
Heliyon 9 (2023) e22656

Available online 24 November 2023
2405-8440/© 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Comprehensive analysis of single-cell and bulk RNA-sequencing 
data identifies B cell marker genes signature that predicts 
prognosis and analysis of immune checkpoints expression in head 
and neck squamous cell carcinoma 

Dilinaer Wusiman a, Wenbin Li b, Lei Guo b, Zehao Huang a, Yi Zhang b, 
Xiwei Zhang a, Xiaohui Zhao a, Lin Li b, Zhaohong An a, Zhengjiang Li a,***, 
Jianming Ying b,**, Changming An a,* 

a Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy 
of Medical Sciences and Peking Union Medical College, Beijing, 100021, China 
b Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical 
Sciences and Peking Union Medical College, Beijing, 100021, China   

A R T I C L E  I N F O   

Keywords: 
Head and neck squamous cell carcinoma 
B cell marker genes 
Prognosis 
Immune checkpoints 
Immunohistochemistry 

A B S T R A C T   

Recent studies have shown that B cells and the associated tertiary lymphoid structures (TLS) 
correlate with the response of patients to immune checkpoint inhibitors (ICIs) and predict overall 
survival (OS) in cancer patients. We screened 145 B cell marker genes (BCMG) by a compre-
hensive analysis of single-cell RNA-sequencing (scRNA-seq) data of head and neck squamous cell 
carcinoma (HNSC) from the Gene Expression Omnibus (GEO) database. The BCMG signature 
(BCMGS) was established using The Cancer Genome Atlas (TCGA) dataset of HNSC and verified in 
four independent datasets. The multivariate Cox regression analysis identified the signature as an 
independent prognostic factor. A prognostic nomogram was constructed with independent 
prognostic factors using the TCGA dataset. GO and KEGG analysis revealed the underlying 
signaling pathways related to this signature. Study of immune profiles showed that patients in the 
low-risk group presented discriminative immune-cell infiltrations. Furthermore, the low-risk 
group was featured by higher TCR and BCR diversity, which suggested that low-risk patients 
may be more sensitive to ICIs. Immunohistochemistry was performed, and we found that high 
expression of FTH1 was significantly correlated with poor OS (P = 0.025). The expression of TIM- 
3, LAG-3 and PD-1 was positively correlated and associated with better OS in HNSC. However, 
there was no statistically significant difference between PD-L1, PD-L2, CTLA-4, TIGIT and 
prognosis. The BCMGS was a promising prognostic biomarker in HNSC, which may help to 
interpret the responses to immunotherapy and provide a new perspective for future research on 
the treatment in HNSC.   
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1. Introduction 

Head and neck cancer is the eighth most frequent type of tumor worldwide in the report of GLOBOCAN 2020 [1], and squamous cell 
carcinoma accounts for over 90 % of head and neck cancer [2]. Head and neck squamous cell carcinoma (HNSC) arises from these five 
major anatomical sites: the oral cavity, oropharynx, hypopharynx and nasopharynx, and larynx [3]. In addition to smoking and chronic 
heavy alcohol consumption [4,5], human papillomaviruses (HPV) infection is another independent risk factor of HNSC globally [6], 
especially in oropharyngeal cancers [7]. In recent years, the implementation of immune checkpoint inhibition (ICI) has substantially 
improved therapeutic outcomes for relapsed or metastatic HNSC patients. KEYNOTE-048 study, the landmark phase III clinical trial, 
demonstrated that pembrolizumab plus chemotherapy significantly improved overall survival (OS) compared with cetuximab plus 
chemotherapy in patients with advanced or metastatic HNSC [8]. Although many patients with HNSC benefits from immunotherapy 
significantly, there are still many patients who do not benefit from immunotherapy or even suffer from life-threatening immuno-
toxicities [9]. Thus, it is essential to develop an effective biomarker to predict immunotherapy response. 

Two RNA-seq methods are now commonly considered in tumor immunology research: standard bulk RNA-seq and single-cell RNA- 
seq (scRNA-seq). Bulk RNA-seq is widely used in many fields of tumor, especially in the discovery of cancer biomarkers for disease 
diagnosis and prognosis prediction, etc. Measurements of standard bulk RNA-seq data are summed over populations of different cell 
types in a tissue, thus ignoring the heterogeneity of individual cells. Single-cell RNA-sequencing (scRNA-seq) is a powerful deep 
molecular profiling method for detecting different cell types, states, and functions in cancer [10]. ScRNA-seq allows researchers to 
dissect this heterogeneity and identify specific cell types, including B cells, and their gene expression profiles. By integrating single cell 
and bulk RNA-seq data, we could obtain reliable estimation of cell type specific gene expression profiles [11]. 

Infiltration of the immune system into the tumor microenvironment (TME) has been shown to play a critical role in tumor 

Fig. 1. Overall flowchart of patients’ enrollment and data processing.  
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development and influence clinical outcomes in cancer patients. B cells and T cells play a crucial role in cell-mediated immune re-
sponses and humoral immune responses [12,13]. However, the heterogeneity and dynamics of the TME hinder the precise dissection of 
immune cells within tumors. Recent advances in single-cell RNA sequencing (scRNA-seq) allow systematic TME testing and bring 
important insights into tumor-infiltrating lymphocytes (TILs) [14]. Cancer immunology continues to focus on T cells, but a recent 
series of articles agree that B cell infiltration in human cancers is associated with better T cell responses [15]. And the activated B cells 
in tertiary lymphoid structures (TLS) were associated with improved clinical outcomes and improved immunotherapy response to 
several cancer types [16–19]. Gene expression signatures showed their utility as a biomarker of ICIs, and relative research is currently 
one of the hot spots in immunotherapy biomarker research. Several immune checkpoints (ICs) control T cell-mediated cytotoxic re-
actions, which also encourage people to employ immune checkpoint inhibitors for combination therapy. The suppressor FTH1 is 
independent prognostic factor and independently correlated with M1 and M2 macrophage infiltration in HNSC [20]. FTH1 also plays 
an important role in regulating tumor immunity to solid cancers [21], which made us interested in the specific regulatory mechanism 
of FTH1. 

Up to now, there is still a lack of research using the expression of B cell marker genes to develop molecular biomarkers and 
prognostic signatures for HNSC. In the present study, we firstly screened B cell marker genes of HNSC using single-cell RNA sequencing 
(scRNA-seq) data from the GEO database. Then, RNA sequencing (RNA-seq) data from TCGA and four independent datasets were used 
to develop and validate a prognostic model of B cell marker genes. Furthermore, we used the independent risk factors obtained by 
multivariate Cox regression analysis to construct a nomogram of OS to increase the accuracy of prognosis prediction for HNSC patients. 
We explored the relationship between the signature and some indicators for immunotherapy response, such as the landscape of im-
mune cell infiltration, TCR diversity, and BCR diversity, to explore the potential role of the signature in identifying the response to 
immunotherapy. We revealed the clinicopathological implications of the FTH1, PD-L1, PD-L2, PD-1, TIM-3, LAG-3, CTLA-4, and TIGIT 
using immunohistochemistry (IHC). The overall flowchart was showed in Fig. 1. 

2. Materials and methods 

2.1. Data sources 

The Cancer Genome Atlas (TCGA) level three RNA-seq data of 499 HNSC samples (Illumina HiSeq 2000) with OS information was 
acquired from the Cancer Genomics Browser of the University of California Santa Cruz (UCSC) [22] (http://xena.ucsc.edu/). And we 
also collected the corresponding clinical data and mutation data of these 499 patients from UCSC. Then we converted the FPKM value 
to the TPM value, which was more similar to those results from microarrays and more comparable between samples [23]. Three Gene 
Expression Omnibus (GEO) datasets with clinical annotations and OS information were obtained from the GEO database (https:// 
www.ncbi.nlm.nih.gov/geo/) and one from ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/). The GSE41613 [24], 
GSE42743 [24], GSE65858 [24] and E-MTAB-8588 [25] expression profile respectively contained 97, 74, 270 and 108 HNSC samples. 
We obtained the Single-cell RNA sequencing data from 18 treatment naïve HNSC samples of GSE164690 [26] from the GEO database, 
and the B cell marker genes of HNSC were analyzed from it. The patients from TCGA were defined as the training set, while the four 
datasets from the GEO and ArrayExpress database were used for external validation. In addition, the detailed clinical information of 
TCGA and GEO datasets was collected, including age, sex, grades, TNM stage, and OS status. 

2.2. Identification of B cell marker genes by scRNA-seq analysis 

We implemented the quality control measure to ensure the high quality of cells remained and removed cells with >5000 genes, 
<200 genes, or >10 % mitochondrial counts. We first created a Seurat object for each sample and put it in the scRNA list. Each matrix 
was transformed by the “LogNormalize” method of the “NormalizeData” function, and the “vst” method of the “FindVariableFeatures” 
function was used to identify the top 2000 highly variable genes. Normalized scRNA-seq data of each sample were combined as a 
Seurat object with the “FindVariableFeatures” and “IntegrateData” functions. ScaleData function and RunPCA function were used for 
principal component analysis (PCA) for the 2000 highly variable genes, and the first 15 principal components (PCs) were used for t- 
SNE. Then we divided the cell types, including T cells, B cells, Monocyte, NK cells and epithelial cells. Each cell cluster was annotated 
with the Human Primary Cell Atlas [27]. And linked the marker genes from each cluster to the appropriate cell types. Cell clustering 
analysis was performed using the “FindNeighbors” and “FindClusters” functions (the clustering resolution = 0.5) in the “Seurat” 
package. And FindAllMarkers functions were used to cluster cells and identify the differentially expressed genes (DEGs) of each cluster 
with the cut-off of adjusted p-value <0.01 and logFC.threshold = log2(2). 

2.3. Construction and verification of a prognostic model based on B cell marker genes 

The prognostic model was constructed based on the TCGA dataset, which was set as the training cohort. Each gene among the 
expression profiles was normalized using log2 transformation. The univariate Cox proportional hazard regression analysis was used to 
screen B cell marker genes which were related to survival (P < 0.05). The least absolute shrinkage and selection operator (LASSO) 
regression was performed using the R package “glmnet” (version 4.1–3) to minimize the risk of overfitting [28]. Then, the stepwise 
multivariate Cox proportional hazards regression model was used to identify the most relevant genes associated with survival and to 
construct a prediction model based on these B cell marker genes. The expression (exp) of these B cell marker genes and the regression 
coefficient (coef) value were used to calculate the risk score: Risk score = (exp(gene1) *coef(gene1) + exp(gene2) *coef(gene2) + exp 
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(gene3) *coef(gene3) + exp(gene4) *coef(gene4) + exp(gene5) *coef(gene5)). High- and low-risk groups were divided according to 
the median risk score. The samples from three GEO datasets and one ArrayExpress database were used to validate the prediction 
performance of the constructed prognostic model. The Kaplan-Meier survival analysis was performed to assess the difference in OS 
between high- and low-risk groups. 2-, 3-, and 5-year time-dependent receiver operating characteristic (ROC) curves were depicted to 
assess the performance of the risk model. We conducted the prognostic meta-analysis to assess the prognostic significance of the B cell 
marker genes signature in different cohorts by “meta” R package (version 5.2–0). 

2.4. Construction and assessment of the nomogram based on the prognostic model 

A nomogram for the 2-, 3-, and 5-year OS was constructed based on the independent factors obtained by using multivariate Cox 
regression analysis. The discrimination of the nomogram was measured by the C-index, ROC curves, and calibration plots. 

2.5. Pathway and functional enrichment analysis 

DEGs between high- and low-risk groups were identified using the “limma” package in R with the cut-off of P < 0.05 and |log2 (fold 
change)| >1. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional enrichment analysis of the 
BCMGS was performed. R packages were used to analyze, including “clusterProfiler” (version 4.1.5), “org.Hs.eg.db” (version 3.12.2), 
“enrichplot” (version 1.12.3), “ggplot2” (version 3.3.5). 

2.6. Immune score, stromal score, and ESTIMATE score of high- and low-risk groups 

In addition, we analyzed the relationship between risk score and tumor microenvironment by The Estimation of Stromal and 
Immune cells in Malignant Tumor tissues using the Expression data (ESTIMATE) algorithm, which was used to calculate the stromal 
score, immune score, ESTIMATE score, and tumor purity of high- and low-risk groups based on gene expression data [29]. The score of 
each sample was calculated using the “estimate” R package (version 1.0.13), and the difference in immune cell infiltration between 
high- and low-risk groups was further compared by the Wilcoxon test. 

2.7. Analysis of the tumor-infiltrating immune cell 

We estimated the abundance of immune cell infiltration in high- and low-risk groups in this study by the CIBERSORT algorithm, 
which was a novel tool that used RNA-sequencing data to evaluate the cell composition in tumors and the infiltration of immune cells 
[30]. The LM22 algorithm was used to conduct CIBERSORT, which contains 547 genes downloaded from the web portal (http:// 
cibersort.stanford.edu/) that could identify 22 immune cell subtypes. We used Wilcoxon tests to analyze and the “vioplot” package 
(version 0.3.7) to visualize the data. We also investigated the association between the expression of 35 immune checkpoints and two 
risk groups. 

2.8. Analysis of T cell receptor (TCR) and B cell receptor (BCR) repertoire 

Diversity scores of TCR and BCR, including richness measure the number of different T-cell clones with unique TCRs and BCRs in 
the sample, and Shannon Entropy that access the clonotype frequencies. Based on a previous study comprising diverse cancer types, we 
collated the richness and Shannon diversity valves of TCR and BCR of HNSC patients from TCGA [31]. 

2.9. Gene expression analysis using GEPIA2 

We analyzed the expression difference between the tumor tissues from TCGA and the matched normal tissues, which are from 
TCGA normal and GTEx (Genotype-tissue expression) data using the “Expression analysis” module of the GEPIA2 (http://gepia2. 
cancer-pku.cn/#analysis) with the |Log2FC| cut-off of 1 and a p-value cut-off of 0.01. 

2.10. Immunohistochemistry 

IHC staining was used in samples with primary HNSC and without other primary tumors. 114 cases of HNSC tissues were obtained 
from the Cancer Hospital, Chinese Academy of Medical Science, Beijing, China, between January 2016 and December 2017. We 
construct the tissue microarrays (TMAs) with formalin-fixed paraffin-embedded (FFPE) specimens using a manual tissue arrayer 
(Beecher Instruments Inc, Sun Prairie, WI, USA). We performed IHC staining in an automated system on the Ventana BenchMark 
platform (Ventana Medical Systems, Tucson, AZ). IHC staining was performed for the protein encoded by signature genes and some 
immune checkpoints, including FTH1, PD-L1, PD-L2, PD-1, TIM-3, LAG-3, CTLA-4, and TIGIT. Primary antibodies were purchased 
from Abcam (Cambridge, UK) including anti-Ferritin antibody (ab287968, 1:100 dilutions), anti-GITR antibody (ab223841, 1:1000 
dilutions). T Cell Exhaustion Marker (PD-1, CTLA-4, TIM-3, LAG-3, TIGIT) Antibody Panel (ab254018, Abcam) was used, including 
mouse monoclonal [NAT105] to PD-1 (ab52587, 1:50 dilutions), rabbit monoclonal [CAL49] to CTLA-4 (ab237712, 1:100 dilutions), 
rabbit monoclonal [EPR22241] to TIM-3 (ab241332, 1:200 dilutions), rabbit monoclonal [EPR20261] to LAG-3 (ab209236, 1:50 
dilutions), and rabbit monoclonal [BLR047F] to TIGIT (ab243903, 1:300 dilutions). And rabbit monoclonal [EPR25200-50] to PD-L2 
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(ab288298, 1:100 dilutions) was used. 22C3 pharmDx (mouse monoclonal primary anti-PD-L1 antibody, prediluted, clone 22C3, 
Dako, Carpinteria, CA) on the Autostainer Link 48 according to the manufacturer’s instructions. According to the previous study, the 
pathological assessment of staining was performed using the CPS, and CPS ≥1 was considered as positive [32,33]. We used the 
semi-quantitative scoring method according to a previous study by multiplying the score of staining intensity and the score of positive 
cells for FTH1 [34]. The low expression was defined as the scores from 0 to 6, and the high expression was defined as the scores from 7 
to 12. The Kaplan-Meier (K-M) survival curves by the log-rank test were conducted to analyze the survival differences. 

2.11. Statistical analysis 

Survival distributions were calculated by using the Kaplan-Meier method (log-rank test). Univariate and multivariate Cox 
regression models were used to investigate independent prognostic factors associated with OS. The comparisons between PD-L1 
expression and clinicopathologic characteristics were performed by chi-squared analysis or Fisher’s exact test as appropriate. All 
statistical analyses were performed using R version 4.1.0. Statistical significance was set at P < 0.05. 

3. Results 

3.1. Identification of B cell marker gene expression profiles 

We obtained 64711 cells from 18 treatment-naïve HNSC patients using scRNA-seq data of GSE164690 (Fig. 2a). The screened cells 
were clustered into 17 clusters by the t-SNE analysis (Fig. 2b). We annotated five cell types, including T cells, B cells, monocyte cells, 
NK cells, and Epithelial cells, using reference data from the Human Primary Cell Atlas (Fig. 2c). And cells in the 4, 8, and 13 clusters 
were defined as B cells. Each cluster’s top 5 marker genes were specifically expressed (Fig. 2d). Specifically, a total of 145 B cell marker 

Fig. 2. B cell marker genes were identified by Single-cell RNA-sequencing analysis. (a). T-SNE plot of cells from 18 HNSC samples. (b). T-SNE plot 
colored by various cell clusters. Each point represents one cell, and the point colors represent the cell samples. (c). T-SNE analysis. Each point’s 
colors represent the specific cell clusters. (d). The expression patterns of the cell type-specific marker genes across the cell clusters. HNSC, head and 
neck squamous cell carcinoma; T-SNE, The T-distributed Stochastic Neighbor Embedding. 
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genes were found to be B cell marker genes in HNSC (Table S1). 

3.2. Construction of the BCMGS 

We first used 145 genes to conduct a univariate Cox regression analysis, and a total of 71 genes were found to be significantly 
correlated with OS (P < 0.05) (Table S2). We further obtained 16 genes with LASSO analysis (Figs. S1a and b, Table S3). After the 
stepwise multivariable Cox regression analyses, we identified seven genes that were most linked to prognosis (Fig. S1c), and these 
seven genes were finally used to construct the prognostic model: Risk score = - 0.2323 * expression of FCRLA + 0.2329 * expression of 
FTH1-0.4335 * expression of LAT - 0.3042 * expression of S100A4 + 0.2714 * expression of TIMP1 - 0.1138 * expression of TNFRSF18 
+ 0.1382 * expression of TXN (Table S4). The 499 HNSC patients from TCGA were divided into high- and low-risk groups based on the 
median cut-off value of risk score (0.9882). Two hundred forty-nine patients with a risk score ≥1.2277 were included in the high-risk 
group, and 250 patients with a risk score ≤0.9521 were included in the low-risk group. The distribution of risk scores and survival 
status of HNSC patients were displayed in Fig. 3a. The detailed expression levels of these seven genes were shown in the heatmap 
(Fig. 3b), and the OS of high-risk patients was lower than that of the low-risk patients (Fig. 3c). To assess the performance of the model, 
we calculated the area under the curve (AUC), and the 2-, 3-, and 5-year AUC were 0.680, 0.675, and 0.625, respectively (Fig. 3d). 

Fig. 3. Construction of the B cell marker genes signature using the TCGA cohort. (a). The risk score distribution and survival status of HNSC patients 
in the TCGA cohort. High- and low-risk score groups were defined by the median cut-off value. (b). The heatmap exhibited the expression patterns of 
seven genes in high-risk and low-risk groups. (c). Kaplan-Meier curves of high- and low-risk HNSC patients in TCGA cohort. (d). ROC analysis of the 
TCGA cohort based on the risk score for predicting the risk of death at 2, 3, and 5 years. TCGA, The Cancer Genome Atlas; HNSC, head and neck 
squamous cell carcinoma; ROC, receiver operating characteristic. 
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3.3. Validation of the BCMGS in four other independent cohorts 

To validate the predictive power of the BCMGS, we enrolled the GSE41613 (97 samples), GSE42743 (74 samples), and GSE65858 
(270 samples), and E-MTAB-8588 (108 samples) expression profile. All the clinical features of these datasets were shown in Table S5. 
The risk score was calculated by the same formula which was built in the training cohort, and patients in each GEO dataset were 
divided into two groups by the median cut-off value, excluding the GSE65858 dataset, which used the optimal cut-off value. Similar to 
the previous training cohort analysis, the Kaplan–Meier analysis showed that the patients in the high-risk group were associated with a 
worse prognosis (P < 0.05; Fig. 4 a-d). The 2-, 3-, and 5-year AUC values were 0.732, 0.713, and 0.685 in the GSE41613 cohort, and 
0.663, 0.678, 0.819 in the GSE42743 cohort, and 0.570, 0.571, 0.632 in the GSE65858 cohort, and 0.701, 0.707, 0.695 in the E-MTAB- 
8588 cohort, respectively (Fig. S2). Our results confirmed that the signature was a risk factor in HNSC (combined HR = 2.134, 95 % CI 
= 1.651–2.759, meta-analysis P < 0.001) (Fig. 4e). 

Fig. 4. Validation of the prognostic value of the B cell marker genes signature in four independent datasets. Kaplan-Meier survival analysis of HNSC 
patients in the GEO cohorts. (a). GSE41613. (b). GSE42743. (c). GSE65858. (d). EMTAB8588 (e). The overall P value was calculated by meta- 
analysis using the prognostic results of four independent datasets. GEO, Gene Expression Omnibus; HNSC, head and neck squamous cell carcinoma. 
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3.4. Cox regression analyses and independent risk factors 

We used univariate Cox regression analysis and multivariate Cox regression analysis to determine that our BCMGS was independent 
of other clinical factors and was an independent risk factor for prognosis. The results showed that risk scores (HR, 0.463; 95%CI, 
0.331–0.647, P < 0.001), T stage (HR, 1.713; 95%CI, 1.185–2.477, P = 0.004), lymphatic metastasis (HR, 1.670; 95%CI, 1.197–2.332, 
P = 0.003) and sex (HR, 0.693; 95%CI, 0.497–0.967, P = 0.031) were identified as independent predictive factors of prognosis 
(Table S6). Data stratification analyses were conducted in the training cohort based on the clinicopathological factors. The risk score 
was still a prognostic factor in the patients stratified by sex, age, grade, T stage, N stage, and stage (Figs. S3 and 4). 

3.5. Construction and assessment of a nomogram 

Based on the independent predictive factors analyzed by the Cox regression model, including the risk score, tumor stage, nodal 
stage, and sex, a nomogram for the 2-, 3-, and 5-year OS was constructed to develop a credible method that can predict the OS of HNSC 
patients (Fig. 5a). 2-, 3-, and 5-year AUC of the nomogram were 0.715, 0.716, 0.614 and the result of the C-index was 0.701 (Fig. 5b). 
The calibration plots of 2-, 3-, and 5-year also confirmed the prediction reliability of our nomogram (Fig. 5c). The prognostic 
nomogram had a better discriminative ability to recognize patients at high risk. 

Fig. 5. Nomogram to predict the OS probabilities of HNSC patients in the TCGA cohort. (a). The nomogram. (b). 2-, 3- and 5-year ROC curves. (c). 
Calibration curves of 2-year, 3-year and 5-year OS. OS, overall survival; HNSC, head and neck squamous cell carcinoma; TCGA, The Cancer Genome 
Atlas; ROC, receiver operating characteristic. 
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3.6. Functional enrichment analysis of the BCMGS 

The underlying mechanism that the B cell marker genes affected the prognosis of HNSC patients aroused our interest. First, we 
obtained 2002 DEGs between two risk groups. The detailed information was visualized by the volcano map in Fig. S5a. Then, GO and 
KEGG enrichment analyses were analyzed. KEGG showed that these genes were primarily involved in neuroactive ligand-receptor 
interaction, Primary immunodeficiency, nicotine addiction, and cytokine-cytokine receptor interaction (Fig. S5b). GO analysis indi-
cated that these genes were enriched in complement activation (classical pathway), humoral immune response mediated by circulating 
immunoglobulin, complement activation, immunoglobulin-mediated immune response, and B cell-mediated immunity (Fig. S5c). 

3.7. Immune cell infiltration score between high- and low-risk group 

The evaluation of immune scores showed a significant difference between high and low-risk groups. More specifically, the high-risk 
group showed significantly lower immune scores and ESTIMATE scores compared with the low-risk group (Fig. 6a). 

3.8. Relationship between immune cell infiltration and the BCMGS 

We estimated the presence of 22 immune cell types in the TCGA cohort, and 15 of them showed a significant difference between 
high- and low-risk groups. We found that increased immune cells infiltration was found in the low-risk group compared with the high- 
risk group, including naïve B cells, plasma cells, CD8+ T cells, activated CD4+ memory T cells, T cells follicular helper, T cells reg-
ulatory (Tregs), T cells gamma delta and resting mast cells (Fig. 6b). However, the high-risk group showed a statistically higher 
abundance of immune cells, such as resting CD4+ memory T cells, resting NK cells, macrophages M0, macrophages M2, activated mast 
cells, eosinophils, and neutrophils (Fig. 6b). The immune cell infiltration in high- and low-risk groups was visualized by a violin plot. 
The associations between 29 immune checkpoints and two risk groups were significantly different among 35 immune checkpoints 
(Table S7). The high-risk group was associated with high expression of these immune checkpoints except NRP1, CD276, PDCD1LG2, 
and CD44 (Fig. 6c). 

3.9. The difference in immunotherapeutic responsiveness in BCMGS 

The immunotherapies used in the selected patients reverse the immunosuppressive microenvironment and attack cancer cells [35]. 
Previous research demonstrated that TCR and BCR repertoire were correlated with immunotherapy response [36]. In our study, the 
low-risk group was featured by higher TCR and BCR (Fig. S6), which suggested that low-risk patients may be more sensitive to ICIs. 

3.10. Gene expression analysis using GEPIA2 

We assessed the expression of seven genes in BCMGS between the normal tissues and tumor tissues. The mRNA expression of FTH1 
and TNFRSF18 was significantly highly expressed in tumor tissues compared with normal tissues (Fig. 7). No significant correlation 
was found in the mRNA expression of FCRLA, LAT, S100A4, TMP1, and TXN between tumor tissues and normal tissues (Fig. 7). 

3.11. Validation of the FTH1 expression in HNSC tissues 

Considering that FTH1 was a carcinogenic risk factor at the time of model establishment, and it was found that FTH1 was highly 
expressed in tumor tissues compared with normal tissues when analyzed by GEPIA2. To verify the reliability of the results, we obtained 
FFPE specimens of 114 HNSC samples. The high expression level of FTH1 in HNSC tissues was significantly correlated with the poor OS 
(P = 0.025, Fig. 8a and b). 

3.12. PD-L1 and immune checkpoints expression in HNSC tissues 

PD-L1 expression was correlated with the T stage and AJCC stage using the chi-squared test (Table S8). Kaplan-Meier survival 
analysis demonstrated that high expression of TIM-3 (P = 0.032, Fig. 8c and d), LAG-3 (P = 0.038, Fig. 8e and f), and PD-1 expression 
(P = 0.041, Fig. 8g and h) were found to be significantly correlated with better OS. However, there was no statistically significant 
difference between other immune checkpoints in HNSC samples and prognosis, including PD-L1, PD-L2, CTLA-4, and TIGIT (Fig. S7). A 
multivariate Cox analysis was used to identify the association with OS among prognostic factors. Lymphatic metastasis (HR = 3.53, 95 
% CI: 1.14–10.97, P = 0.029), LAG-3 positive expression (HR = 0.17, 95 % CI: 0.03–0.91, P = 0.038) and FTH1 positive expression 
(HR = 3.91, 95 % CI: 1.25–12.13, P = 0.019) were independent prognostic factors (Table 1). 

Fig. 6. The association between the B cell marker genes signature and the immune cell infiltration in the TME. (a). The relationship between the B 
cell marker genes signature and immune cell infiltration score in HNSC tumor tissues. (b). 22 immune cells content in the high-risk and low-risk 
groups. (c). Expression of immune checkpoints in high- and low-risk groups. HNSC, head and neck squamous cell carcinoma; ESTIMATE, The 
Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data. 
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4. Discussion 

With the increasing number of studies with high adoption of High-Throughput Sequencing (HTS) and advances in bioinformatics 
methods, more and more molecular analyses of cancers were performed, which help to identify the markers to predict the prognosis 
and immunotherapy response. However, no studies have used BCMGS to investigate tumorigenesis and progression in HNSC. 
Therefore, in this study, we obtained B cell marker genes in HNSC based on scRNA-seq data and constructed a BCMGS by Cox pro-
portional hazard regression and LASSO regression analysis. 

The patients were divided into high- and low-risk groups by risk scores, with significantly different prognoses shown by Kaplan- 
Meier curves. The signature is an independent prognostic factor verified by multivariate Cox regression analyses. Furthermore, the 
prognostic prediction power of BCMGS was validated in four other datasets. For better prediction, we successfully used the inde-
pendent prognostic factors analyzed in previous multivariate Cox regression (risk scores, T stage, and N stage) and constructed a 
nomogram to estimate the survival probability of HNSC better. The AUC curves and calibration plots demonstrated that it was an 
accurate and reliable nomogram. 

The identified seven genes (FCRLA, FTH1, LAT, S100A4, TMP1, TNFRSF18, and TXN) that established the BCMGS had been 
previously reported to be associated with tumor formation, development, and prognosis. FCRLA, which acted as an intracellular B cell 
protein and was the number of the Fc receptor-like (FCRL) family, was the potential tumor-associated antigen of B-cell lymphoma for 
immunotherapy [37,38]. FTH1 may play a role in promoting tumorigenesis by inducing epithelial-mesenchymal transition, promoting 
cell proliferation, and inhibiting apoptosis [39–42]. LAT1 has been considered as a molecular target for cancer diagnosis and cancer 
immunotherapy [43,44]. High LAT expression was correlated to the low OS in Clear cell renal cell carcinoma (ccRCC) samples [45]. 
S100A4 expression levels are elevated in many tumor types, which enhances cell growth and motility, and eventually increases the 
possibility of metastatic [46,47]. TMP1, which has been poorly studied in oncology, was identified as a prognosis-related gene in 
colorectal carcinoma (CRC) [48]. TMP1 also showed a role in in proliferation, invasion and metastasis of OSCC cells in vitro [49]. 
TNFRSF18 (The glucocorticoid-induced tumor necrosis factor receptor-related gene), also named GITR, played an essential role in 
conventional T lymphocyte activation as a T cell co-activating molecule and inhibited the proliferation of Treg cells [50]. GITR has 

Fig. 7. The expression difference of seven genes in the signature between the tumor tissues from TCGA and the matched normal tissues from TCGA 
normal and GTEx (Genotype-tissue expression). (a). FCRLA. (b). FTH1. (c). LAT. (d).S100A4. (e). TMP1. (f).TNFRSF18. (g). TXN. *P < 0.05. 
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become an attractive target in cancer immunotherapy singly and as enhancer of other immunotherapy agents [51]. Antibodies tar-
geting GITR were tested in many clinical trials and were well tolerated and safe in patients with solid tumors [52,53]. TXN protein 
expression was poor prognostic for gastric cancer markers and was overexpressed in gastric cancer tissues [54]. The TXN antioxidant 
pathway was found to be upregulated in tumor cells which supported cancer cell survival [55]. 

We performed GO and KEGG analyses of DEGs of high- and low-risk groups to analyze the molecular biological characteristics. GO 
and KEGG analysis showed that it was mainly enriched in complement activation and humoral immune response. Furthermore, the 
poor prognosis in the high-risk group may be due to the B cell dysfunction, which participated actively in infiltrating and modulating 
tumor immunity. The results of functional enrichment analysis inspired us to investigate the mechanism of oncogenesis with the role of 
TME in HNSC. Our results found that the low-risk group was associated with higher immune scores and ESTIMATE scores. Tumor cells 
changed the immune microenvironment to an immunosuppressive milieu, which was acknowledged as a hallmark of cancer, to survive 
and proliferate [56]. It is the primary reason the high-risk group was associated with poor OS. The infiltration of resting CD4+ memory 
T cells, macrophages M0 and M2 was high in the high-risk group. However, CD8+ T cells, naïve B cells, and activated CD4+ memory T 
cells showed statistically higher abundance in the low-risk group, which significantly influenced immune status and increased im-
munity scores in the low-risk group. That’s the reason that the overall level of the ESTIMATE score in the high-risk group was 
significantly lower than the low-risk group in our result. 

ICI has been approved as a treatment for HNSC, but only a few patients can benefit from the immunotherapies, so it was vital to 
identify biomarkers for ICIs response prediction [57,58]. There are many other reasons affecting immunotherapy’s efficacy, including 
TCR and BCR diversity. TCR and BCR repertoire diversity act as not only a good prognostic factor in many tumor types, which shows 
that higher diversity was associated with a better prognosis, but also a factor to predict potential patients for a better anti-tumor 
immune response [59–61]. Our findings suggested that patients in the low-risk group may be more sensitive to ICIs treatment. An 
implication of the relationship between the BMGS and these biomarkers was the possibility that the signature may be used to predict 
ICIs treatment response. 

Immune checkpoints are regulators of the immune system, which can be modulated by tumors to protect themselves from attack by 
the immune system. Because of the emergence of immune checkpoint blockade (ICB) in immunotherapy, it has experienced radical 
clinical progress in cancer therapy [62]. PD-1, TIM-3, LAG-3, and CTLA-4 are inhibitory receptors that induce a negative signal to T 
cells. However, high expression of ICs associated with good prognosis in some tumors reflects an increased activated immune response 
[63]. Hence, the correlations between prognosis and expression of immune checkpoints in various types of cancer remain controversial 
[64–68]. In our study, the expression of TIM-3, LAG-3, and PD-1 is positively correlated and associated with better OS in HNSC 
patients. 

According to our understanding, this is the first bioinformatics analysis to investigate the signature using B cell marker genes in 
HNSC. The findings could help to predict the prognosis and the response to immunotherapy. Nevertheless, several limitations of this 
study need to be acknowledged. First, all the patients were enrolled from TCGA, GEO, and ArrayExpress databases, which were derived 
from retrospective studies, and prospective study of vitro or vivo experiments should be carried out. Second, the other clinical factors, 
such as the M staging and the location of distant metastasis, were not available in the public dataset, which made it difficult to 
incorporate more variables in the nomogram. Third, it was not sufficient for ICIs response prediction to use a single characteristic to 
establish the signature, and B cell marker genes were only one aspect to influence the progression of HNSC. Fourth, the methods of PCA 
have some limitations, including linearity assumption, sensitivity to outliers, loss of feature interpretability, and the need for judicious 

Fig. 8. Representative IHC images and Kaplan-Meier curves. High expression of FTH1 (a), TIM-3 (c), LAG-3 (e), PD-1 (g) in HNSC. Kaplan-Meier 
analysis of the association between OS and FTH1 expression (b), TIM-3 expression (d), LAG-3 expression (f), PD-1 expression (h). All pictures are 
taken at × 400 magnification. HNSC, head and neck squamous cell carcinoma; IHC, immunohistochemistry. 
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component selection. PCA aims to reduce dimensionality by retaining the most significant information, but there is always some loss of 
information when reducing the number of dimensions. 

5. Conclusions 

In this study, we selected B cell marker genes of HNSC using scRNA-seq data and identified high- and low-risk subgroups based on 
the BCMGS through LASSO and Cox regression analysis. Four independent datasets well demonstrated its prediction efficiency. The 
survival and immune status of the two subgroups were significantly different. This study found the BCMGS as a possible response 
indicator to predict the prognosis and tumor immunotherapy and provided a new perspective for future research on the treatment of 
HNSC. 
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Univariate and multivariate Cox analysis for Overall survival in patients with head and neck squamous cell carcinomas (N = 114).  

Variables Overall survival 

Univariate Multivariate 

HR(95%CI) P HR(95%CI) P 

Male 0.74 (0.31–1.79) 0.503   
Age≥60 1.27 (0.62–2.62) 0.515   
T3&T4 1.19 (0.60–2.36) 0.612   
Lymphatic metastasis 3.09 (1.53–6.22) 0.002 3.53 (1.14–10.97) 0.029 
Stage III&IV 2.06 (0.93–4.57) 0.076   
Lymphovascular invasion 3.51 (1.51–8.13) 0.003 2.30 (0.80–6.61) 0.122 
Perineural invasion 2.60 (1.15–5.91) 0.022 2.37 (0.94–5.98) 0.068 
Smoking 0.89 (0.41–1.92) 0.765   
Drinking 1.23 (0.61–2.48) 0.559   
PD-L1 positive 0.65 (0.30–1.39) 0.267   
TIM-3 positive 0.48 (0.24–0.95) 0.036 1.22 (0.39–3.77) 0.736 
LAG-3 positive 0.49 (0.25–0.98) 0.043 0.17 (0.03–0.91) 0.038 
CTLA-4 positive 0.62 (0.30–1.27) 0.192   
TIGIT positive 1.26 (0.62–2.55) 0.528   
PD-1 positive 0.46 (0.21–0.99) 0.046 0.95 (0.22–4.12) 0.946 
PD-L2 positive 1.13 (0.55–2.33) 0.739   
FTH1 positive 2.42 (1.09–5.37) 0.030 3.91 (1.25–12.13) 0.019  
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