbags, cosmetics, infant chew rings, as well
as medical catheters, blood bags, and tubes. Given the prevalence
of plastic in healthcare, indirect accumulation of EDCs within the
body can be a side-effect of hospitalization, and detoxification of
medical settings should become a priority of administrators, as
medical care should not contribute to the causes of disease (Ruz-
ickova et al., 2004). Accountability within product manufacturing
is highly urged, as xenoestrogens like the parabens should not be
included in infant shampoo formulations, and PVC, which may
also contain stabilizers such as lead and cadmium, should not
be present in children’s toys. The common household and food
service industry practices of freezing, microwaving, and storing
food in plastic can serve to accelerate leaching of harmful com-
ponents. Furthermore, burning or disposing of plastic waste in
landfills directly releases toxins into the air, soil, and groundwater.
Plastics are petroleum byproduct-based, thus contaminants linked
to petroleum acquisition and separation also find their way into
cheap consumer products, the demand of which further stimulates
the toxic effects of the oil industry.

Given that expression of ERs occurs in numerous cell types,
with an increase in estrogen-responsive genes often found in col-
orectal cancers, the effects of these compounds in the GI tract
are under investigation. DEHP was shown to stimulate expres-
sion of the multi-drug resistance transporter (MDR1) gene in
colon cancer cells by binding to the steroid and xenobiotic recep-
tor (SXR; Takeshita et al., 2006). Animal studies exploring the
effects of BPA found it to be present in the small intestine almost
immediately following oral ingestion, with evidence that it was

reabsorbed into the colon (Sakamoto et al., 2002). Perinatal expo-
sure of BPA at human reference doses was shown to alter intestinal
barrier dynamics, influence GI pain reflexes, and induce a potent
inflammatory response in adult female offspring (Braniste et al.,
2010). The effects of BPA and other xenoestrogens have been more
extensively investigated in breast tissue, in which cellular activity is
tightly regulated by the presence of ERs, so the relevancy of these
studies may extend to ER expression in colon cancer. Whereas the
growth-promoting ERα isoform tends to be upregulated in hor-
monally responsive breast cancers, the ERβ isoform, which likely
serves a tumor suppressor role, is downregulated via a variety of
mechanisms (Fox et al., 2008). It is possible that xenoestrogen
exposure early in development primes breast tissue for chemically
induced cancer not only in females, but also in males, and may set
determinants in utero for other chronic inflammatory diseases.

Pre-pubertal exposure of BPA in rodent mammary tissue was
shown to upregulate expression of steroid receptor coactivators
(SRCs), ERα, EGFR, and phospho-IGF-1R, leading to activation
of downstream kinases including ERK and Akt (Lamartiniere et al.,
2011). Xenoestrogenic compounds at humanly bioactive doses
have been shown to exert pro-tumorigenic epigenetic changes
in breast epithelial cells through repression of miRNA-9-3 (Hsu
et al., 2009), increased expression of the histone methyltrans-
ferase EZH2 upon in utero exposure (Doherty et al., 2010) and
silencing of the LAMP3 gene (Weng et al., 2010). The prolifer-
ation of many cell types, including adipocytes, is accelerated by
certain xenoestrogens which have been described as “obesogenic”
because they promote obesity via numerous mechanisms includ-
ing the reduction of basal metabolic levels and increased appetite
stimulation (Grun, 2010). BPA and other EDCs have been linked
to aberrant genetic programming during fetal development that
likely increases susceptibility for adult obesity, arguing that mod-
ern trends in unusually large infant and adolescent body sizes may
also be partly attributable to early EDC exposure (Vom Saal et al.,
2012). Attention should be given to the fact that BPA levels are
detectable in over 90% of individuals tested (Lamartiniere et al.,
2011), along with a slew of other EDCs such as the parabens, which
were found to be present in 99% of breast tissue samples in a study
of mastectomy patients (Barr et al., 2012).

Aside from a direct role in carcinogenesis, EDCs are capable
of influencing the seat of homeostatic control, the nervous sys-
tem. Exposure to these compounds carries possible repercussions
for sex differences in the developing brain through abnormal hor-
monal influences such as altered estrogen to androgen ratios and
thyroid levels. In one human study, reduced masculine play was
observed in a group of school-aged boys with higher levels of
certain phthalates present in their systems in comparison to boys
with low levels of these compounds (Swan et al., 2010). Animal
studies have revealed that gestational exposure to BPA can alter
social behavior in juvenile and adult mice, with higher mRNA lev-
els of the glutamate transporter Slc1a1 in the brains of females. To
support the role of BPA in epigenetic regulation, this same study
found altered expression of the DNA methyltransferase (DNMT)
genes Dnmt1 and Dnmt3a in the brains of mice exposed in utero
(Wolstenholme et al., 2011). Cholinergic signaling in the brain was
found to be altered in mice after a single dose of BPA at 10 days
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old, which manifested in changes in spontaneous behavior, low-
ered adaptation to new environments, hyperactivity, and reduced
nicotine sensitivity in adulthood (Viberg et al., 2011). In addition,
BPA demonstrated the ability to enhance spinogenesis in adult
hippocampal neurons, with rapid effects observed for nanomo-
lar doses, indicating large responses from small amounts (Tanabe
et al., 2012). Considering the rapid rise in childhood and adult
ADHD, coupled with the alarming 26% climb in autism-spectrum
disorders within just a 2-year span (2006–2008; CDC, 2012), it is
clear that modern environmental factors are affecting cognition in
a significant manner.

Endocrine disrupting compounds-induced hormonal imbal-
ances can also have drastic effects on reproductive organs. Studies
by one group in male rats exposed neonatally to BPA revealed
reduced spermatogenesis through downregulation of cell junc-
tional proteins (Salian et al., 2009b), in addition to reduced fertility
in subsequent generations, demonstrating vertical transmission of
exposure-related effects (Salian et al., 2009a). Male sexual differ-
entiation disorders, such as hypospadias, have increased in recent
decades and it is likely that the accompanying increases in xenoe-
strogen and/or anti-androgen exposures are a factor (Sultan et al.,
2001). Altered expression of ERα and ERβ in the testis of adult
rats subjected in utero to BPA was shown to correlate with DNA
hypermethylation of both promoters, accompanied by upregula-
tion of Dnmt3a and Dnmt3b expression (Doshi et al., 2011). This
suggests that EDCs can produce epigenetic feedback loops to auto-
regulate their target cellular receptors. It is sobering to consider the
mixtures of these epigenetically active chemicals that likely circu-
late now within the majority of people in developed regions. A
recent analysis of umbilical cord blood content from ten minority
newborn babies indicated detectable levels of 232 environmental
contaminants, including BPA (90% of samples tested), DEHP, fire
retardants, polycyclic musks, rocket fuel, and banned pesticides;
all present at the time of birth. To date, a total of 414 chemicals
have been detected in 186 people during the course of testing and
constitute what the Environmental Working Group (EWG) has
termed, “the human toxome.” The CDC has conducted its own
nationwide biomonitoring program over the last decade and was
reported to have detected 203 chemicals distributed among the
thousands of individuals tested (Environmental Working Group,
2009, Pollution in People Report).

Other persistent organic pollutants (POPs), such as dioxins,
polychlorinated biphenyls (PCBs), organochlorine pesticides like
DDT (banned in the US in 1972), and polybrominated diphenyl
ethers (PBDEs) are exhibiting a “boomerang” effect within the
food chain. Over the course of decades, it is possible for a com-
pound to travel thousands of miles and transfer from smaller
to larger predators, until finding its way onto a plate in the
form of meat, dairy, or seafood like tuna and mackerel. Upon
ingestion, these long-lived, lipophilic molecules integrate into
adipose tissue. We absorb the majority of toxins through food,
with common culprits including processed meats containing car-
cinogenic preservatives, items stored in BPA-lined cans, and soft
drinks and deserts containing high levels of artificial ingredients.
Even fresh produce can carry large toxin loads from conventional
chemical-based farming practices, with tests showing apples car-
ried combinations of 57 chemicals and a single celery sample

contained 14 pesticide residues (Environmental Working Group,
2011, Pesticides in Produce Report from 2000 to 2009 USDA and
FDA data).

Common herbicides and pesticides can induce potent cellular
changes, and atrazine was shown to stimulate growth in normal
colonic epithelial cells, as well as colon cancer cells, with the highest
proliferative effects notably observed for lower doses (Greenman
et al., 1997). Atrazine is the most commonly used herbicide in the
US with 75% of all cornfields treated each year, making it a preva-
lent contaminant of ground and drinking water. Epidemiological
studies revealed that atrazine exposure in women living in farming
communities was linked to increased menstrual cycle irregulari-
ties and altered reproductive hormone levels; notably, this effect
was observed at levels below the US EPA’s maximum contaminant
level (Cragin et al., 2011). In addition, gender influences have been
observed in wildlife exposed to atrazine, apparent by partial or
complete feminization of male fish, amphibians, and reptiles; the
effects of which are statistically significant and consistent across
vertebrate classes (Hayes et al., 2011). Atrazine has been shown
to exert hormonal changes at low, ecologically relevant doses in
adult male African clawed frogs through demasculinization, lead-
ing to the ability to produce viable eggs. Therefore, not only do
EDCs have implications for human health, they also threaten lower
order species, likely contributing to global declines in amphibian
populations (Hayes et al., 2010).

The modern methods by which food is prepared and served
have also introduced toxic chemicals into the body. Perfluori-
nated compounds (PFCs), including perfluorooctanoate (PFOA)
and perfluorooctane sulfonate (PFOS), are components of non-
stick cooking surfaces as well as stain and water-repellant food
packaging and fabric coatings. PFCs are known peroxisome pro-
liferators and hepatocarcinogens, and have been shown to alter
membrane potential and intracellular pH in colon cancer cells,
based on the hydrophobicity of the compound (Kleszczynski and
Skladanowski, 2009). In a study of PFOA effects in the F344 rat
liver, this chemical was shown to inhibit gap-junctional inter-
cellular communication which serves as an epigenetic marker
of tumorigenesis, in an ERK and PC-PLC-dependent manner
(Upham et al., 2009). In human liver cells, PFOA upregulated
transcription of the de novo DNA methylator, Dnmt3a, leading
to hypermethylation of the glutathione-S-transferase Pi (GSTP)
promoter, which could serve to limit the tumor-suppressive role
of GST during detoxification (Tian et al., 2012). Alteration of
GSTP methylation was also observed in rat livers following prena-
tal exposure to PFOS (Wan et al., 2010), further emphasizing the
epigenetic capabilities of common chemicals.

It has also been suggested that PFCs suppress cytokine secre-
tion by immune cells via alteration of NF-κB activity, and PFOA
was shown to be the least active of all PFCs assessed (Corsini et al.,
2012). A prospective study of a birth cohort from a Faroe Island
hospital revealed that high concentrations of PFCs in maternal
pregnancy serum and child serum were associated with severely
reduced levels of diphtheria and tetanus antibodies in vaccinated
children at the ages of five and seven. These results could have
implications for the development of humoral immunity and effec-
tiveness of childhood vaccines (Grandjean et al., 2012). BPA expo-
sure is also implicated in aberrant immunity, as exposed B1 cells
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were shown to upregulate autoantibody production in vitro and
in vivo, with upregulated ER expression in B1 cells from aging mice
that had developed lupus (Yurino et al., 2004). Like BPA, neonatal
exposure to PFOS and PFOA has been shown to induce neurobe-
havioral issues in mice via cholinergic signaling, with symptoms
worsening with age (Johansson et al., 2008), and this effect may
have implications for this pathway in inflammation and cancer.
Cholinergic pathways are also involved in the neurotoxic mecha-
nism of the commonly used insect repellant, DEET, which has also
been shown inhibit cholinesterases, leading to acetylcholine excess
within synapses (Corbel et al., 2009).

Compounds consisting of highly electronegative atoms, such
as fluorine, are adept at stealing electrons from cellular struc-
tures and may participate in forming reactive species such as the
hypochlorous radical in the case of chlorine. While they do afford
convenience and functionality, these products have long half-lives
within the environment and body, making them damaging not
only the consumer, but to the workers manufacturing them and
residents of the surrounding towns. In fact, one epidemiologi-
cal study with large sample sizes found that people living near a
PFC-producing plant in West Virginia had a sevenfold increase in
PFOA blood levels as compared to the US average. Children living
in this community were exposed to the chemical likely in utero
or via drinking water and breast milk, and had 44 and 42% more
PFOA and PFOS, respectively, in their systems than their mothers.
These results demonstrate the enhanced vulnerability of the young
to toxin accumulation, and suggest that markers of early exposure
events can persist for decades (Mondal et al., 2012). The protective
blood-brain barrier is not present in utero and the placenta is not
a superb shield against a mother’s circulating metabolome, there-
fore the rapidly developing fetus is highly vulnerable to chemical
exposure, of which can lead to irreversible neurological and organ
insult (Grandjean and Heindel, 2008). Given that the body has
not evolved to degrade and clear this type of molecule, exposure
to chemicals such as PFCs is suspected to lead to dysfunction of
the kidneys and liver, which are vital for maintaining homeostasis.

These findings argue that humans in certain societies undergo
a lifelong bioaccumulation of toxins from conception, through
major developmental stages and into adulthood. There is a grow-
ing body of evidence for fetal origins of adult disease, and the data
presented here implies that epigenetic programming within stem
cells during key prenatal and neonatal stages is influenced greatly
by environmental toxin exposure. A growing child experiences
a crucial phase of developmental plasticity in which epigenetic
marks are made in response to dynamic environmental changes
that will ultimately manifest during transition phases later in life
(Hochberg et al., 2011). Animal studies have emphasized the influ-
ence of epigenetics on phenotype; for example, perinatal exposure
of yellow agouti mice to BPA at humanly relevant doses was found
to induce global gene methylation changes capable of altering coat
color distribution in the offspring (Anderson et al., 2012). Direct
correlations have been made between urinary levels of BPA in
humans and the development of avoidable medical disorders and
morbidity (Lang et al., 2008). An a large study of a representative
sample of American adolescents and adults, a significant rela-
tionship was found between urinary phthalate and BPA metabo-
lite concentrations and altered thyroid levels, demonstrating that

adverse effects due to EDCs are already measurable in the US
population (Meeker and Ferguson, 2011).

Therefore, women with child-bearing abilities exert dramatic
influences on the health, wellbeing, and reproductive capabilities
of future generations on levels previously unrecognized. By cross-
ing the placenta during pregnancy and into breast milk during
lactation, these compounds are contaminating what should be the
purest of physiological environments. Not meant to be taken as
hyperbole, isolated and moderate contact with these compounds
is unlikely to be a cause for concern, but daily low-dose expo-
sures may carry subtle, yet severe implications in the form of
hermetic responses. Given that a range of exposures can occur
for one individual, including heavy metals like lead and mercury,
common carcinogens such as formaldehyde and benzene, electro-
magnetic radiation from wireless communications, and pharma-
ceutical drugs (which can be present in drinking water), the human
body is facing an unprecedented level of adverse and potentially
synergistic effects. If the environment we live in is admittedly pol-
luted with changes already apparent in marine life and lower order
mammals, what natural defenses exist within our cells to ensure
optimum functioning in this time of modern genetic pressure?
Prevention through primitive plant and human adaptations may
be the intended route for counteracting and reversing the imbal-
ances we have postulated to lead to chronic disease. Presented
in Table 1 is an overview of common endogenous compounds of
both synthetic and natural origin theorized to play a role in human
homeostasis, or the disruption thereof.

PHYTOCHEMICAL DEPLETION
The designation of “cancer” was first used by Hippocrates in refer-
ence to the crab-like appearance of certain tumors. Known as the
father of Western medicine, he also coined the phrase, “let food
be thy medicine, and medicine be thy food,” demonstrating his
respect for the relationship of diet to human health. As opposed to
the chemical cocktails that co-emerged with modernization and
now exist within humans, it is equally relevant to consider the com-
pounds now physiologically absent that were once components of
human diets. Plant-eating organisms have acquired sophisticated
adaptations to use phytochemicals, some of which are shown in
Figure 1, as defense against a wide variety of threats, ranging from
microbial infection to cancer. If plant compounds are protective
and cancer is common in phytochemical-deprived societies, then
in one sense, cancer can be approached as a deficiency disease,
reminiscent of what G. Edward Griffin proposed in his book World
Without Cancer (Griffin, 1974). It is acknowledged that the body
does not operate properly without recognized nutrients such as
Vitamin C, B12, and B6, much less the complex array of obscure
phytonutrients once obtained by humans living in tropical and
temperate regions. Epidemiological data collected from under-
developed regions has drawn links between primitive diets and
comparatively low risk for common cancers, and may explain the
elevated longevity enjoyed in certain geographic locations. It is
also instructive to review published studies on the composition
of paleolithic diets versus that of modern diets; the depletion of
plant-based compounds is striking.

Plants are recognized and proposed to have a wide molecular
basis of preventive mechanisms. Many contain compounds that
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FIGURE 1 | Structural examples of phytochemicals with known or suspected medicinal properties such as antioxidant, antimicrobial,

anti-inflammatory, and anti-cancer activity, likely stemming from protective and defensive roles in their plant sources.

act as direct or indirect antioxidants, participate in detoxification
and elimination of waste, activate regulatory T-cell responses, and
modulate cell signaling to induce apoptosis in damaged cells while
promoting differentiation in others. Ingestion of certain fruits
and vegetables can promote balanced pH levels by alkalinizing
the blood and tissues via their high mineral and chlorophyll con-
tent. Weak acids from citrus juices and plant vinegars can also
buffer pH through conversion to strong bases during metabolism,
as in the case of citric acid and acetic acid. It should be noted
that many fruits contain high sugar content, which could feed
cancer cell metabolism. However, given that cancer cells will pref-
erentially overexpress certain glycolytic enzymes, it is possible to
exploit the Warburg effect to identify new metabolic targets in
malignancy (Resendis-Antonio et al., 2010). Invasive tumors from
human breast and colon tissues have been reported to upregulate
an array of enzymes, including glycosidases, in comparison to nor-
mal cells (Bosmann and Hall, 1974). It is interesting to note that

plants produce glycosidic compounds only broken down in the
presence of certain enzymes, suggesting that they may act on Tro-
jan horse principles. By increasing its uptake of sugar-containing
compounds, a cancer cell can inadvertently bring in attached cyto-
toxic groups such as cyanide (CN). CN-containing glycosides and
nitrilosides exist in thousands of plants including strawberries,
alfalfa sprouts, spinach, pecans, and in particularly high concen-
tration in apricot kernels and other seeds, thus responsible for their
characteristically bitter taste. It should be noted that bitterness is
an important sensory indicator of potently anti-inflammatory, yet
potentially poisonous compounds (in excessive amounts) within
a plant. In medicinal chemistry, there is little distinction between
a drug and poison, and the specific poisoning of cancer cells is also
the basis of chemotherapy.

In one study, six bioactive compounds extracted from peach
seeds, including amygdalin, showed marked antitumor activity,
two of which were as effective as the green tea (GT) polyphenol
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EGCG. More importantly, the most potent compounds contained
a carboxyl group or hydrogen instead of CN, thereby demon-
strating that glycosidic compounds can exist without the threat of
presumed toxicity (Fukuda et al., 2003). The reported historical
use of apricot kernel extract for pain reduction and inflammation
was investigated in lipopolysaccharide-exposed mouse microglial
cells, and results revealed an anti-inflammatory effect likely medi-
ated through suppression of COX-2 and iNOS expression (Chang
et al., 2005). Amygdalin also induced apoptosis in DU145 and
LNCaP prostate cancer cells through caspase-3 activation, involv-
ing the downregulation of Bcl-2 and upregulation of Bax (Chang
et al., 2006b). Another study revealed that amygdalin treatment
lead to decreased expression of exonuclease-I and topoisomerase-
I in SNU-C4 colon cancer cells, demonstrating that this compound
can induce cell cycle arrest in malignant cells (Park et al., 2005).
Amygdalin and other glycosidic compounds were abundant in the
diets of early humans, and are commonly eaten by animals in the
wild; the dietary lack thereof may contribute to increased cancer
rates observed not only in humans, but also domesticated animals.

Another recent discovery has suggested that plant microRNAs
(miRNAs) can play a protective cellular role by participating in
a unique form of interspecies signal transduction. Secreted vesi-
cles containing exogenous miRNAs can accumulate to measurable
levels in the plasma of humans upon oral ingestion of rice. It
has been shown that these intact RNAs are absorbed through
the GI tract into the blood stream where they specifically bind
to mammalian receptors, such as the LDL receptor adaptor pro-
tein 1 (LDLRAP1; Zhang et al., 2012b). There is also evidence that
peptides from terrestrial and marine plant are antineoplastic, anti-
fungal, antibacterial, antiplatelet, and antimalarial, along with the
benefits of displaying little antigenicity, low-molecular weight, and
easy absorption (Tan and Zhou, 2006). Rare cyclic peptide con-
formations exist within plants that offer greatly enhanced stability
and bioavailability over the linear peptides found in mammals.
Cyclopentapeptides obtained from the root of the Aster tataricus
plant were shown to have in vivo antitumor effects, and synthe-
sized cyclic astins were able to induce caspase-mediated apoptosis
in a human papillary thyroid carcinoma cell line (Cozzolino et al.,
2005). How this and other anti-cancer mechanisms serve a defen-
sive role in plants is up for debate, and whether they originated in
an extremely early common ancestor or were the result of extensive
human and plant adaptation is also not clear.

The plant likely produces these secondary metabolites in place
of an adaptive immune response to promote its own defense
against DNA damage and unwanted foreign growth. This may
be why extracts of certain plants such as neem (Azadirachta
indica), tea tree (Melaleuca alternifolia), and rosemary (Rosmar-
inus officinalis) are able to exhibit such broad spectrum inhibi-
tion of microorganisms and high degrees of predator deterrence
via adverse sensory and metabolic reactions. Volatile plant com-
pounds may also defend against predation through interference
with insect and mammalian reproductive efficiency. Neem extract
was shown to be larvicidal against mosquitoes (Dua et al., 2009),
found to inhibit early stages of rodent embryogenesis and implan-
tation (Mukherjee et al., 1999), and has been historically used as
a human contraceptive in India. These proposed repressive effects
on embryogenesis could also influence the mechanisms allowing

for trophoblastic-like growth of invading tumors and CSCs. Aside
from these implications, neem extract has been demonstrated to be
gastroprotective by limiting hyperacidity and ulcer development
in vivo (Maity et al., 2009), shown to be potently anti-mutagenic
in chemically exposed fish (Farah et al., 2006), and acted as an
oral chemopreventive agent by stimulating phase II detoxifying
enzymes in a model of hamster buccal pouch carcinogenesis (Sub-
apriya et al., 2005). These preliminary studies demonstrate the
diverse medicinal mechanisms remaining to be characterized for
the plant known in ancient times as Sarva Roga Nivarini, or “curer
of all ailments.”

The optimum acquisition of secondary metabolites from plants
depends upon growth conditions, similar to the way that human
phenotype is largely dependent upon environment. Phytochemi-
cal levels tend to be higher when harvest occurs during the early
morning hours surrounding sunrise or when an impending threat
has been detected, as in the case of increased quercetin and diallyl
sulfide levels following the crushing of a garlic bulb. The region
of the plant from which the highest levels of nutrients can be
extracted is also variable. Typically, the colorful outer peels of fruits
carry significant levels of protective and defensive compounds for
counteracting UV light and pathogens. High concentrations of
beneficial compounds are also found in seeds, kernels, and sprouts
in order to ensure survival of the plant’s genetic material and
developing seedling. Research is currently exploring the effects
of exogenous compounds on plant metabolite production. In one
study, an analysis of dried samples from tomatoes grown in the US
during a 10-year period found that organic tomatoes contained
on average 79% more quercetin and 97% more kaempferol when
compared to conventionally grown samples (Mitchell et al., 2007).
However, an Italian study found that organically grown tomatoes
contained more salicylic acid, but less lycopene and vitamin C,
in addition to higher cadmium and lead when compared to the
conventionally grown group (Rossi et al., 2008). Even different cul-
tivars of grapes raised in controlled agronomic environments were
shown to differ in their flavonol content. When tested on Caco-2
colon cancer cells, each of the three extracts were effective at limit-
ing growth and inducing apoptosis, but evoked different responses
at lower doses, demonstrating that chemopreventive properties
can vary with cultivation (Dinicola et al., 2010). It would be inter-
esting to explore whether or not modern agricultural practices
have induced epigenetic changes within the plant genome beyond
the genetic modifications already intentionally introduced, and
how this affects medicinal properties.

Grape skin and seed contain resveratrol, which has been shown
to have many chemopreventive properties by protecting colon cells
from chemotherapy-induced cytotoxicity (Cheah et al., 2009) and
potentiating colon cancer cell apoptosis (Radhakrishnan et al.,
2011). Resveratrol demonstrated an anti-inflammatory effect in a
model of experimental colitis by rebalancing redox status, down-
regulating adhesion molecules, and limiting immune cell invasion
(Abdallah and Ismael, 2011). This compound was also shown to
mediate anti-inflammatory actions through reduced NF-κB acti-
vation upon LPS treatment of human colon cancer cells (Panaro
et al., 2012). Dietary-feeding of grape seed extract (GSE) in
azoxymethane-treated F344 rats was able to prevent aberrant crypt
foci formation likely via suppression of β-catenin, NF-κB, COX-2,
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and iNOS levels (Velmurugan et al., 2010a). GSE was also shown to
inhibit intestinal polyp formation and growth in conjunction with
increased apoptosis, decreased levels of inflammatory markers,
and increased expression of the cyclin-dependent kinase inhibitor
Cip1/p21in APC (min/+) mice (Velmurugan et al., 2010b).

Displaying selectivity, resveratrol performs an antioxidant role
for normal cells, yet acts as a pro-oxidant for malignant cells;
DNA damage and apoptosis were observed to be enhanced in the
low pH environment established by glycolytically active cancer
cells (Muqbil et al., 2012). The selective induction of oxidative
stress within cancer cells may underlie the proapoptotic actions
of GSE through ERK1/2 phosphorylation and arrest of the cell
cycle via p21 induction (Kaur et al., 2011). The flavonoid pro-
cyanidins found in GSE have been shown to regulate additional
cell signaling and mitogenic pathways important for cancer. In
prostate cancer cells, GSE greatly limited autocrine feedback of
EGF/EGFR/ERK signaling and induced JNK-related apoptosis in
the DU145 androgen-independent line (Tyagi et al., 2003). Proan-
thocyanidins from GSE also induced apoptosis in the Caco-2 colon
cancer cell line, partially mediated through attenuation of PI3K
signaling (Engelbrecht et al., 2007). Our laboratory has investi-
gated the effects of GSE on cell viability of the colon cancer lines
HCT116, HT29, HCT115, and Caco-2, and our results revealed
cytotoxic effects in all four lines, which vary widely in their genetic
profiles (Sokolosky and Wargovich, unpublished data).

Roots, leaves, and tree barks can also contain powerful sub-
stances recognized for their medicinal values in Ayurvedic, Chi-
nese, and traditional South American medicine. GT, the most
widely consumed beverage worldwide after water, has received
recent popularity due to its broad spectrum ability to fight inflam-
mation and decrease the risks for many types of malignancy.
Polyphenols from GT have been shown to possess extremely high
antioxidant capacities given their numerous hydroxyl groups, as
well as the ability to enhance B- and T-cell mediated immu-
nity (notably within the tumor microenvironment). The most
abundant polyphenol from GT, EGCG, has been shown to bind
the metastasis-associated 67-kDa laminin receptor at nanomolar
concentrations, expression of which can sensitize cancer cells to
this compound’s anti-proliferative effects (Tachibana et al., 2004).
EGCG exhibited selective apoptotic and growth limiting proper-
ties in cancer cells through caspase cleavage, inhibition of NF-κB,
and modification of cell cycle protein expression (Butt and Sultan,
2009). In addition to inducing cancer cell apoptosis, EGCG also
induced death in bone-resorbing osteoclasts in an Fe2+ and H2O2

dependent manner, with two of the EGCG hydroxyl groups being
crucial for this biological activity (Nakagawa et al., 2007). Inhibi-
tion of osteoclast function can serve to remodel the hematopoi-
etic stem cell (HSC) niche, thereby inducing differentiation and
reducing HSC numbers in vivo (Lymperi et al., 2011). Therefore,
compounds such as EGCG may be able to induce differentiation
of CSCs, similar to how Vitamin D3 can induce differentiation in
mesenchymal stem cells (Piek et al., 2010) as well as many forms
of cancer (Gocek and Studzinski, 2009). Furthermore, certain GT
catechins, including EGCG, exhibit not only cellular, but species
specificity as reflected by their ability to inhibit mammalian DNA
polymerases in vitro, but not plant or prokaryotic polymerases
(Mizushina et al., 2005).

It has been shown by our laboratory that EGCG can inhibit
COX-2 expression during colon carcinogenesis (Peng et al., 2006a),
and exert anti-proliferative effects during Ras-induced transfor-
mation of intestinal epithelial cells (Peng et al., 2006b). Upstream
events at the plasma membrane which lead to aberrant activation
of Ras and other kinases can be mediated by lipid rafts that act
as signaling hubs. These lipid regions reflect variable composi-
tions between transformed and benign cells as well as apoptotic
and viable cells, which may mediate the targeted effects observed
with EGCG (Patra et al., 2008). By reorganizing lipid rafts of
colon cancer cells, EGCG caused sequestration of EGFRs away
from the cell surface via endosomal vesicles; the process of which
can be chemopreventive by limiting EGF-induced pathway activa-
tion (Adachi et al., 2008). EGCG was also shown to downregulate
expression of enzymes involved in gluconeogenesis in murine
intestinal cells and Caco-2 colon cancer cells, demonstrating that
GT may be able to limit glycolytic activity in premalignant and
malignant tissues (Yasui et al., 2011). In a large, randomized clin-
ical trial investigating the effects of GT extract on the recurrence
of metachronous colorectal adenoma, the patient group that con-
sumed the extract (dosage equivalent to about 10 cups of GT per
day) experienced a 50% reduction in incidence along with smaller
sizes of relapsed tumors; no negative side effects were observed
in the extract-treated patients (Shimizu et al., 2008). EGCG was
also shown to suppress colony formation ability of MCF-7 breast
cancer cells while delaying onset and reducing the size of tumors
in a xenograft model. These effects correlated with potent inhi-
bition of HSP70 and HSP90, thus demonstrating that heat shock
responses are targets of EGCG antitumor mechanisms (Tran et al.,
2010).

Additional findings involving the role of numerous phytonu-
trients in the chemoprevention of colon cancer are available, as the
colon is an attractive model of study given the accumulation and
bioavailability of these compounds in this region after ingestion.
However, it should be noted that conflicting data exists concerning
the combined effects of a phytochemical-rich diet and chemother-
apy or radiotherapy. One study found that EGCG significantly low-
ered the apoptotic abilities of radiotherapy in DU145 prostate can-
cer cells, suggesting that the potent antioxidant properties of one
counteract the free radical generating mechanisms of the other,
either of which would be more beneficial alone (Thomas et al.,
2011). On the other hand, a study of breast cancer patients under-
going radiotherapy found that concurrent EGCG intake led to
lower levels of secreted factors like VEGF and MMP-9 and MMP-2,
suggesting anti-angiogenic and anti-metastatic effects. When sera
obtained from these patients was added to MDA-MB-231 cultures,
anti-proliferative and proapoptotic changes occurred, and EGCG
treatment was able to enhance the apoptotic efficacy of γ-radiation
in these cells, which correlated with reduced Akt and NF-κB activ-
ity (Zhang et al., 2012a). In another human-based study, mucosal
cells from colon cancer patients revealed significant changes in
diagnostically relevant DNA methylation as compared to normal
colonic mucosa, many of which led to altered expression of gly-
colytic hormones and enzymes. This suggests that certain dietary
compounds will be metabolized differently between the groups
of patients, which should be a consideration when selecting ther-
apy, especially metabolically targeted therapy (Silviera et al., 2012).
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Therefore, the dynamic interactions evoked in the presence of var-
ious pro- and anti-inflammatory dietary compounds, plant-based
phytochemicals, and environmental toxins within a cancer patient
could have a profound and clinically relevant influence on their
response to conventional and/or alternative therapy.

REBALANCING THE TIPPED EPIGENETIC SCALE
In light of the complex array of factors underlying chronic dis-
ease in modernized societies, it is likely that epigenetic regulation
of gene expression via exogenously obtained compounds plays a
critical role in the emergence of homeostatic imbalance, as shown
in Figure 2. In addition to focusing on the cellular and organ
level, the entire physiological system must be considered, including
circulating metabolites of environmental toxins and plant com-
pounds, to yield a more comprehensive understanding of a living
organism. The Human Metabolome Database is an updated, anno-
tated library of metabolites found to exist within the human body,
and can serve as a resource for scientists and clinicians (Wishart
et al., 2009). By integrating an individual’s genomic, proteomic,
and metabolomic information, medical science could be more
effectively equipped to approach disease prevention and treat-
ment. The identification of new biomarkers will be vital to further
defining colorectal cancer risk, designing individualized thera-
pies, and planning practical preventive interventions relevant to
the population of focus (Risio, 2011). Panels to assess circulating
inflammatory mediators and xenobiotic compounds in the blood
could represent a new class of measurable markers in personalized
health care.

Tumor progression is a dynamic process in which the commit-
ment to malignancy is not firm, but fluctuates between progres-
sion, stabilization, and regression dependent upon adaptation, or
the lack thereof, to selective stimuli. Precancerous cells exhibit a
range of evolutive speeds, representative of a complex array of
genetic and non-genetic factors, and these speeds can be influ-
enced by environmental switches within the human epigenome
(Risio,2011). According to the maximum genetic diversity hypoth-
esis, evolution from simpler to more complex organisms involves
an elevation in epigenetic complexity that occurs at the expense
of genetic (mutation-driven) diversity among individuals. This
inverse relationship between two forms of gene expression regula-
tion can expand upon classical Darwinian definitions of evolution
to further explain how diverse phenotypes arise within a closely
related population in a relatively short span of time (Huang, 2008).
It is in this way that one identical twin can develop a metastatic
tumor while the other twin, in spite of sharing the same germ line
DNA, can remain cancer-free by virtue of their unique epigenetic
profiles.

It is possible that sporadic and familial cancers without clear
causation are the result of both inherited genes for susceptibil-
ity and inherited epigenetic footprints that run in a particular
lineage. Epigenetic changes passed on to daughter cells are just
as relevant as mutations, especially in organs that undergo high
rates of renewal while simultaneously being exposed to high toxin
levels such as the lungs, breasts, and GI tract. Alarmingly, com-
mon toxins have now been shown to exert inherited effects in
animal models in which an exposure to an EDC in a pregnant
female induces epigenetic modifications that are passed on to

each subsequent generation of males, as evidenced by altered DNA
methylation patterns in the germ line. This transgenerational (TG)
effect occurred in the absence of direct exposure of the offspring
to the causative agent (Anway et al., 2005). Further investigation
into the TG actions of mixed toxins in F0 gestating rats revealed
effects in the F1-F3 generations such as early puberty and sper-
matogenic apoptosis stemming from the original F0 exposure.
Epigenetic markers within differential DNA methylation regions
of sperm cells from unexposed offspring conveyed correlations
with specific ancestral exposures, with 499 genes identified to be
associated with TG effects (Manikkam et al., 2012). Additional elu-
cidation of the in vivo epigenetic mechanisms of common toxins
in normal, precancerous, and malignant cells is strongly encour-
aged. Based on present data, it is important for the scientific and
medical communities to increase the general public’s awareness
of toxins in their every lives, as well as promote practical and
affordable methods of prevention. Given that EDC exposure is
virtually unavoidable in some cases, once bioaccumulation has
occurred, therapies and interventions that accelerate detoxifica-
tion and elimination of persistent toxins from the body would
be clinically relevant and could ameliorate current management
approaches for chronic illness (Genuis, 2011).

By practicing prudent avoidance of toxins and obtaining consis-
tent levels of dietary phytochemicals, we can restore and maintain
physiological balance by limiting negative epigenetic changes and
promoting protective ones. For example, cooking with onions and
garlic can neutralize many of the carcinogens created by high-
heat preparation of food, thereby limiting a preventable exposure.
Thus, to maintain epigenetic balance it is imperative to properly
fortify the body by consuming a diverse diet rich in whole plant
foods, herbs, and spices. GSE was shown to exert potent epige-
netic regulation in androgen-responsive LNCaP cells by inhibiting
histone acetyltransferase (HAT) activity up to 80%, in addition
to significantly decreasing androgen receptor mediated transcrip-
tion (Park et al., 2011). Resveratrol has been shown to directly
counteract the negative effects of toxin exposure by acting as an
antagonist for the AhR, of which dioxin and benzo[a]pyrene are
ligands. Therefore, prophylactic resveratrol could offer a non-toxic
and potent way to limit expression of dioxin-inducible genes like
cytochrome p4501A1 and IL-1β, upon aryl hydrocarbon expo-
sure (Casper et al., 1999). The prevention of BPA-induced toxicity
in Sertoli cells was also achievable through pre-treatment with
ginsenoside compounds from Ginseng, suggesting that the effects
of environmental exposures can be limited if phytochemicals are
present (Wang et al., 2012a).

Remarkably, EGCG is able to hydrogen bond within the active
site of DNA methyltransferase (DNMT), thereby inhibiting its
cancer promoting functions and turning on previously silenced
genes in prostate cancer cells (Fang et al., 2003). EGCG has
also been shown to induce histone deacetylation and promoter
hypomethylation to achieve repression of hTERT, the catalytic
subunit of telomerase, which is overexpressed in 90% of cancers.
This effect induced apoptosis in MCF-7 breast cancer cells, and
EGCG also induced apoptosis in HL60 leukemia cells, although
via a different mechanism (Berletch et al., 2008). hTERT promoter
demethylation by EGCG was also observed in ER+ MCF-7 and ER-
MDA-MB-231 breast cancer cells through inhibition of DNMT
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FIGURE 2 |The dynamic epigenetic interplay of inflammation,

environmental toxins, and phytochemicals theorized to lead to

homeostatic imbalance and chronic disease in modernized

societies; the manifestation and extent of which depends upon

the hypothetical timing of critical gene expression changes in

stem cells during embryogenesis, wound healing, and colon

carcinogenesis (in this scenario), with other outcomes

plausible.
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and HAT activity (Meeran et al., 2011). Another study found
that EGCG epigenetically repressed promoter methylation of the
tumor suppressors p16 and p15, thereby restoring their expression
and inhibiting proliferation of colon cancer cells (Berner et al.,
2010). EGCG can also alter levels of the universal methyl donor,
S-adenosylmethionine, and the methyltransferase inhibitor, S-
adenosylhomocysteine, thereby indirectly influencing epigenetic
regulation (Park et al., 2012). Therefore, phytochemicals offer
chemopreventive mechanisms important for reestablishing tumor
suppressor activity previously silenced during oncogenesis.

It should be noted that exogenous hormone exposure can occur
via ingestion of certain plants, but these non-steroidal natural
compounds appear to behave differently than synthetic EDCs.
Genistein and resveratrol, which are classified as phytoestrogens,
were shown to exert epigenetic regulation of the estrogen receptor
α 1 (ESR1) gene in colon cancer cells, demonstrating that a wide
array of mechanisms can be modulated by bioactive food com-
pounds (Berner et al., 2010). It was also shown that genistein can
inhibit proliferation by downregulating WNT5a promoter methy-
lation in colon cancer cells (Wang and Chen, 2010). It is interesting
to note that genistein and other isoflavones mediate their effects
in humans through selective binding to ERβ as opposed to ERα

(Barone et al., 2011). Whereas the growth-promoting ERα isoform
tends to be upregulated in hormonally responsive cancers, signal-
ing through the ERβ isoform, which may serve a tumor suppressor
role, is often downregulated via a variety of mechanisms.

It was found that genistein promoted anti-proliferative and
proapoptotic effects through ERβ in the large and small intestine
(Schleipen et al., 2011), circumvention of such may be why cancers
specifically upregulate expression of the growth-promoting ERα

isoform. In respect to normal adipocytes, genistein was shown to
inhibit leptin secretion by limiting glucose metabolism (Szkudel-
ski et al., 2005). Genistein, resveratrol, and quercetin were shown
to exhibit enhanced inhibition of adipogenesis and promotion of
apoptosis when used in combination to treat human and murine
adipocytes, effects of which correlated with a decrease in glycerol 3-
phosphate dehydrogenase activity (Park et al., 2008). These results
suggest that dietary intake of various phytoestrogens may carry
implications for appetite control, sugar metabolism, and aberrant
glycolytic activity within cancer cells, with effects being opposite
of those observed for EDCs. However, the full gamut of phytoe-
strogen activity remains to be characterized as studies in breast
cancers have revealed different effects depending upon ER, as well
as HER2 expression. The relative expression levels of ERα and
ERβ within a normal or cancerous cell can greatly influence pro-
liferation, endocrine signaling, and response to various ER ligands
(Chang et al., 2006a), both plant-derived and manmade.

As for synthetic EDCs, BPA, and others bind to ERα and
stimulate signaling, but upon binding to ERβ, fail to trigger the
anti-proliferative activities of this receptor subtype (Bolli et al.,
2010). BPA also may bind to the estrogen-related receptor gamma
(ERRγ) as indicated in neuronal studies (Tanabe et al., 2012),
thereby suggesting numerous cellular targets of EDCs. It should
be noted that in certain situations, ERα signaling may be capa-
ble of preserving the epithelial phenotype and limiting EMT, the
effect of which has been observed in breast cancer cells (Guttilla
et al., 2012), although the loss of hormone-responsiveness would

overcome this possible anti-metastatic effect of excessive ERα stim-
ulation via EDCs. The tissue-selective agonist and antagonistic
effects of xenoestrogens occur based in the relative expression of
ER isoforms, much in the way that hormonal contraceptives and
the selective ER modulator, Tamoxifen, can exhibit tissue-specific
effects in the ovaries and breasts. In general, xenohormones are a
risk factor in colon cancer through imbalanced nuances of ERα

and ERβ expression; a tip in either direction could have cancer
promoting consequences. Therefore, phytoestrogens may be the
natural answer for balancing the effects of artificial xenoestrogens,
as these two types of compounds appear to serve as agonists and/or
antagonists for similar cellular targets, as detailed in Table 1 and
Figure 3. In fact, the estrogenic potency of phytoestrogens may
be greater than environmental estrogens, as genistein was shown
to stimulate respective ER transcriptional activity at much lower
nanomolar concentrations than those required for BPA (Kuiper
et al., 1998). Maternal dietary supplementation with folic acid
(methyl donor) or genistein was able to limit the CpG hypomethy-
lation otherwise induced by BPA exposure, demonstrating that
epigenetic balance can be restored through appropriate nutri-
ent intake (Dolinoy et al., 2007). The full epigenetic regulatory
spectrum of natural compounds is currently being defined and
additional mechanisms involving the gene expression modifying
enzymes, DNMTs, HATs, and histone deacetylases (HDACs) are
likely to be elucidated.

Unparalleled selectivity is reflected in natural products, as
well as extremely low or absent toxicity when compared to
other chemopreventive agents such as the non-steroidal anti-
inflammatory drugs, which can induce bleeding and ulceration.
Whereas inhibitors of COX-1 and COX-2 have been shown to
counteract chronic inflammation and lower cancer risk, they carry
substantial cardiovascular concerns and liver toxicity with pro-
longed use. The apparent influence of fat intake on inflammation
can be exerted beneficially by establishing an ideal FA ratio through
consumption of omega-3 rich foods and restriction of omega-6
sources. In a model of experimentally induced colitis, ALA, an
omega-3 FA, was able to reduce oxidative stress and counter-
act inflammation via suppression of NF-κB and COX-2 activity
(Hassan et al., 2010).

In another colitis study, Krill oil, rich in omega-3 FAs, acted
in an anti-inflammatory manner to decrease oxidative stress and
cytokine secretion in dextran sulfate sodium-treated mice (Grim-
stad et al., 2012). In addition to ideal FA ratios, an approach to
addressing inflammation could be based on intake of flavorful,
sometimes pungent, and often bitter plant compounds in their
native configurations from whole-food sources like turmeric, gin-
ger, cinnamon, broccoli, chili peppers, coffee, tea, dark chocolate,
and fruit seeds. A phytochemically diverse diet creates beneficial
synergistic effects, and certain compounds can facilitate proper
transport and absorption of other nutrients, as in the case of
piperine from black pepper and vitamin C intake with plant-based
meals. In addition to nutrient intake, consumption of probiotics
can establish and maintain beneficial gut microflora that stimu-
late immunity and assist in the elimination of toxins. For example,
it was shown that when fed a diet containing a Bifidobacterium
or Lactobacillus strains, BPA-exposed rats had a reduced BPA
blood concentration over time and 2.4-fold increase in BPA fecal
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FIGURE 3 | Structures of common xenoestrogens capable of influencing estrogenic signaling through agonistic and/or antagonistic mechanisms.

excretion (Oishi et al., 2008). Therefore, dietary alterations can
be powerful tools for counteracting modern environmental expo-
sures by restoring inflammation to a proper range in which chronic
states are suppressed but vital acute responses still efficiently occur.

We can acknowledge the finely tuned adaptations of mam-
malian cells for plant compounds and draw on the order of
sophistication and simplicity only attained in nature. In the lab, we
can explore the development of nutraceuticals with slight chem-
ical modifications that increase their absorption, bioavailability,
and stability in vivo while maintaining natural potency. A novel
prodrug form of EGCG containing peracetate-protected hydroxyl
groups was shown have increased stability and enhanced uptake
within breast cancer cells, where it was able to selectively repress
telomerase expression in an epigenetic manner, as compared to
non-transformed control cells (Meeran et al., 2011). In another
study, acylated catechin derivatives had enhanced anti-cancer and
anti-angiogenic properties compared to FA-conjugated epicate-
chins in HCT116 cells, with stearic acid-modified catechin demon-
strating the highest level of efficacy (Mizushina et al., 2011). By elu-
cidating the structure-activity relationships and computationally

visualizing the molecular interactions of phytochemicals, chemists
can seek to improve their pharmacokinetic/dynamic profiles.
However, a chemically modified and synthetically derived com-
pound may not exhibit the same subtle nuances that it would if
produced in its natural state, so plant-based culture systems for
experimental and large-scale phytochemical production may be
preferable.

It is important to recognize that drug–drug interactions
between bioactive food compounds and pharmaceutical agents
are a concern, as cytochrome-mediated drug metabolism and/or
bioavailability may be altered by phytochemicals in some sce-
narios. In the presence of EGCG, studies have found increased
bioavailability of Tamoxifen (Shin and Choi, 2009), but decreased
bioavailability for the RTK inhibitor Sunitinib (Ge et al., 2011).
Decreased efficacy of the boronic acid-based proteosome inhibitor
Bortezomib has also been linked to EGCG, with direct binding of
the two compounds shown to mediate the interaction (Golden
et al., 2009). Therefore, consumption of GT would be an impor-
tant contraindication during certain therapeutic windows. High
EGCG intake during pregnancy is also contraindicated as recent
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findings link this topoisomerase-inhibiting flavonoid to MLL gene
cleavages and translocations, implicated in infant leukemia (Strick
et al., 2000).

Another limitation of oral phytochemical usage can be absolute
bioavailability, mostly due to oxidation, rapid absorption, and/or
microbial enzymatic cleavage in the GI tract. However, consis-
tent dietary intake is likely sufficient for establishing blood and
tissue concentrations within the low range required for chemopre-
ventive effects. EGCG accumulation within prostatectomy tissue
was achievable with daily GT consumption by prostate cancer
patients, although it should be noted that 50% of the EGCG
present had been methylated to 4′′-MeEGCG, which appears to
reduce its antitumor effects (Wang et al., 2010). It is interesting to
note that when combined with quercetin, which inhibits catechol-
O-methyltransferase and drug efflux pumps, EGCG methylation
was decreased by threefold and uptake increased by fourfold in
lung cancer cells (Wang et al., 2012b). Once again, these findings
support the idea that chemopreventive properties are maximized
when a variety of plant-based foods are consumed. As an alter-
native to maintaining systemic bioavailability from oral dosage,
therapeutic levels may be achieved locally with bioengineered
delivery systems such as implantable scaffolds and hydrogels con-
structed from natural polymers. Non-oral routes of phytochemical
dosage such as inhalation, intravenous, or epidermal application
would also be worth investigating. Modern drug discovery, design,
and delivery have relied heavily on cues from nature, and although
not a panacea, natural products have revealed numerous medici-
nal mechanisms that could positively impact human health, with
many remaining to be investigated. Even without physiological
administration, plants can prevent disease by eliminating airborne
toxins such as benzene and vinyl chloride, the monomer of PVC,
by virtue of photosynthetic and metabolic processes (Doty et al.,
2007).

By virtue of large or small-scale production leading to broad
availability at grocery chains and markets, plant-based nutri-
tion is accessible, relatively affordable, and easily promoted to
society as an important preventive measure against chronic dis-
ease. Although, translating this knowledge to common practice
is growing increasingly difficult in westernized cultures whose
populations opt for nutrient and phytochemical-depleted fast

foods. There is promise however. Researchers can perform dis-
covery science to expose modern roots of disease and further
illuminate our knowledge of prevention through the generation
of additional hypotheses. We know little about the mechanisms
of cellular uptake, transport, and metabolism of many of the
compounds mentioned. In an effort to mimic human preven-
tion and disease scenarios, experimental animal models should be
employed that reflect realistic dietary conditions (high in fat and
low in nutrients and fiber), such as the new Western-style diet
(NWD1), which is known to induce inflammatory responses and
increase colon cancer occurrence in rodents (Bastie et al., 2012).
It should be noted that any exogenous compound, including a
natural compound at a high enough concentration, can act as a
stressor in cell-based models that ultimately do not reflect phys-
iological conditions. This may explain cases of conflicting data
obtained between in vitro and in vivo phytochemical studies, and
experiments must be comprehensively designed to address this
caveat.

In the clinic, practitioners can incorporate holistic-based medi-
cine within their repertoire to treat a patient’s tumor as a symptom
while working with them to adjust the underlying physiologi-
cal imbalances that set the stage for cancers to thrive. Although
phytochemical-based approaches cannot reverse extensive pre-
existing damage or address aggressive, late-stage disease, they
can become a mainstay of prevention for healthy patients and
an important intervention for patients with manageable condi-
tions. Defining new frontiers in oncology involves reevaluating
old paradigms in the context of modern needs, thereby revamping
the historically practical wisdom that established the foundation
of medicine. The nineteenth century French physiologist Claude
Bernard defined the concept of milieu intérieur, or homeostasis,
when he proposed to his colleagues that,“the terrain is everything,
the germ is nothing.” According to legend, he proceeded to drink
a glass of cholera-tainted water to prove his point; if only we could
be so bold in our endeavors to dethrone, as Siddhartha Mukherjee
phrased it, the emperor of all maladies.
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