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� The BSATOS takes advantage of using
haplotypes and markers with
different segregation patterns to
identify QTLs.

� A novel integrated strategy was
developed to conduct genomics-
assisted prediction (GAP) in out-
crossing species.

� GAP models were successfully
developed for apple fruit weight,
ripening date, and soluble solid
content.
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Introduction: Genomic heterozygosity, self-incompatibility, and rich-in somatic mutations hinder the
molecular breeding efficiency of outcrossing plants.
Objectives: We attempted to develop an efficient integrated strategy to identify quantitative trait loci
(QTLs) and trait-associated genes, to develop gene markers, and to construct genomics-assisted predic-
tion (GAP) modes.
Methods: A novel protocol, bulked segregant analysis tool for out-crossing species (BSATOS), is presented
here, which is characterized by taking full advantage of all segregation patterns (including AB � AB mark-
ers) and haplotype information. To verify the effectiveness of the protocol in dealing with the complex
traits of outbreeding species, three apple cross populations with 9,654 individuals were adopted.
Results: By using BSATOS, 90, 60, and 77 significant QTLs were identified successfully and candidate
genes were predicted for apple fruit weight (FW), fruit ripening date (FRD), and fruit soluble solid content
u.edu.cn
fmach.it

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jare.2022.03.013&domain=pdf
https://doi.org/10.1016/j.jare.2022.03.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:shenf1028@gmail.com
mailto:luca.bianco@fmach.it
mailto:124055573@qq.com
mailto:614966808@qq.com
mailto:wangyi@cau.edu.cn
mailto:wuting@cau.edu.cn
mailto:xuefengx@cau.edu.cn
mailto:rschan@cau.edu.cn
mailto:riccardo.velasco@crea.gov.it
mailto:paolo.fontana@fmach.it
mailto:zhangxinzhong999@126.com
https://doi.org/10.1016/j.jare.2022.03.013
http://www.sciencedirect.com/science/journal/20901232
http://www.elsevier.com/locate/jare


F. Shen, L. Bianco, B. Wu et al. Journal of Advanced Research 42 (2022) 149–162
(SSC), respectively. The gene-based markers were developed and genotyped for 1,396 individuals in a
training population, including 145 Malus accessions and 1,251 F1 plants of the three full-sib families.
GAP models were trained using marker genotype effect estimates of the training population. The predic-
tion accuracy was 0.7658, 0.6455, and 0.3758 for FW, FRD, and SSC, respectively.
Conclusion: The BSATOS and GAP models provided a convenient and efficient methodology for candidate
gene mining and molecular breeding in out-crossing plant species. The BSATOS pipeline can be freely
downloaded from: https://github.com/maypoleflyn/BSATOS.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Unlike inbred crops, many outcrossing plant species exhibit
three prominent reproductive properties hindering their breeding
efficiency and making it more difficult to explore their genetic/ge-
nomic characteristics. The first is the heterozygous genetic back-
ground, the second is the self-incompatibility barrier and the
third is the large number of somatic mutations preserved and grad-
ually accumulated generation after generation via vegetative prop-
agation. Therefore, the breeding schemes of inbreeding and
outbreeding plants apply to the general principles but differ in
methodology from each other.

Bulk segregant analysis (BSA) is a cost-efficient method for
quantitative trait loci (QTL) mapping and has been greatly
improved in recent years by next-generation sequencing (NGS)
technology [1]. For outbreeding species like apple, however, both
parents of a hybrid population are heterozygous, thus the F1
hybrids segregate and sometimes their progeny exhibits ectopic
segregating patterns [2,3]. These segregating patterns lead to two
problems in QTL identification: (I) how to smooth the statistics
of allele frequency difference (AFD) between the two extreme
bulks, and (II) how to individuate the parental origins of the alleles
of the QTLs. The double pseudo-testcross (DPTC) hypothesis for
genetic linkage map construction enlightened the front road of
BSA-seq in outbreeding species [4]. To date, unfortunately, no sub-
stantial progress was reported to link BSA-seq with DPTC and to
fully utilize the huge number of markers which are heterozygous
in both maternal and pollen parents.

Marker assisted selection (MAS) uses a limited number of mark-
ers to select for interesting traits. MAS is hence most effective
when major QTLs explain a high proportion of genetic variance,
but is less efficient in case of many genes of small effects, low her-
itability of the trait, and/or high QTL � environmental interaction
[5,6]. On the other hand, genomic selection (GS) uses a high num-
ber of markers spread across the entire genome to define the
breeding value of an individual to be tested [6,7]. Although the
genotyping cost has massively dropped in this decade, screening
thousands of individuals still may constitute an economical imped-
iment to be broadly applicable [5,6].

Some evidences suggest that too many redundant markers are
used in GS and that a smaller number of more significant markers
led to similar or slightly higher prediction accuracy of the breeding
values: for example, this was observed in several cereal, fruit, and
forestry species [8–11]. In many cases, the addition of already
known QTL markers may further increase the prediction accuracy
using QTL-based genomics assisted prediction (GAP) approach
[12–15]. Moreover, in GS models, marker effects are often arbitrar-
ily assigned as additive so that the non-additive effects are ignored
[16,17]. In some outbreeding species, GS has been performed by
using a set of QTL-derived markers and obtained high accuracy
for some traits, especially those with high heritability [14,18,19].
As reported in dairy cattle, a GS for bovine respiratory disease
trained in one state cannot accurately predict disease risk in the
other state, this issue was solved finally by using a prediction
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model using QTL-based markers [20]. By using four significant
QTL-derived markers, the apple harvest date was predicted with
high accuracy as 0.7375 [21]. The implementation of QTL-based
GAP integrates pure GS and MAS. The genetic values can be accu-
rately estimated when the genotype effects of QTL-based markers
are properly estimated [22,23].

In this study, we developed an integrated strategy to deal with
complex traits of outbreeding plants and test-cased it on three
apple cross populations with 9,654 individuals. To make the BSA-
seq strategy more effective, we developed a BSA-seq data process-
ing software package, ‘BSA tools for outbreeding species’ (BSATOS).
BSA-seq was used to identify genome-wide QTLs for apple fruit
weight, soluble solid content, and ripening date using BSATOS.
Finally, to integrate QTL-based markers with GS, QTL-based GAP
models for these traits were developed and cross-validated. These
protocols and the software were well-applicable and the GAP mod-
els can efficiently assist breeding programs in apple and other out-
breeding plants.
Results

Development of BSATOS

BSATOS uses reads from the F1 population and their parents
(pollen parent was shortened as P and maternal parent as M) in
FASTQ files or pre-aligned BAM files from the two extreme bulks
and the parents. The other inputs are the reference genome in
FASTA format and gene models in GFF/GTF format. BSATOS pro-
vides the user with integrated information regarding QTL profiles,
candidate genes, candidate functional variations, and enriched
haplotype blocks (Fig. 1). The BSATOS pipeline as shown in Fig. 1
and can be freely downloaded from: https://github.com/maypole-
flyn/BSATOS.

In phase I of BSATOS, reads from parents (P and M) and the two
bulked extremity pools of high (H) and low (L) phenotype values
were mapped to the reference genome using the Burrows-
Wheeler Aligner [24]. SNPs and InDels (SNVs) were then identified
and genotyped using only uniquely mapped reads by SAMtools and
larger segment of genomic structure variations (SVs) were also
detected with DELLY2 [24,25]. All the variants were finally anno-
tated by ANNOVAR [26]. The high-quality SNVs that are heterozy-
gous in at least one of the two parents were split into three
subsets: AA � AB (gP, the genotype of the markers is homozygous
in the maternal parent and heterozygous in the pollen parent),
AB � BB (gM, the genotype of the marker is heterozygous in the
maternal parent and homozygous in the pollen parent) and
AB � AB (gMP, the genotype of the markers is heterozygous in both
parents). Read counts with different genotypes from H and L pools
were then extracted and separated based on which category they
fell in (gM, gP or gMP).

In phase II, haplotype blocks were assembled from reads either
using the maximum-likelihood-based tool HapCUT2 or the Hidden
Markov Model-based algorithm integrated in SAMtools, depending

https://github.com/maypoleflyn/BSATOS
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/maypoleflyn/BSATOS
https://github.com/maypoleflyn/BSATOS


Fig. 1. The schematic diagram of Bulked Segregant Analysis Tool for Out-crossing Species (BSATOS) A. The outlined application of BSATOS and pipeline of constructing
genomics-assisted prediction modles. B. The selection of extreme individuals for pooled segregant bulks with the trait apple fruit weight as an example. C. The illustration of
the three types of markers considered by BSATOS. D. The detailed implementation of BSATOS pipeline.
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on the user’s choice (more information provided in the online doc-
umentation) [27,28]. The haplotype blocks of each sample were
compared with each other to impute missing sites and merge adja-
cent blocks. Finally, SNP haplotype blocks from the two parents
were compared and SNPs located in the haplotypes were classified
based on the phase information between the two parents.

In phase III, the three categories of markers (gM, gP and gMP)
were statistically analyzed respectively [29]. G values were calcu-
lated for each site from the read counts and Nadaraya-Watson ker-
nel regression was used as a smoothing function to compute G0

values within a user-defined sliding window [29]. A log-normal
distribution statistics was computed on G0 values for each category
of markers as well as the false discovery rate (FDR) [29,30]. Regions
151
featuring a high G0 and FDR lower than a user-defined threshold
(default 0.01) were chosen as candidate QTLs. Considering the seg-
regation patterns and allele frequencies observed in H and L pools,
the markers with AFD not in agreement with their corresponding
haplotype were considered as noise and removed. G0 and FDR were
recalculated as above using different sizes for the sliding window
and QTL regions were refined using overlapping peaks. The QTL
analysis was performed three times using each of the three subsets
of data, gM, gP and gMP to map QTLs to the maternal, pollen or
both parents, respectively. The physical distance of the genes from
the QTL peak was calculated to propose candidate genes responsi-
ble for the interesting phenotype. Functional mutations/alleles
underlying QTLs were screened based on their genetic segregation
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pattern (AA � AB, AB � BB or AB � AB) and haplotype information.
Finally, integrated information including candidate genes, func-
tional alleles, functional annotation, and allele frequency in each
pool were produced as outputs.

Deciphering complex traits using BSATOS

To test the efficiency of BSATOS, we used the data of three quan-
titative traits complexly controlled by multiple genes in apple:
fruit weight, soluble solid content, and fruit ripening date. F1
plants from three hybrid populations were phenotyped over at
least three years (2014 � 2017). All these traits are segregating
continuously, exhibiting an approximately Gaussian distribution
in every hybrid population. The broad sense heritability of fruit
weight, soluble solid content and fruit ripening date for the three
years were averaged as high as 0.89, 0.73, and 0.81, respectively.
The segregating patterns implied that all of these traits were con-
trolled by multiple genes.

Based on the phenotypes measured over the years, six bulks
were defined for each trait, including 23�45 hybrids with extreme
phenotypes for each bulk. A total of 508.3 G bps re-sequencing data
of the pooled DNA from the bulks were obtained and processed by
BSATOS. An average of 96.53% reads of each pool could be mapped
to the GDDH13 apple reference genome and yielded high density
(32 � 1,287 SNP per million bps) distributed on the entire genome.
The density of paternal SNPs (AA � AB) was relatively lower than
that of maternal SNPs (AB � BB) or double heterozygous SNPs
(AB � AB).

In total, 25, 48, and 17 significant QTLs for fruit weight were
identified scattered on 10, 8, and 3 chromosomes in the families
of ‘Jonathan’ (J) � ‘Golden Delicious’ (G), ‘Zisai Pearl’ (Z) � ‘Red Fuji’
(F), and Z � G, respectively (Fig. 2). All chromosomes except chr03,
chr04, and chr08 were occupied by at least one QTL. Of these QTLs,
one locus coincided in all the three populations (JG-H16.1/ZF-
Z16.8/ZG-G16.1) and 11 coincided or overlapped in two popula-
tions. The G0 values of two QTLs, JG-J15.6 and ZG-G16.1, were
higher than 20 (Fig. 2). Several QTLs overlapped with the previ-
ously reported QTLs associated with fruit size/weight, e.g., the
major QTLs (JG-J15.1, JG-H15.1, and JG-J15.2) identified in J � G
families covered fs15.1 and fs15.2 reported by Liao et al., 2021
(Fig. 2). However, no significant signal at the rare locus fs4.1 has
been detected in all the three families, which was consistent with
the human selection on the locus during domestication (Fig. 2)
[31]. Several vital candidate genes associated closely with regula-
tion of fruit development, gibberellin synthesis, auxin synthesis/-
transport were located on the peaks of the QTLs, e.g., MdKAN2
was located on chr16, which is homolog of AtKAN1 in Arabidopsis
and regulates lateral organ polarity and organ morphogenesis
[32]; MdOFPs on chr15 are homologous to tomato SlOVATE and
SUN, respectively, which are involved in the regulation of fruit size
or shape [30,33]; MdGAIs, MdGAOX2, and MdG2OX8 on chr01,
chr05, chr09, and chr15 are the homolog of essential genes partic-
ipating in gibberellins biosynthesis [34,35].

For fruit ripening date, 26, 16, and 18 significant QTLs were
mapped on the 7, 2, and 4 chromosomes in the progenies of the
J � G, Z � F, and Z � G populations, respectively (Fig. 3). All these
QTLs are located on 10 chromosomes. Seven of the eight QTLs on
chr03 detected in the Z � F population were also identified in
the Z � G populations. Five QTLs exhibited G0 values higher than
20 (Fig. 3). We identified several essential genes involved ethylene
response, regulation of cell division, and auxin synthesis, notably,
there was a cluster of ethylene-responsive factors (ERFs) and ethy-
lene receptor (ETRs) at the peak of the QTL with the highest G0

value on the chr16 (Fig. 3).
For fruit soluble solid content, 48, 7 and 22 QTLs were identified

from J � G, Z � F, and Z � G populations, respectively (Fig. 4). These
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QTLs were mapped on 13 chromosomes except chr05, chr06, and
chr10-chr12. The G0 values of 26 QTLs were higher than 10.0, most
of which were mapped on chr00, chr09, chr15, and chr16 (Fig. 4).
Several key regulators of fruit development (e.g., MdMYBs,
MdbHLHs, and MdZFPs) as well as some essential genes participat-
ing in sugar metabolism were identified at the peaks of some QTLs,
e.g., genes encoding sorbitol dehydrogenase,MdSDHs, were located
on the most significant peak regions (Fig. 4).

Gene marker development and estimation of marker genotype effect

Ultimately, a total of 71, 54 and 52 genes containing SNVs/SVs
were selected as the candidate genes associated with fruit weight,
soluble solid content, and fruit ripening date, respectively. Geno-
Plexs� primers were designed flanking a SNV/SV within the coding
region or 2 kb sequence upstream the ATG codon of the candidate
genes.

Using 1,396 individuals, including 1,251 hybrids and 145 Malus
accessions, the genotype effects of the 71 markers associated with
fruit weight were estimated. Of these markers, the largest geno-
type effect was detected for SIZE9471 (68.9 g) and SIZE906
(43.89 g), whereas the smallest genotype effect (�109.93 g) was
detected for SIZE2805, SIZE6268, and SIZE9195. The markers
SIZE1413 and SIZE2888 exhibited approximately dominant allelic
relationships, SIZE832 and SIZE906 showed additive allelic interac-
tion, while most of the other markers showed over or partial dom-
inance among alleles (Fig. 5A).

The genotype effects of the 54 makers associated soluble solid
content were estimated using 1,362 individuals, including 1,217
hybrids and 145 Malus accessions. The largest reliable positive
genotype effects for soluble solid content were detected for the
markers TSS234 (0.56), TSS263 (0.56), and TSS255 (0.49), while
the largest confident negative genotype effects were estimated
for the markers TSS219 (�2.49), TSS203 (�1.76), and TSS261
(�1.47) (Fig. 6A). The marker TSS249 and TSS255 exhibited
approximately additive allelic interaction whereas apparent dom-
inant allelic effect was detected for TSS228, TSS229, TSS237,
TSS253, TSS258-4, TSS258-9 and TSS268 (Fig. 6A).

By using 1,033 individuals including hybrids and Malus acces-
sions, the marker genotype effects for fruit ripening date were esti-
mated. The confident genotype effects varied from �25.07 days
after full bloom (DAFB) (LY284 GG) to 17.29 DAFB (new278 CT)
among genotypes of the 52 markers (Fig. 7A). Most of the markers
from H-type QTLs exhibited partial dominant allelic interaction
among genotypes within the marker, e.g. S349, S477, and LL288
(Fig. 7A). Complete dominant allelic interaction was exerted on
fruit ripening date by some of the markers such as CYYL1399,
MY154, and XL13, while only markers neww441 and LY064
showed additive allelic interaction (Fig. 7A).

Development of GAP models and cross-validation

We implemented the allele-aware strategy by assigning marker
genotype effect to all the three genotypes (see methods) into BSA-
TOS, which constructed the GAP models for the three essential
apple traits and assessed the prediction accuracy using different
sizes of training set. Using all the 71 markers for apple fruit weight,
the GAP models produced by BSATOS gave a higher prediction
accuracy (an average of 0.738) than the ridge-regression best linear
unbiased prediction (rr-BULP) package (an average of 0.451)
(Fig. 5B and 5C). Besides, the GAP model by produced by BSATOS
showed better stability than rr-BULP when using a different per-
centage of training set, especially for high percentages (Fig. 5B
and 5C). Five-fold cross-validation confirmed that the average pre-
diction accuracy of GAP for fruit weight was 0.737 (Fig. 5C). This
prediction accuracy was higher than that of rr-BLUP (r = 0.452)



Fig. 2. Genome-wide quantitative trait loci (QTL) identification for apple fruit weight using three biparental cross populations, Malus domestica Borkh. ‘Jonathan’ � ‘Golden
Delicious’; M. asiatica Nakai ‘Zisai Pearl’ � M. domestica Borkh. ‘Red Fuji’, and ‘Zisai Pearl’ � ‘Golden Delicious’. *Candidate genes at the QTL peaks were marked. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Genome-wide quantitative trait loci (QTL) identification for apple fruit ripening date using three biparental cross populations, Malus domestica Borkh. ‘Jonathan’ �
‘Golden Delicious’; M. asiatica Nakai ‘Zisai Pearl’ � M. domestica Borkh. ‘Red Fuji’, and ‘Zisai Pearl’ � ‘Golden Delicious’. *Candidate genes at the QTL peaks were marked. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Genome-wide quantitative trait loci (QTL) identification for apple fruit soluble solid content using three biparental cross populations, Malus domestica Borkh.
‘Jonathan’ � ‘Golden Delicious’, M. asiatica Nakai ‘Zisai Pearl’ � M. domestica Borkh. ‘Red Fuji’, and ‘Zisai Pearl’ � ‘Golden Delicious’. * Candidate genes at the QTL peaks were
marked. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(Fig. 5B and 5C). We defined the allelic genotypes conferring the
highest/lowest/intermediate effect and observed that the geno-
typic profiles changed as the fruit weight gradually increases, indi-
cating the contribution of both the marker effect and the allelic
effect to the trait (Fig. 5D, 5E, and 5G). The GAP model for fruit
weight was finally developed using all the 71 markers and an accu-
racy of 0.7658 was obtained when using all the individuals
(Fig. 5F). When the genotype predicted value (GPV) criterion
was > 140 g, the selection rate was 41.9% and the selection effi-
ciency was 61.1%, which means the observed phenotype values
of 146/239 individuals were >140 g. Of the 570 individuals used
for simulative selection, there were 161 with the fruit weight
phenotype > 140 g, so by filtering the GPV > 140 g, 90.7%
(146/161) were selected, which were defined as the exhaustivity
(90.7%).

After removing the individuals with missing marker genotype
data, the GAP model for soluble solid content was created by BSA-
TOS with 52 markers in a training population containing 1,435
individuals. By using different percentages of the training set, the
average prediction accuracy of GAP models obtained by BSATOS
was 0.362, which was significantly higher than that by rr-BULP
(0.276) (P-value < 0.01) (Fig. 6B and 6C). Moreover, the accuracy
of the GAP model produced by BSATOS was more stable than that
by rr-BULP (Fig. 6B and 6C). The prediction accuracy of the ultimate
GAP model was up to 0.3758 by using all the 52 markers (Fig. 6F).
The genetic heatmap showed few significant differences between
extreme individuals, indicating the minor marker effect or allelic
effect of the genetic loci controlling sugar content (Fig. 6D, 6E,
and 6G). By applying a filter of GPV > 15.0% in a simulative selec-
tion, the selection rate was 40.9%, the efficiency was 61.2%,
whereas the exhaustivity was 55.7%.
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The GAP model for fruit ripening date were created by BSATOS
with all the 52 markers and the prediction accuracy was 0.6455
using all the individuals (Fig. 7F). Although there was no significant
difference in prediction accuracy between the GAP produced by
BSATOS and rr-BULP in any size of training sets, GAP by BSATOS
exhibited better convergence and stability (P-value > 0.05)
(Fig. 7B and 7C). For example, the average prediction accuracy of
five-fold cross validation was 0.6354, comparable to the prediction
accuracy of rr-BLUP (0.651) (Fig. 7B and 7C). Significant genetic
contribution to the fruit ripening date was derived from both the
marker effect and the allelic effect (Fig. 7D and 7E). The genotypic
heatmap exhibited the distinct genotypes between early maturing
and late maturing individuals (Fig. 7G). When the GPV criterion
was � 170 DAFB in a simulative selection for fruit ripening date,
the selection rate was 23.6%. The selection efficiency and exhaus-
tivity were 69.8% and 39.4%, respectively.
Discussion

BSATOS is a powerful tool for QTL identification in outcrossing plants

Fruit ripening date is a complex quantitative trait, so over 50
QTLs for harvest date were clustered into 16 unique genomic
regions on more than five chromosomes [21,36,37]. By using BSA-
TOS, we identified 60 significant QTLs for fruit ripening date on 10
chromosomes in the three hybrid populations, including 21 and
nine QTLs on chr03 and chr16, respectively (Fig. 3). Of the 82 SNPs
associated with ripening period, 70 and 9 were located on chr03
and chr16, respectively [37], the spanning genomic regions,
29,196,200 – 31,243,065 bp on chr03 and 9,032,064 –



Fig. 5. Marker genotype effects, genomics-assisted prediction (GAP) modeling and cross-validation of the GAP model for apple fruit weight. A. Markers exhibiting typical
allelic genetic interactions. B. The prediction accuracy of ridge-regression best linear unbiased prediction (rr-BLUP) using different percentages of training individuals. C. The
accuracy of GAP using different percentage of training individuals D. the marker effect of markers for FW E. the allele effect of markers for FW F. Dot-plots showing linear
regression between genotype predicted value (GPV) and observed phenotype value (OPV) for apple fruit weight. G. Heatmap showing the genotype across the 1,396
individuals; the allelic genotype conferring the highest/lowest/intermediate fruit weight effect as favorable/unfavorable/intermediate alleles.
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Fig. 6. Genomics-assisted prediction models for apple fruit soluble solid contents (TSSC). A. the demonstration of markers exhibiting typical genetic effects. B. the accuracy of
rr-BLUP using different percentage of training individuals C. the accuracy of BSATOS using different percentage of training individuals D. the marker effect of markers for
apple fruit soluble solid contents E. the allele effect of markers for apple fruit soluble solid contents F. Dot-plots showing linear regression between genotype predicted value
(GPV) and observed phenotype value (OPV) for apple fruit soluble solid contents G. the heatmap of the genotype across the 1,396 individuals; We defined the allelic
genotypes conferring the highest/lowest/intermediate TSSC effect as favorable/unfavorable/intermediate alleles.

F. Shen, L. Bianco, B. Wu et al. Journal of Advanced Research 42 (2022) 149–162
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Fig. 7. Genomics-assisted prediction models for apple fruit ripening date. A. the demonstration of markers exhibiting typical genetic effects. B. the accuracy of rr-BLUP using
different percentage of training individuals C. the accuracy of BSATOS using different percentage of training individuals D. the marker effect of markers for apple fruit ripening
date E. the allele effect of markers for apple fruit ripening date F. Dot-plots showing linear regression between genotype predicted value (GPV) and observed phenotype value
(OPV) for apple fruit ripening date G. the heatmap of the genotype across the 1,396 individuals; We defined the allelic genotypes conferring the highest/lowest/intermediate
ripening date effect as favorable/unfavorable/intermediate alleles.

F. Shen, L. Bianco, B. Wu et al. Journal of Advanced Research 42 (2022) 149–162
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9,306,332 bp on chr16 were almost exactly covered by QTLs indi-
viduated in this study. Besides those hot spots on chr 03 and
chr16, more QTLs with relatively low significance were detected
on chr01, chr02, chr05, chr06, chr12, chr14, and chr17. These
results were not only highly consistent with the previous reports
[37–40], but also indicated that QTLs can be more effectively
mapped by using BSATOS.

Another complex quantitative trait is fruit soluble solid con-
tents in apples. QTLs or MetaQTLs for fruit soluble sugar/solids,
and/or individual sugar compositions were mapped and some
were validated on all the chromosomes except chr10 and chr14
[41–43]. In the present study, we identified 77 QTLs on 13 chromo-
somes, which were more than any of the previous reports.

Fruit weight is under a much complex genetic control. A set of
SNPs, QTLs or MetaQTLs for fruit weight/size were mapped on
chr04, chr05, chr06, chr07, chr08, chr11, chr12, chr13, chr15,
chr16, and chr17 [31,41,43–45]. Consistently, we mapped 90 con-
fident QTLs for fruit weight on10 chromosomes, and those on
chr01, chr02 and chr14 were newly discovered.

The good performance of BSATOS in QTL identification is attrib-
uted to the large population size, high marker density, and inclu-
sions of double heterozygous markers (AB � AB) to the marker
set, because AB � AB type of markers are often conveying large
effects on phenotype variations (Figs. 2-4). BSATOS can also pre-
cisely individuate the parental origin of QTL-associated alleles,
screen functional variations through haplotype information and
assign a statistical significance to the identified QTLs. For outbreed-
ing species like apple, the genetic scenario is quite different from
that of conventional inbred crops (e.g., rice and maize). In inbred
species, three statistical methods, namely SNP index, Euclidean
distance, and G0 statistics, are commonly used in BSA-seq to detect
the QTL signals [1,3,30]. To determine the best statistical method
for the special scenario in out-crossing species like apple, the effi-
ciency of the three statistical methods for QTL identification was
compared, and the results indicated that G0 statistics was the best
with distinct unbiasedness and low false positives in QTL detection
[3]. Then G0 statistics embedded in BSATOS has been successfully
applied to identify QTLs or either the key genes associated with
several complex traits, e.g. apple fruit acidity [2], apple cover color
degree [46], fruit cold storability [47], apple root growth angle [48],
salt-alkaline tolerance [49], and fruit ring rot disease resistance [3].
Moreover, candidate genes and genetic variations on these genes
were efficiently predicted and several variations were confirmed
to be functional [2,47,48].

In addition, the use of distantly related parents for creating
multiple segregating populations is also critical for maximizing
the efficiency of QTL identification, which has been confirmed by
several previous reports on FlexQTL and MetaQTL [16,17,41,50–
54]. GWAS using large scale accessions and pedigree-based QTL
mapping using multiple unrelated families were more effective
on saturating genome wide QTL-based markers [37,39,52,55]. This
study makes use of ‘Jonathan’ and ‘Golden Delicious’, which are the
founders of modern apple cultivars, ‘Red Fuji’, which is a direct
descendant of other two founders: ‘Red Delicious’ and ‘Ralls Janet’
[43,56,57]. ‘Zisai Pearl’ is a Chinese domesticated cultivar that tax-
onomically belongs to M. asiatica Nakai. These parental cultivars
have covered nearly half of the genetic composition ofM. domestica
ancestors. Thus, the identified QTLs are more saturated than those
that would have been identified by using a single bi-parental
population.

The number of QTLs varied between hybrid populations,
because a marker segregating in one population may not segregate
in another. For example, in this study, H15.5 (S349) for ripening
date was identified in the J � G but was not detectable in hybrids
of neither Z � G nor Z � F. The effect of a certain marker may be
detected in a population where the marker does not segregate.
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The genotype effect of some non-segregating markers altered the
average phenotype performance of the whole population. e.g., for
fruit weight, the genotype of the marker SIZE6268, SIZE2805,
DDY6, and XDY160 did not segregate in the J � G population, how-
ever, the effects (21.65, 18.76, 18.42, and 19.24, respectively) were
present and therefore increased the overall phenotype value of the
population.

The accurate phenotyping is also important for QTL mapping
and genotype effect estimation. In annual crops, phenotypic data
are often collected from multiple sites and multiple seasons
[13,67,75]. In perennial woody plants, however, multi-site trials
cost much and the authors prefer to collect phenotype data of
multi-year on a single site like that in this study [19,39,58]. Kumar
and colleagues assessed six apple fruit quality traits at two sites in
New Zealand, the between-site genotypic correlations were higher
than 0.85 for all traits, and genotype-site interaction accounted for
less than 10% of the phenotypic variance, the prediction accuracy
was similar when the validation set was used for one site or for
both sites [61].

QTL-based GAP is capable to integrate MAS and GS

For complex quantitative traits, QTL-based GAP may obtain
comparable or better accuracy than that of GS but with remarkably
reduced cost. GS uses genome-wide markers and makes the geno-
typing cost for thousands of individuals unaffordable. The accuracy
of GS was remarkably high and ranged from 0.68 to 0.89 for apple
soluble solid content, astringency and titratable acidity in 1,120
seedlings of seven full-sib families generated from six parents
[12]. However, by using pedigreed full-sib families, the GS accuracy
for fruit size ranged from 0.08 to 0.33, averaging to 0.23 [16]. Sim-
ilarly, the predictability was �0.5 for fruit harvest date, �0.2 for
fruit weight and soluble solid contents in a natural population
comprised of 172 Malus accessions in a two years trial [39]. In an
independent study using founder haplotypes, the GS predictability
was around 0.6, 0.3, and 0.2 for apple pickday, fruit weight, and
Brix, respectively [43]. In other outcrossing perennials like straw-
berry (Fragaria ananassa Duch.) and Japanese pear (Pyrus pyrifolia
Nakai), different GS models for fruit weight, yield, or soluble solid
content showed a relatively low predictive ability of 0.18 � 0.70
[19,58,59]. QTL-based GAP has been successfully established for
apple cover color degree [46], fruit cold storability [60], apple root
growth angle [48], and apple rootstock salt-alkaline tolerance [49].
The GAP prediction accuracy in this study was 0.7658, 0.6455, and
0.3758 for apple fruit weight, fruit ripening date, and soluble solid
content, respectively. These accuracies were relatively higher than
that of most reported pure GS with high density SNP array
[16,39,61].

The prediction accuracy for soluble solid content (0.3758) was
however relatively lower than that for fruit weight and fruit ripen-
ing date. The relatively lower broad sense heritability for fruit sol-
uble solid content (0.73) might be one of the causes of this, because
the prediction accuracy was strongly influenced by trait heritabil-
ity [16,61]. The low prediction accuracy for apple soluble solids
was also reported in GS by using data of germplasm accessions
(around 0.35) or using historical phenotypic data (about 0.25)
[38,39]. The prediction accuracy of GS/GAP depends also on the
genetic structure of the population and the relatedness between
training and validation populations [61]. When a collection of
diverse accessions or several populations covered most variations
in a few founder cultivars, the prediction accuracies would not
be as high as that obtained by using a well-designed training pop-
ulation (0.89 for soluble solids) reported by Kumar and colleagues
[38,39,61].

The size and composition of the training population are impor-
tant factors affecting the prediction accuracy. In alfalfa (Medicago
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sativa L.), when the training population was obtained by a mixture
of commercial cultivars, the genomic prediction accuracies went
from 0.34 to 0.51 for one cycle selection of total biomass yield,
but by using two single populations, the GS accuracy was in the
range 0.32–0.35 [62,63], revealing large impacts of population
composition on prediction accuracy [7,64]. In this study three
full-sib families derived from four unrelated parents were
explored, and 145 Malus accessions with broad ancestral back-
ground were also included in the training population, which
ensured good prediction accuracy and increased the practical
applicability of the GAP models.

Inclusion of significant QTL in the marker panel may largely
improve the prediction accuracy. In animals, the addition of several
QTL-derived markers to the GS marker set led to an increase in pre-
diction reliability from 0.585 to 0.606 and from 0.488 to 0.519 for
milk fat contents of cattle one and three generations away, respec-
tively [65], which was consistent with the results obtained not
only in animals like pigs but also plants like wheat [66,67]. As a
similar result was observed in the prediction accuracy using
1.0 � 2.5% selected SNP markers and 13 � 18 tagged QTLs. The
accuracy obtained was better than that using a whole set of
200 K SNPs including 95 QTLs [42]. Moreover, the accuracy of GS
for sheep parasite resistance using carefully selected sequence
variants from the QTL regions can be improved by 9% [68]. These
data demonstrated that the use of a small number of loci with large
effects on a trait may result in the best accuracy [69,70]. Interest-
ingly, high accuracy can also be obtained by using the QTL-derived
markers only, using 125–200 SSR markers with the highest
heterozygosity would have marginally improved accuracy to 0.56
for rubber production in Hevea brasiliensis [71]. In this study,
genome-wide QTL-based markers were used to generate GAP mod-
els with relatively high predictability for apple fruit ripening date,
fruit weight, and soluble solid content, indicating the potential use
of QTL data to reduce marker density and therefore costs.

In inbreeding plants, GEBV is estimated in many GS models
such as rr-BLUP, Bayesian least absolute shrinkage and selection
operator (LASSO) etc., which emphasizes additive effects [11]. In
outbreeding species, however, non-additive effects contribute to
a large proportion of the genetic variations due to the high level
of heterozygosity and the clonal propagation of many outcrossing
plants [2,72]. In the GAP models, the genetic effect includes both
allelic additive and non-additive effects, the prediction accuracy
was therefore higher than that obtained by rr-BLUP.

In the GAP model for fruit weight, we found that the observed
phenotype value (OPV) of some triploid M. domestica cultivars
were 250–350 g, such as ‘HAC-9’ (276.0 g), ‘Jonagold’ (250.4 g),
‘Shizuka’ (258.1gg), ‘Mutsu’ (314.1 g), ‘Crispin’ (298.1 g), etc. These
OPVs were much larger than their GPVs (176.8 g � 188.8 g).
Because the genotypes of these triploids were output with the for-
mat of diploids by the genotyping by sequencing (GBS) protocol,
one of the three alleles in a triploid accession was routinely omit-
ted, therefore the GPV was under-estimated by neglecting one-
third allelic effects. Additionally, the genotype of some somatic
mutant cultivars was nearly the same and thus they have the same
GPV, but the OPV varied remarkably, for examples, ‘Golden B’,
‘Smoothee’, ‘Spur Golden Delicious’, and ‘Golden Spur’ were
russet-less, or spur-type mutant cultivars derived from ‘Golden
Delicious’, their GPV for fruit weight was 187.5 g, but the OPV var-
ied between 110.0 g and 236.4 g. These data indicated that the pre-
sent GAP model for fruit weight failed to accurately predict the
effect of polyploidy or somatic mutations.

Further dissection of the molecular control and regulation
network of the traits is much eagerly desired for precise geno-
mic selection [73], so most markers in this study were
designed on the coding regions or on the 2 kb upstream
sequence of the candidate genes. These gene markers were
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beneficial for eliminating the effect of the rapid linkage dise-
quilibrium decay as much as possible, or otherwise extremely
high density of markers would have been required [38]. The
markers designed on gene regions could in addition be helpful
for the development of new diagnostic markers and to improve
the prediction accuracy [74,75].

Conclusion

A novel protocol, BSATOS, for BSA-seq and QTL identification for
out-crossing plant species was developed in this study. We tested
BSATOS by challenging it with the identification of QTLs for apple
fruit weight, fruit ripening date and solid content in three cross
populations. BSATOS identified 90, 60, and 77 QTLs respectively
for apple fruit weight, fruit ripening date, and fruit soluble solid
content. Markers were designed on the candidate genes of each
QTL region, and the marker genotype effects were estimated.
Finally, the accuracy of GAP models was 0.6455, 0.7658, and
0.3758 for fruit ripening date, fruit weight, and soluble solid con-
tent, respectively. The results presented in this paper showed that
BSATOS can be effectively used and that GAP models may assist
highly efficient molecular breeding in out-crossing plants.

Materials and methods

Plant materials

Malus germplasm accessions (145) and hybrids of three bi-
parental cross populations, M. domestica Borkh. ‘Jonathan’ �
‘Golden Delicious’ (J � G) (1,773 hybrids); M. asiatica Nakai ‘Zisai
Pearl’ � M. domestica Borkh. ‘Red Fuji’ (Z � F) (3,627 hybrids);
and ‘Zisai Pearl’ � ‘Golden Delicious’ (Z � G) (3,492 hybrids), were
used as segregating populations. The hybrid cross was performed
in 2002 (J � G) and 2007 (Z � F and Z � G). All plant materials were
subjected to conventional cultivation management and pest con-
trol. The phenotype values of fruit weight of the parental cultivars,
J, G, Z, and F were 220.7 g, 236.4 g, 44.0 g, and 241.8 g, respectively.
The ripening date phenotype of the parents, J, G, Z, and F was 153
DAFB, 151 DAFB, 179 DAFB, and 177 DAFB, respectively. The fruit
soluble solid content of J, G, Z, and F was 15.35 Brix, 16.31 Brix,
16.16 Brix, and 14.60 Brix, respectively.

Phenotyping

Apple fruit of all hybrids and accessions were phenotyped in the
years period 2014 � 2017. Fruit maturity was determined by fruit
skin ground color de-greening and starch index [76,77]. The ripen-
ing date was recorded as days after full bloom (DAFB) to avoid the
phenological variation among years. Fruit weight was measured as
the average of ten randomly picked apples. The soluble solid con-
tent was the average value of measurements for each of three
apples by a Brix meter (PAL-1, Atago, Japan) after calibrating with
distilled water. The phenotype segregation and the broad-sense
heritability for each trait were then analyzed using the methods
described previously [78].

Re-sequencing of parental cultivars, bulk construction, and BSA-seq

To acquire polymorphic variations among the parental culti-
vars, the four parents were sequenced with Illumina short reads
at a 50x genome coverage. Genomic DNA was extracted from the
leaves of ‘Golden Delicious’, ‘Jonathan’, ‘Red Fuji’, and ‘Zisai Pearl’
using a Genomic DNA Isolation Kit (TianGen, Beijing, China). Then,
the Illumina sequencing libraries were constructed using NEBNext
DNA Library Prep Master Mix (NEB), pair-end (PE-150) sequencing
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was performed using the Illumina HiSeq2500 sequencer (Illumina,
San Diego, CA), and the re-sequencing data were processed using
the protocol described previously [3]. Individuals with extreme
phenotypes of fruit weight, soluble solid content, and ripening date
for each hybrid population were selected to construct nine pairs of
DNA pools. Illumina sequencing libraries were constructed using
the pooled DNA samples and pair-end (PE-150) sequencing was
performed as described above. Finally, the sequencing data was
processed using BSATOS.

Candidate gene prediction, GenoPlexs� marker design, and genotyping

Candidate genes were predicted from the QTL intervals follow-
ing the previously described protocols [3]. Genes that do not con-
tain functional single nucleotide variants (SNVs) and structural
variations (SVs) between the two parental cultivars, on which the
QTL was mapped, were removed from the list. Based on the Gene
Ontology (GO) and detailed functional annotations, genes with
trait-inconsistent organ/tissue/sub-cellular localization, develop-
mental dynamics, and physiological pathway annotations were
excluded. Then, genes with unexpected AFD values between the
two bulk pools were also excluded from the candidate gene list.
GenoPlexs� primers were designed based on the 200-bp sequence
flanking the SNP, InDel or SV markers on the candidate genes. Mar-
ker genotyping was performed following the instruction of the
GenoPlexs� (https://www.molbreeding.com/index.php/Technol-
ogy/GenoPlexs.html).

Estimation of marker genotype effects and non-allelic interactions

To estimate the genotype effects of the markers, the 145 acces-
sions and over 400 hybrids randomly chosen from each population
were genotyped for all markers. Marker genotype effect was esti-
mated using the complete data set of whole population by the fol-
lowing equation (1):

GE ¼
Xm

i

P=m�
Xn

k

OPV=n ð1Þ

GE: the allelic genotype effect of a marker.
P: the phenotype value of hybrids or accessions with a certain
genotype of a certain marker.
m and i: m is the number of hybrids or accessions with a certain
genotype of a certain marker, i = 1.
n and k: n is the number of all the hybrids from the three bipar-
ental populations and also the accessions, k = 1.
OPV: the observed phenotype value of an individual, which was
the average phenotypic observations of a certain trait over mul-
tiple years.

Genomics assisted prediction model

The estimated effects of marker genotypes or pairwise genotype
combinations were assigned to the test population and genotype
predicted values (GPV) of the traits were calculated by the follow-
ing equation (2):

GPV ¼
Xn

k

OPV=n þ a �
Xf

e

GEþ b ð2Þ

e and f: f is the number of markers, e = 1.
a is a vector of adjustive index.
b is the residual effect.

The accuracy of GAP was evaluated as Pearson’s correlation
between the GPV and the OPV of individuals in the training popu-
lation. The selection efficiency was measured as the ratio of OPV-
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dependent selects against the GPV-depending selects out of the
training population (3).

Selection efficiency

¼ Number of OPV selects in the GPV selected subset
Number of GPV selects

� 100%

ð3Þ
Finally, the exhaustivity of the GAP model was evaluated by

using equation (4).

Selection exhaustivity

¼ Number of OPV selects in the GPV selected subset
Number of OPV selects

� 100%

ð4Þ
Cross-validation of GAP models

Cross-validation was used to evaluate the accuracy of the GAP
models [11–13,59]. The marker genotype effects were re-
estimated using a sub-sampled data-set of training population
and the genotype effect values were input to marker genotypes
of hybrids in the test population to predict GPV by the above
GAP modeling. These pipelines were run 1,000 times and the aver-
age accuracy was compared with that obtained using the complete
data set. To compare the reliability of GAP with the conventional
GS, the rr-BLUP GS strategy was performed as a control method
[12,13,79].
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